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Both categorizations are challenging image classi�cation tasks, given the ambiguity of these visual categories; we tackle both
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web and social media, which exhibit the diversity and noise that is typical of these sources, and contain buildings and other
architectural elements, heritage and non-heritage, damaged by disasters as well as intact. Our results show that while the
automatic classi�cation is not perfect, it can greatly reduce the manual e�ort required to �nd photos of damaged cultural
heritage by accurately detecting relevant candidates to be examined by a cultural heritage professional.

CCS Concepts: • Computing methodologies → Scene understanding; Image representations; Object recognition;
Neural networks; • Applied computing→ Architecture (buildings).

Additional Key Words and Phrases: Cultural heritage sites, social media, damage assessment, deep learning

ACM Reference Format:

Pakhee Kumar, Ferda O�i, Muhammad Imran, and Carlos Castillo. 2019. Detection of Disaster-A�ected Cultural Heritage
Sites from Social Media Images Using Deep Learning Techniques. ACM J. Comput. Cult. Herit. , (February 2019), 32 pages.
https://doi.org/0000001.0000001

1 INTRODUCTION

Cultural heritage resources are �nite, scarce, non-renewable, and valuable [81]. They represent our collective
memory, shape our identity, and also drive the economy [49, 50, 82]. These resources are globally under immense
threat in present times due to natural and human-induced disasters. The increased frequency and severity
of disasters a�ecting cultural heritage [85] has increased the international awareness towards protection and
conservation of cultural heritage [13, 91]. It also points towards the need for an organized response in such cases
by utilizing e�cient tools.
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Social networking sites, particularly Twitter, have been acknowledged as an e�cient communication tool for
disaster management due to its instantaneous nature [65]. Twitter has been used to disseminate news, support
the immediate disaster response, and track e�orts of relief and reconstruction. Consequently, developing e�cient
systems to harness and use real-time information from social media to help relief activities for humanitarian
response in disasters has been a priority area for researchers [16, 64]. Researchers have developed methods for
timely detection of events [7, 9, 10, 75], automatic extraction of information from postings [46, 95], and automatic
classi�cation of images [4], among many other tasks. Most works have focused on extracting urgent needs
from the a�ected populations, while in comparison applications for detecting and evaluating damage to cultural
heritage using social media data have not been studied.

This paper aims to bridge this gap by describing amethod to automatically detect images of cultural

heritage sites, particularly images depicting damage.

The need for this automation arises from the quantity and variety of images posted on social media. Firstly,
the amount of images posted on social media is enormous. According to Meeker and Wu, approximately 1.8
billion images are shared daily on social media platforms [63]. The quantity of images posted on social media
during disasters is even larger [16]. Secondly, this enormous amount of images posted during disasters contain
irrelevant and redundant content, including images not related to the disaster, duplicate images, and “memes,”
among many others [68]. In fact, the images of cultural heritage sites are a small proportion of the total images:
in our datasets from social media during disasters we estimate that less than 10% of images shared might be about
heritage sites. Nevertheless, these images are an unparalleled source of information to detect in near real-time if
a cultural heritage site has been a�ected by a disaster.

Considering the enormous amount of relevant and irrelevant images, manual annotation of each image might
not be feasible. In this work, we propose to use supervised machine learning techniques, speci�cally deep neural
networks, to automatically identify heritage sites and detect if they show any damage. The models trained on
images found through Google Image Search are evaluated on a real-world disaster dataset collected from Twitter.
The automatic classi�cation methodology discussed in this paper provides a helpful tool to support the work of
heritage preservation professionals. By examining a relatively small set of potentially relevant candidate images
extracted by automatic means from a much larger collection, professionals are able to understand the extent of
damage to cultural heritage without necessarily being on site, saving time and resources. Given the immediacy of
social media, the tool is particularly useful for preliminary analysis, and therefore, can help towards organizing
the response by identifying priority areas.

There are four main contributions of this paper:

(1) A methodology for collecting, annotating, and learning classi�ers to identify heritage sites images
(2) An evaluation of this methodology performed on a real-world dataset taken from a disaster event
(3) A corpus1 of annotated images into heritage vs. not-heritage sites with/without damage labels
(4) A lexicon of heritage-related keywords for social media �ltering tasks

The rest of this paper is structured in �ve parts. Section 2 conceptually frames this research, particularly linking
it to similar techniques used in the heritage context and beyond. Section 3 brie�y describes the methodology
adopted for this work. Section 4 discusses the process of data collection and annotation. Lastly, Section 5 describes
the experiments and results. The paper concludes with possibilities of future work in Section 6.

1https://crisisnlp.qcri.org/heritage
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2 RELATED WORK

2.1 Images of Disaster and Cultural Heritage in Social Media

There is a growing interest among researchers to study images about disasters posted on social media. Images
have been studied from many di�erent perspectives including typology analysis [41], spatial and temporal pattern
analysis [39], and ethics [35, 73], among others. Faulkner et al. present a good overview of the current research on
social media images by using three methodological approaches: large-scale image analysis, working with images
at di�erent scales, and in-depth qualitative analysis of images [25]. Further, they adopt the three methodological
approaches to analyze the case of Alan Kurdi2 in order to draw di�erent insights from the same dataset. Bozdag
and Smets’s qualitative study using small data concluded that the images of Alan Kurdi did not cause a major shift
in common discourses and representations [14]. Similarly, Kharroub and Bas’s analysis of 518 images circulated
during the 2011 Egyptian revolution revealed more e�cacy-eliciting than emotionally arousing content posted
by Egyptian users [53]. Hjorth and Burgess analyzed the 100 most retweeted images during Queensland �ood to
understand the genres and resonating themes in images [38]. Vis et al.’s exploratory study of the images tweeted
during the 2011 UK riots also considers di�erent types of images posted during the event [93]. Seo identi�ed
themes and frames prominently appearing in a total of 243 Twitter images posted by the Twitter accounts of
the Israel Defense and Hamas’s Alqassam Brigades during the Israeli-Hamas Con�ict [77]. Additionally, a few
studies focus on the analysis of self-portraits (i.e., “sel�es”) posted on social media during disasters [36, 44].
The cultural heritage domain use the images on social media for two main purposes: (i) enable users to

interact with an already existing image database, and (ii) create new databases of (heritage) images on social
media. The US Library of Congress uses photo sharing platform Flicker to enable users to interact with old
photographs [70]. Other cultural institutions in the US such as The Smithsonian carried out similar initiatives
[48, 52]. In contrast, Terras investigated the growing trend of the creation of digital images of cultural and
heritage materials by amateurs on Flickr [87]. Garduño Freeman studied the public engagement with the world
heritage site Sydney Opera House on Flicker and argued that such socio-visual practices themselves constitute
an intangible heritage [29]. A number of studies focus on cultural heritage institution’s use of image based social
media such as Flicker and Instagram to understand the content created by the institutions, the relation between
audience and institution, among other topics [47, 60]. To the best of our knowledge, no prior study deals with the
analysis of images depicting cultural heritage circulated on social media during disasters.

2.2 Automated Processing of Images from Heritage Sites

Image processing techniques have been used in the cultural heritage context for various purposes. For example,
Hurtut et al. introduced a method for the analysis of the pictorial content of line drawings using the geometrical
information of stroke contours [43]. They showed that the proposed method could be used successfully for the
indexing of line drawings in a retrieval framework. In another example, Makridis and Daras presented a technique
for automatic archaeological sherd classi�cation based on a bag-of-visual-words representation of local color and
texture information and discriminative feature selection [61]. Amato et al. de�ned a pipeline that combined a
convolutional neural network with Fisher vector features for visual recognition of ancient inscriptions. Their
study suggested that these features could be e�ective in visual retrieval of other types of objects related to cultural
heritage such as landmarks and monuments [6]. Can et al. studied visual analysis of Maya glyphs using both
handcrafted and data-driven shape representations in a bag-of-words-based pipeline [15]. Similarly, Hu et al.
proposed a system for automatic extraction of hieroglyph strokes from images of degraded ancient Maya codices
via a region-based image segmentation framework [40]. According to their experimental results, automatically

2A Syrian boy aged three who drowned in the Mediterranean Sea in 2015 while his family, escaping from the Syrian war and ISIS, attempted
to reach Greece from Turkey.
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extracted glyph strokes achieved comparable retrieval results to those obtained using glyphs manually segmented
by epigraphers.

Focusing more on architectural heritage, Shalunts et al. presented an approach based on clustering and learning
of local features to classify the architectural style of facade windows [79]. Mathias et al. used features extracted
by a steerable pyramid of Gabor �lters to train a Support Vector Machine for automatic architectural style
recognition [62]. To tackle the same problem, Chu and Tsai proposed a higher-level feature representation
that takes into account spatial relationships between local features to identify repetitive subgraphs as visual
patterns in an image [18]. Furthermore, Goel et al. explored the utility of mining characteristic con�gurations
of low-level discriminative features in categorizing di�erent architectural styles and used them for improving
classi�cation performance [31]. Alternatively, Oses and Dornaika presented a semi-automatic approach for
delineation of the masonry to classify architectural style [72] whereas Zhang et al. introduced blocklets that
capture the morphological characteristics of buildings and developed an architectural style recognition model
based on hierarchical sparse coding of blocklets [98]. Xu et al., on the other hand, adopted Deformable Part-based
Models to capture the morphological characteristics of basic architectural components and proposed Multinomial
Latent Logistic Regression for architectural style classi�cation [94]. Amato et al. combined k-nearest neighbor
classi�cation and landmark recognition techniques to tackle the problem of monument recognition in images
e�ciently [5]. More recently, Llamas et al. explored deep learning-based techniques, speci�cally convolutional
neural networks, for the classi�cation of architectural heritage images into one of the ten types of architectural
elements of heritage buildings [58]. However, their dataset consists mostly of churches and religious temples.
More importantly, they do not consider images from any damage or disaster context. In contrast, in this paper,
our goal is to analyze the visual content of images to determine whether they show any type of cultural heritage,
even when the image is taken potentially in some damage or disaster context.

2.3 Detection of Images Showing Damaged Structures

There has been a signi�cant increase in the use of image analysis techniques for automatic damage assessment in
the last couple of decades. Most of these studies can be divided into two groups based on the type of data and
domain knowledge they use.

The �rst group of studies corresponds mainly to the remote sensing domain and mostly rely on the analyses of
images obtained from satellites, aircrafts, and unmanned aerial vehicles (UAVs). Early examples include detection
of damaged or collapsed buildings using aerial photographs collected from earthquake-hit regions [89, 90].
Similarly, Pesaresi et al. investigated rapid damage assessment of built-up structures using satellite data in
tsunami-a�ected areas [74]. In order to produce comprehensive per-building damage scores, Fernandez Galarreta
et al. studied UAV-based urban structural damage assessment using object-based image analysis and semantic
reasoning [26] whereas Attari et al. explored �ne-grained segmentation of UAV imagery based on deep learning
techniques for damage assessment [8]. Alternatively, Vetrivel et al. combined multiple kernel learning with 3D
point cloud features derived from high resolution oblique aerial images to detect disaster damage [92]. Likewise,
Cusicanqui et al. investigated the usability of aerial video footage for 3D scene reconstruction and structural
damage assessment [21]. To maximize their data utilization, Kakooei and Baleghi [51] and Duarte et al. [24]
explored fusion of multiple data sources such as satellite, aircraft, and UAVs for automatic disaster damage
assessment.

The second group of studies includes relatively recent work in the crisis informatics domain and rely mostly on
the analyses of ground-level images collected from online social media platforms during disasters [4, 11, 68]. Early
examples speci�c to damage assessment task are presented by Lagerstrom et al. [55] and by Daly and Thom [23]
where both studies analyzed social media data in a binary image classi�cation setting for �re/not-�re detection.
Later, Nguyen et al. investigated a more generic solution to classify disaster images according to damage severity

ACM J. Comput. Cult. Herit., Vol. , No. , Article . Publication date: February 2019.



Detection of Disaster-A�ected Cultural Heritage Sites from Social Media Images • 5

using convolutional neural networks [69]. Similarly, Li et al. proposed a method based on class activation mapping
to localize and quantify damage in social media images posted during disasters [57]. Taking a step further, Li
et al. explored domain adaptation approach to identify disaster damage images during an emergent event when
there is scarcity of labeled data [56]. To advance the state of the art in this area, Alam et al. [3] and Mouzannar
et al. [67] recently introduced multimodal datasets comprising both social media text messages and images.
Furthermore, Mouzannar et al. de�ned a deep learning approach to identify damage images in their dataset [67].
Inspired by these recent advancements, Alam et al. developed an image processing pipeline to extract meaningful
information from social media images during a crisis situation, including damage severity assessment [2]. In this
study, we ran the images in our heritage image datasets through Alam et al.’s system to perform the damage
assessment task. It is important to note that our dataset, in contrast to previous works, focuses on elements from
cultural heritage sites that often look old or aged. This makes the damage assessment task more challenging
than the aforementioned studies, which use all kinds of images; indeed, the vast majority of images processed in
previous work to identify damaged structures are not images of heritage sites.

3 METHODOLOGY OVERVIEW

The methodology adopted for this research has the following steps:

(1) De�nition of elements and categories of interest
(2) Data collection
(3) Data �ltering and annotation
(4) Construction of classi�cation models

Figure 1 outlines the overall methodology.
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Fig. 1. Overview of methodology.
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De�nition of elements and categories of interest. The elements we want to classify are images embedded
in social media postings. The category of interest corresponds to all images that show damage to a heritage site.
This is the intersection of two broader categories: images depicting heritage sites, and images depicting damaged
structures.
Firstly, a balanced list containing the names of cultural heritage and not-cultural heritage sites was created.

Given the inherent complexity of cultural heritage, we considered the legal protection status as the criteria
for de�ning cultural heritage and not-cultural heritage. At the international level since the adoption of Venice
Charter in 1964 [45], the scope of term cultural heritage has broadened and is applicable to individual buildings,
sites to groups of buildings, historical areas, towns, environments, social factors and, intangible heritage. It
also includes artifacts, artworks, practices, etc. At the national level �ner terminologies of heritage are not
standardized, therefore, no uniformity exists between countries [1]. Moreover, researchers have argued that
heritage is inherently complex phenomenon and can contain con�icting meanings [33]. Acknowledging these
complexities, we decided to limit our dataset to the legally protected (either by national or local governments)
cultural heritage.
The cultural heritage list included archaeological sites, monuments, cultural landscapes, museums, galleries,

libraries, and artifacts in urban space. We tried to create a list that was visually varied as well as geographically,
in terms of period (ancient to modern), material and construction. The not-cultural heritage lists also included
buildings and artifacts in urban space. The list of cultural heritage and not-cultural heritage is provided in
Appendices (§A) and (§B). We must acknowledge that de�ning heritage is always an ongoing process, depending
on what is valuable to people in a given place and time. Indeed, there is even de-listing of protected heritage
buildings in some countries. Therefore, the list of heritage sites used as training data for the automatic classi�er
needs to be updated regularly to maintain the quality of the results.

Data collection (§4.1). Google Image Search was used to construct two datasets of images. The �rst dataset
corresponds to images of heritage and not-heritage sites. Figure 2 shows examples of cultural heritage and not-
cultural heritage from our list. The second dataset corresponds to damaged heritage and damaged not-heritage
sites.

Fig. 2. Images in our collection corresponding to heritage sites (le�) and non-heritage sites (right).

Data �ltering and annotation (§4.2). The underlying problem of online images, whether on social media or
Google, is that it contains many irrelevant or unusable images. In this study, the irrelevant or unusable images
were primarily the ones where heritage was not the primary subject of the image or images which were edited to
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an extent that the original context was signi�cantly altered. Figure 3 shows some irrelevant images in our dataset.
Firstly, these irrelevant images were removed, as explained in section 4.2.1 in depth. Secondly, the remaining
images were annotated using the following criteria: heritage vs. not heritage and damaged heritage (§4.2.2) vs.
not damaged heritage (§4.2.3). Both of the tasks were carried out by the lead author of this paper, as shown in
Figures 1 and 6.

Fig. 3. Images from Google that could not be used for training the classifier.

Construction of classi�cation models (§5)We built two di�erent heritage classi�ers using the labeled data
annotated by our expert. First, we used only the images collected without any damage queries to train a classi�er
as shown in Figure 1 (top). Second, we used all images collected both with and without damage queries to train
another heritage classi�er (Figure 1 (bottom)). The performance of both classi�ers is evaluated on the dataset
collected during the 2015 Nepal earthquake (§5.3).

4 DATA COLLECTION AND ANNOTATION

In this section, we discuss our data collection and annotation details.

4.1 Cultural Heritage and Not-Cultural Heritage Images

We selected 92 cultural heritage sites around the world and download their images from Google. The list includes
sites related to architectural heritage, archaeological, monuments, cultural landscapes, museums, galleries,
libraries, and art in urban space. We sought to make the list geographically, period (ancient to modern), material
and construction-wise, and visually representative. Since we treat the detection of heritage sites as a binary
classi�cation task, we also create another list containing built structures (i.e., buildings and sites) which look
somewhat similar to heritage sites but o�cially they are not designated as cultural heritage. Selecting not-cultural
heritage sites is a di�cult task, given the ever-expanding boundaries of cultural heritage. Keeping in mind the
protection criteria, a list of 32 not-cultural heritage sites was carefully curated to be geographically and visually
representative. Interestingly, some of the buildings in this list are iconic buildings which are not protected. The
complete lists containing the selected sites related to heritage and not-heritage are provided in Appendices §A
and §B. Figure 4 shows all the selected sites for both heritage and not-heritage categories on a map.
We downloaded approximately 100 images of each heritage and not-heritage site from Google image search

using the heritage site name as a query. The image search criteria needed to be robust to yield better results. Some
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of the site names had more risk of yielding bad results. For instance, image search criterion for the Walkie-Talkie
building in London was Walkie-Talkie London as the possibility of a bad result was higher if London was not
included in the search query.

Fig. 4. Map showing locations of heritage and not-heritage sites.

In addition to the images that show heritage sites which are potentially undamaged, we searched for images of
the heritage sites showing some damage. For this purpose, our query consists of the heritage site name combined
with two keywords (i.e., “damage” and “destroyed”) separately. In total, we were able to download 13,333 images
from Google.

It is important to note that the proportion of cultural heritage images in social media streams, especially during
disasters, is minuscule which makes the detection task inherently imbalanced. In such situations, it is not ideal to
leave the minority class (i.e., heritage) so small to avoid training machine learning models that trivially predict
the majority class (i.e., not-heritage) all the time. Therefore, we recommend that this type of imbalance reduction
is done, i.e., to over sample from the minority class, ultimately to strengthen the performance of the classi�er in
the minority class (see Table 1).

4.2 Data Filtering and Annotation

4.2.1 Data filtering. Many images, which were collected from publicly available websites using Google Image
Search, are not useful for training an automatic classi�er and were thus removed. Speci�cally, images with
one of the following issues were removed: images that are signi�cantly edited, images where a heritage site is
merely a backdrop and not the main subject (e.g., sel�es), images which are covered almost entirely with text,
3D reconstruction or 3D models of sites, paintings of heritage sites, memes, architectural plans and sections of
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heritage sites, sketches, maps, images in which contextual information is missing (e.g., a close-up photograph of
a stone in a building), and images of replicas, unless it has a protected status. Table 1 shows the results of the
�ltering task. Figure 3 shows a few images which were removed as a result of manual �ltering. The remaining
images are used to perform two annotation tasks as described next.

4.2.2 Heritage vs. not-heritage annotation. This annotation task aims to identify whether an image contains a
heritage site or not. The lead author of this paper (a domain expert) labeled 13,333 images as heritage (which
depict a heritage site) and not-heritage (which did not depict a heritage site) using separate folders on a shared
drive. The �rst row in Table 1 shows the results of the �ltering and the heritage annotation tasks for images
which were collected without damage queries.

Table 1. Filtering and annotation results for heritage vs. not-heritage annotation of images found using Google Image Search.

The number in parentheses represents the number of damaged heritage images.

Removed Labeled as Labeled as
Dataset images Heritage Not-heritage

Images found using heritage/non-heritage queries 2,974 6,612 2,266
Images found using damaged heritage queries 78 836 (447) 567

Total 3,052 7,448 2,833

4.2.3 Damaged heritage vs. not-damaged heritage annotation. This annotation task aims to determine whether
an image having a heritage site shows any sign of damage to the site or not. This task was also carried out by
the lead author of this paper using separate folders on a shared drive. The quanti�cation of the scale of damage
is a subjective task, hence we follow the annotation scheme described in the literature [69], which de�nes the
damage concept in three categories: (i) SEVERE damage, (ii) MILD damage, (iii) NO damage. However, in this
work, we merged the SEVERE and MILD classes to a single class named “Damage.” Table 1 shows the results of
the �ltering and the damage heritage annotation tasks for images which were collected with damage queries.
Images collected from Google using the damage queries contain both heritage sites showing some damage and
sites without any damage. The number of heritage sites with some damage are shown in parentheses in the
second row of Table 1.

5 EXPERIMENTAL RESULTS OF AUTOMATIC CLASSIFICATION

In this section, we describe our experiments and present our results.

5.1 Classification Approach

We considered various alternative approaches ranging from more traditional techniques such as bag-of-visual-
word models to more advanced deep learning techniques such as convolutional neural networks. Eventually we
decided to use a deep learning-based solution since the state-of-the-art performance in many computer vision
tasks are achieved by deep learning models [37, 54, 78, 80, 84] that leverage on large-scale datasets such as
ImageNet [76] and Places [99].

In a nutshell, deep learning models, convolutional neural networks (CNNs) in particular, learn low-, medium-,
and high-level features and classi�ers in an end-to-end fashion to optimize on the target prediction task directly
from raw data [97]. For example, the lower layers of deep CNN architectures correspond to a representation
suitable for low-level vision tasks while the higher layers represent more domain speci�c information [32],
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and hence, eliminate the need for hand-crafted features like Scale Invariant Feature Transform (SIFT) [59] or
Histogram of Oriented Gradients (HOG) [22].

More importantly, the features learned in deep convolutional networks have been shown to be transferable and
quite e�ective when used in other visual recognition tasks [30, 96], particularly when training samples are limited
and learning a successful deep model is not feasible due to over-�tting. For instance, Nguyen et al. show the
success of this transfer learning approach for damage assessment tasks performed on disaster images collected
from social media [69]. Considering that we also have limited training examples, we adopt a transfer learning
approach for the heritage classi�cation problem.
Our heritage classi�cation system is composed of two stages: (i) deep feature extraction, and (ii) training a

heritage/not-heritage classi�cation model, as illustrated in Figure 5. In the deep feature extraction stage, each
image from the training set is simply fed as input to a deep convolutional neural network (CNN) that is pre-trained
on the ImageNet dataset which has over 1.2M images and 1,000 categories [76]. The features extracted from the
penultimate layer of the network are then used to represent the input image. Then, in the second stage, these
deep features are used to construct the desired heritage classi�cation model.

In this study, we experiment with a number of well-known CNN architectures in combination with a variety
of classi�cation algorithms. The CNN architectures used in the experiments include VGG16 [80], ResNet50 [37],
DenseNet121 [42], InceptionResNetV2 [83], Xception [17], and NASNetLarge [100]. Whereas the classi�cation
algorithms employed in the experiments comprise Logistic Regression [20], Support Vector Machines [19],
Random Forests [88], and AdaBoost [28]. All the experimental results achieved by di�erent network architectures
and classi�cation algorithms are presented in Appendix §D. Overall, DenseNet121 and NASNetLarge features
seem to yield slightly better results than other feature types. And, in terms of algorithms, Logistic Regression and
Support Vector Machines seem to perform better than Random Forests and AdaBoost.

For brevity, we hereinafter discuss only the results achieved by the model trained using the Logistic Regression
algorithm on DenseNet121 features, as this is the best performing method in most of the experiments for our
problem setup – although in other settings a di�erent method may perform better.3

Fig. 5. Overview of the heritage classification system.

5.2 Heritage/Not-Heritage Classifier Training

In our dataset, we have 7,448 images from 92 heritage sites and 2,833 images from 32 not-heritage sites. In order
to create disjoint training and test sets, we follow a site-based data split approach. That is, 80% of the heritage
sites (i.e., 73 out of 92) are chosen at random and all images (i.e., 6,075) belonging to these sites are assigned to
the training set (i.e., Training Set-2 in Table 2). Then, all images (i.e., 1,373) belonging to the remaining 20% of the
heritage sites (i.e., 19 out of 92) are assigned to the test set (i.e., Test Set in Table 2). We follow the same approach
to distribute images from non-heritage sites into the training and test sets.
3The DenseNet121 network consists of 121 layers and around 8 million weight parameters [42]. We choose the penultimate layer as our
1024-dimensional deep feature extractor.

ACM J. Comput. Cult. Herit., Vol. , No. , Article . Publication date: February 2019.



Detection of Disaster-A�ected Cultural Heritage Sites from Social Media Images • 11

To investigate the bene�ts of having images with damage context while training our heritage classi�er, we
create another training set (i.e., Training Set-1 in Table 2) where we ablate from Training Set-2 those images
collected by heritage-sites-with-damage queries. In other words, Training Set-1 is a subset of Training Set-2 where
images in Training Set-1 do not show any damage content. The resulting data split is summarized in Table 2. It is
important to note that we opt for site-based data split rather than image-based data split to obtain models with
better generalization capability on new images from previously-unseen sites.

Table 2. Training/test set split by site (80:20 ratio).

Training Set-1 Training Set-2 Test Set

Sites Images Sites Images Sites Images

Heritage 69 5,376 73 6,075 19 1,373
Not-heritage 25 1,869 25 2,380 7 453

Total 94 7,245 98 8,455 26 1,826

Heritage Model-1. In this �rst scenario, we train a heritage classi�er using only the images collected by heritage
site queries with no damage keywords (i.e., Training Set-1 in Table 2).

Heritage Model-2. In the second scenario, we train a heritage classi�er using all of the images collected by
heritage sites queries both with and without damage keywords (i.e., Training Set-2 in Table 2).

Table 3. Confusion Matrices of the heritage classifiers.

Classi�ed as
Heritage Not-heritage

Heritage Model-1 Actual label
Heritage 1,193 180
Not-heritage 113 340

Heritage Model-2 Actual label
Heritage 1,174 199
Not-heritage 74 379

Table 4. Performance comparison of the heritage classifiers.

Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

Heritage Model-1 0.91 0.65 0.87 0.75 0.89 0.70
Heritage Model-2 0.94 0.66 0.86 0.84 0.90 0.74

In addition to a confusion matrix, which displays the number of correctly and incorrectly categorized instances
on each class, we use three standard performance metrics for classi�cation tasks. Precision (positive predictive
value) is the probability that an item classi�ed automatically into a class actually belongs to that class. Recall (or
sensitivity) is the probability that an item that actually belongs to a class is classi�ed automatically as such. The
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F1-score is the harmonic mean of precision and recall, and is one of several metrics that can be used to summarize
them into a single number.
Results are shown in Tables 3 and 4. Confusion matrices (Tables 3) for both models are dominated by the

diagonal, meaning that heritage sites are more likely to be classi�ed as such than as non-heritage. Performance
in terms of precision and recall (Table 4) shows precision above 0.9 and recall above 0.8 for the heritage class. In
practice, this means that at least 9 out of 10 times an image automatically detected as a heritage will be, indeed,
heritage; and that at least 8 out of 10 images of heritage will be found by the classi�er. Overall, we do not observe
much performance di�erence between the two heritage models on the Google images test set.

5.3 Case Study: 2015 Nepal Earthquake (SMERP Workshop Dataset)

We now present the results of our case study in a real-world scenario where we evaluate the performance of both
of our heritage classi�ers as well as an o�-the-shelf damage assessment model of Alam et al. [2] on a Twitter
dataset collected during the 2015 Nepal earthquake (i.e., SMERP Workshop Dataset [66]). As an alternative
baseline, we also consider a lexicon-based model to analyze Twitter text messages for the heritage classi�cation
task. Figure 6 illustrates our case study design.

(Nepal earthquake)

Images
Discarded 

images

Damaged 

heritage 

images

Damaged 

not-heritage 

images

Undamaged 

heritage 

images

Undamaged 

not-heritage 

images

Expert labeling

Heritage

Model-1
Testing

Heritage

Model-2

Testing

Damage model 

(Alam et al. 2017)

Testing

Lexicon

Keywords: Nepal 
earthquake, 

Nepal quake, …

Tweets
Testing Model construction

Lexicon-based

heritage model
Lexicon

construction

Fig. 6. Case study design and testing.

5.3.1 Data filtering and annotation. A dataset containing images of damaged heritage sites, extracted from social
media, is essential to evaluate the proposed approach. We use images posted on Twitter during the 2015 Nepal
earthquake, an event that damaged a large number of heritage sites in this country. Speci�cally, we use the
SMERP Workshop Dataset [66], which contains 6,529 images collected after Nepal Earthquake in 2015. The
tweets in this dataset were collected using the keywords “Nepal earthquake” and “Nepal quake.” It is evident
from the keywords that this dataset was not curated for heritage purposes. Nevertheless, the dataset consists of
information regarding heritage damaged due to the disaster. These 6,529 images are annotated manually using
Nvivo, a qualitative data-analysis software by our expert for heritage and damage severity classi�cation tasks. At
the end of this manual annotation process, there are 6,320 images labeled with heritage and damage categories,
excluding the images labeled as “maybe_heritage” or “dont_know” as well as the images with multiple heritage
or damage labels. All of these 6,320 images are treated as test images in our case study. Table 5 summarizes the
results of both heritage and damage annotation tasks. Figure 7 shows a few images with and without damage.
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Moreover, the textual content associated with these 6,320 images (i.e., tweet text) is used to test our lexicon-based
classi�er, which we describe next in detail.

Table 5. Heritage and damage annotation results for the SMERP dataset.

Heritage Not-heritage Total

Damage 377 1,445 1,822
No-damage 110 4,388 4,498

Total 487 5,833 6,320

Fig. 7. Examples of annotated images from the SMERP dataset, showing heritage with damage (top le�), non-heritage with

damage (top right), heritage with no damage (bo�om le�) and non-heritage with no damage (bo�om right).

5.3.2 Baseline construction. To set a baseline, we developed a lexicon consisting of 176 terms covering heritage-
related concepts such as museum, temple, monuments. As a domain expert, the lead author of this study manually
curated the lexicon. The full lexicon is provided in Appendix §C. The lexicon terms were then used to categorize
tweets from our case study event (i.e., 2015 Nepal earthquake), as shown in Figure 6. Speci�cally, we �rst extract
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uni-grams and bi-grams features from a tweet content. We then �nd if any of those extracted features are present
in the lexicon. A tweet having at least one of the lexicon terms was categorized as heritage; and not-heritage
otherwise. The categorized tweets were evaluated using the ground-truth labels. The resulting confusion matrix is
presented in Table 6 and the performance reported in the �rst row of Table 7. Not surprisingly, the lexicon-based
classi�er misses many of the true heritage cases (i.e., 388 out of 487 instances) which results in a fairly low Recall=
0.20 for the heritage class. In practice, this means that only 1 out of 5 images of the heritage will be identi�ed
correctly by the lexicon-based classi�er.

5.3.3 Heritage/not-heritage classification. First, we apply our heritage models on the SMERP dataset and compare
their predictions with the ground-truth annotations4. Table 6 shows the resulting confusion matrices between the
predicted and ground-truth labels for both heritage models. Figure 8 illustrates the confusion matrices between
the predicted and ground-truth with examples of images classi�ed with the Heritage Model-2. It was found
that the images which were particularly di�cult to accurately classify included edited or altered images, aerial
images, satellite images. Images with overlapping architectural elements between the ’heritage’ and ’not-heritage’
categories were also di�cult to classify. Lastly, images in which heritage was not the main subject of the image
(refer top-right of Figure 8) tend to be di�cult to classify. Further, Figure 10,11 in Appendix F provides examples of
images classi�ed with HeritageModel-1 and Lexicon-basedModel. Moreover, Table 7 summarizes the performance
of the heritage classi�ers in terms of precision, recall, and F1-score. Ideally, the confusion matrix for a perfect
model would have non-zero values only in the diagonal entries and zeros elsewhere (i.e., no incorrect predictions).
However, this is rarely the case in real-world systems. Likewise, Heritage Model-2 does a decent job in classifying
heritage images as heritage (i.e., 369 out of 487), which corresponds to a Recall= 0.76, and not-heritage images as
not-heritage (i.e., 4,794 out of 5,833), which corresponds to a Recall= 0.82. However, the model makes some errors
and classi�es many not-heritage images also as heritage (i.e., 1,039), which results in a low score of Precision=
0.26 although in the other direction, the model makes less errors and classi�es fewer not-heritage images as
heritage (i.e., 118), which leads to a high score of Precision= 0.98.

Another important observation to note is the signi�cant di�erence in performance between the two heritage
models on our case study dataset although they seemed to perform on par on our Google images test set (as
presented earlier in §5.2). First, there is a big di�erence in precision scores where Heritage Model-2 achieves a
score of Precision= 0.26 while the Heritage Model-1 achieves only a score of Precision= 0.10. As Heritage Model-1
was not trained on sample images with damage context, it tends to classify many not-heritage images as heritage
(i.e., 3,869 to be speci�c), which corresponds to a false positive rate of FPR= 0.66 based on Table 6. On the other
hand, Heritage Model-2 makes less number of the Type-I errors (i.e., 1,039 to be speci�c) which brings the false
positive rate down to FPR= 0.18 according to Table 6.
However, this increase in precision for Heritage Model-2 comes at the expense of a slight decrease in recall

since Heritage Model-2 makes more Type-II errors than Heritage Model-1. Speci�cally, Heritage Model-2 predicts
118 heritage images as not-heritage (which corresponds to a false negative rate of FNR= 0.24) whereas Heritage
Model-1 predicts 64 heritage images as not-heritage (which corresponds to a false negative rate of FNR= 0.13).
When we compare the F1-scores of both models, which is the harmonic mean of the precision and recall scores,
we see that the overall performance of Heritage Model-2 with a score of F1= 0.39 is much better than that of
Heritage Model-1 with a score of F1= 0.18. In other words, Heritage Model-2 presents better generalization
capabilities.
Although the lexicon-based model achieves the highest precision score (i.e., Precision= 0.55), its overall

performance in terms of F1-score remains at F1= 0.30 due to its poor recall rate (i.e., Recall= 0.20) for the

4The results discussed in this section are obtained by the heritage models trained by Logistic Regression algorithm using DenseNet121

features. To examine the performance of other models obtained by di�erent combinations of CNN features and classi�cation algorithms, we
refer the reader to Appendix §E.
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heritage class. Therefore, we conclude that Heritage Model-2 provides the best compromise for the heritage
image classi�cation task in practice.

Table 6. Confusion matrices of the heritage classifiers on the SMERP dataset.

Classi�ed as
Heritage Not-heritage

Lexicon-based Model Actual label
Heritage 99 388
Not-heritage 80 5,753

Heritage Model-1 Actual label
Heritage 423 64
Not-heritage 3,869 1,964

Heritage Model-2 Actual label
Heritage 369 118
Not-heritage 1,039 4,794

Fig. 8. Examples of images classified with Heritage Model 2.

5.3.4 Damage/no-damage classification. Then, we apply the damage assessment model of Alam et al. [2] on the
SMERP dataset and compare the model’s predictions with expert labels. As shown by the confusion matrix in
Table 8, the model classi�es most of the damage images correctly and misses only 242 damage images. Similarly,
it misclassi�es only 368 no-damage images. This yields a classi�cation accuracy of 0.90. Figure 9 shows examples
of damage classi�cation images. Moreover, Table 9 summarizes the performance of the damage assessment model
in terms of precision, recall, and F1-score. Based on these class-speci�c assessments, the model seems to perform
relatively better on no-damage images than on damage images. The weighted average of these precision and
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Table 7. Performance comparison of the heritage classifiers on the SMERP dataset.

Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

Lexicon-based Model 0.55 0.94 0.20 0.99 0.30 0.96
Heritage Model-1 0.10 0.97 0.87 0.34 0.18 0.50
Heritage Model-2 0.26 0.98 0.76 0.82 0.39 0.89

recall scores tend to be closer to those for the no-damage class because of the imbalance distribution of damage
and no-damage images in the SMERP dataset.

Table 8. Confusion matrix for the damage classification.

Classi�ed as
Damage No-damage

Actual label
Damage 1,580 242
No-damage 368 4,130

Fig. 9. Examples of damage classification images.
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Table 9. Performance of the damage classifier on the SMERP dataset.

Precision Recall F1-score

Damage 0.81 0.87 0.84
No-damage 0.94 0.92 0.93

5.4 Discussion

The results from our experiments suggest that the proposed methodology to classify images from social media is
helpful to understand damage to heritage sites during disasters. Its application can contribute towards a better
understanding of the impact of disasters on cultural heritage and prepare a coordinated response.
We performed a comparative analysis of the precision and recall of each model to understand their relative

performance in our case study. Table 7 summarizes the performances achieved by the three models. Even though
the lexicon-based model yields the highest precision in our case study, its applicability can not be generalized
for various reasons. First, the manually-curated lexicon contains only English terms. However, people often
refer to terms in the local language when describing a heritage site. For instance, a temple is often referred to
as a mandir in some countries. Second, the words in a lexicon can be used in a di�erent context. For instance,
heritage has been used to refer to lineage in many instances. Third, the lexicon-based model can result in data
from undamaged or una�ected areas. We found that the term temple was also used to refer to an una�ected
temple in an una�ected region. Fourth, the low recall of the lexicon-based model implies that only 20% of images
from heritage sites will be found by this model. While low precision results in more manual work for the heritage
professionals, low recall implies that many images simply go undetected. In a real-world scenario, it means that
the overall assessment of damaged heritage may be quite incomplete with this model.
In comparison, Heritage Model-2’s lower precision implies more manual labour for heritage professionals in

sorting the relevant images, but its higher recall suggests that the chances of relevant images being undetected is
substantially lower. Therefore, compared to the lexicon-based model, Heritage Model-2 is more likely to provide
a better overall picture of the a�ected areas. On the other hand, Heritage Model-1’s lowest precision and higher
recall suggest that the manual labor of professionals is more than doubled, even though the overall picture of
the a�ected areas may not be signi�cantly better than the Heritage Model-2. More manual work for heritage
professionals in this case would result in a delayed assessment in a real-world scenario. Therefore, we conclude
that, among the three models, Heritage Model-2 is the most suitable model for heritage image classi�cation
as it will result in better assessment in less amount of time and require less manual work from the heritage
professionals.
This is a challenging image classi�cation task, as high performance would require visual features that can

characterize heritage sites in an unambiguous manner. Overlapping spatial qualities, building form, architectural
elements, and material of construction in heritage and non-heritage categories means this problem is inherently
ambiguous. In addition, the fact that we try to identify heritage images in disaster context makes the problem
even more challenging. Our case study results revealed that a subtle di�erence in data curation and training
(i.e., including damaged heritage and non-heritage images in the training of Heritage Model-2) can lead to
signi�cant di�erences in generalization capabilities and robustness of the trained models, specially when tested
in a real-world scenario. To this end, our results highlight that the automatic classi�cation of heritage images in
disaster context is not an impossible task.
Many of the images depicting damaged heritage did not contain contextual information. This complicates

the task further, even for a professional. However, our damage assessment model gave a high accuracy. Given
the precision is above 80% for damaged heritage, a heritage professional examining the output would �nd false
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positives (images the system says are damaged heritage, but are not) of up to 20%. Given the recall is above 80%
for the same class, 4 out of 5 images of damaged heritage can be found using these methods.
The automated method can signi�cantly reduce the e�ort by the cultural heritage professional who would

have to scan potentially hundreds of images just to �nd one heritage image. We are greatly reducing this e�ort
by quickly processing and �ltering thousands of images and presenting candidates, even if now the professional
needs to look at four images on average to �nd one relevant image (i.e., precision of 26%, Table 7). Even with
this level of precision, we believe these methods will substantially improve post-disaster heritage management
practices. Since culture (or heritage) may not be an immediate need or priority in disaster-struck societies,
the rescue of cultural heritage is rarely well-integrated with disaster management practices [34, 86]. In fact,
post-disaster damage assessment in many cases is not completed until several months after the disaster [12],
thereby, making heritage vulnerable to further damage/decay. Further, in some cases, damage assessments are
ine�ective or incomplete due to lack of inventories, well-established processes or expertise [86]. Our model, on
the other hand, will give heritage professionals a tool to complete the rapid damage assessment soon after the
disaster, and therefore, the time-lag between disaster and action can be signi�cantly reduced.

In our case study, we used a single type of disaster i.e. earthquake, a type of geophysical disaster. Therefore, a
discussion on the classi�ers’ applicability in di�erent subgroups of disasters is necessary at this point. The training
of Heritage Model-2 using sample images with varied damage context increases the chances of correct predictions
in di�erent types of disasters such as geophysical, and miscellaneous accidents, as de�ned by EM-DAT [27]. It is
also likely to detect damage in case of deliberate destruction of heritage during wars. However, the Heritage
Model-2 will not perform in other scenarios such as hydrological disasters (e.g. �oods), as the training dataset
included only the above-mentioned sub-groups of disasters. Indeed, the characteristics of images produced in
di�erent types of disasters may vary in various aspects. Further, the characteristics of images produced on social
media during two similar events may also vary in attributes. Therefore, further training of Heritage Model-2
with larger datasets from di�erent scenarios will increase the wider applicability of the classi�er.

Moreover, we have used a single data source, Twitter. The model may not work in di�erent social media
platforms (e.g., Instagram or Facebook), in which users may post other types of photos. Indeed, di�erent platforms
might be used by di�erent users for di�erent purposes [71]. Further training of Heritage Model-2 with datasets
from di�erent platforms can increase its applicability across platforms.

The results from our extensive experiments using various network architectures as feature extractors together
with several classi�cation algorithms showed that there can be variations in performance across di�erent
con�gurations. Although these variations are usually not dramatic, it is possible to obtain further performance
improvements in precision and recall via some further engineering and parameter �ne-tuning e�orts. However,
such engineered con�gurations may not translate from one setup to another, and should be part of the work
done when deploying and maintaining these systems in practice.

6 CONCLUSIONS

The process we have described requires many elements: a careful delimitation of the images to be processed,
a comprehensive data collection strategy that ensures diversity, a careful annotation of data points that can
avoid ambiguities in the training set, a state-of-the-art deep learning method to learn to classify images, and an
in-depth evaluation to understand the performance of di�erent classi�ers.
The results, however, are in our opinion worth the e�ort. Social media provides a nearly instantaneous view

of cultural heritage sites a�ected by a disaster, including many ground-level photos that cannot be replaced by
the bird’s eye perspective provided by UAVs and satellite images. However, photos of heritage sites are a tiny
minority of all the images that are posted, and images depicting a damaged heritage site as the main subject are
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rare. Finding them manually in an avalanche of unrelated images from social media is simply impractical. Our
methods can greatly reduce the number of images to be examined by a cultural heritage professional.

Future work. The quality of our classi�er can be improved by a larger, more diverse training set. However,
annotating images selected at random from a social media stream during a disaster is impractical considering the
relatively low frequency of damaged heritage photos. Hence, we envision using the classi�er we have created to
�nd candidate images for further annotation. Moreover, we can maximize our utilization of multimedia content
on social media platforms by formulating the heritage classi�cation problem in a more sophisticated way as a
multimodal learning problem where the goal would be to combine features extracted from various modalities
(e.g., text, image, video, etc.) to train a heritage classi�cation model. That being said, unlike Twitter, such aligned
multimodal data are not prominent on most other social media platforms (e.g., Instagram and Flickr). Therefore, a
technology based only on images would still be desirable in such cases. An additional area for further work is the
identi�cation of di�erent types of damage, such as mild and severe damage, which may help in the prioritization
of e�orts. Dealing with images from an earthquake may be easier than dealing with images from a more localized
disaster, such as an explosion (intentional or accidental), because after an earthquake there is a large number of
people distributed over a large area who can directly witness the consequences of the event. It might also be the
case that during natural disasters there is less misleading information than during a human-made disaster such
as a war; in any case, further experimentation with other types of disasters would help improve and �ne tune
these methods. Ultimately, joint modeling of heritage classi�cation and damage assessment tasks in a uni�ed
framework bears great potential to provide better understanding of heritage images in disaster context.
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A LIST OF HERITAGE SITES

Class Name of the Site Location Country

Architectural Hagia Sophia Istanbul Turkey
Jaisalmer Fort Jailsalmer India
City of Bath Bath UK
Historic city of Ahmedabad Ahmedabad India
Roskilde Cathedral Roskilde Denmark
Tamshing Monastery Bumthang Bhutan
Notre-Dame Cathedral Paris France
Santa Maria Novella Florence Italy
Alhambra, Generalife and Albayzín Granada Spain
Red Fort New Delhi India
Sydney Opera House Sydney Australia
Summer Palace Beijing China
Borobudur Temple Jawa Tengah Indonesia
Chinque Terre Chinque Terre Italy
Edinburgh Castle Edinburgh UK
Capitol Complex Chandigarh India
Ellora Caves Aurangabad India
Wellington Arch London UK
Taj Mahal Agra India
Kings Cross St Pancras Station London UK
Trafalgar Square London UK
Chhatrapati Shivaji Terminus Mumbai India
India Gate Delhi India
The Taj Mahal Palace Mumbai India
Adalaj ni Vav Ahmedabad India
Fatehpur Sikri Agra India
Sarnath Stupa Sarnath India
Sun Temple Modhera Ahmedabad India
Gadisar Lake Jaisalmer India
Mehrangarh Fort Jodhpur India
US Capitol Building Washington DC USA
Notre-Dame Cathedral Basilica Saigon Vietnam
Parthenon Nashville USA
Colosseum Rome Italy
Jama Masjid Delhi India
Dochula Temple Hungtso Bhutan
Punakha Dzong Punakha Bhutan
Tiger Nest Monastery Taktsang trail Bhutan
Arc de Triomphe du Carrousel Paris France
Pyathatgyi Temple Minnanthu Region Myanmar
Bamiyan Buddha Bamyan Afghanistan
Palmyra Tadmur Syria
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Aleppo’s Umayyad Mosque Aleppo Syria
Sanaa Old City Sanaa Yemen
Windsor Castle Windsor UK

Gallery/Library/Museum Kensington Palace Museum London UK
British Museum London UK
Victoria and Albert Museum London UK
The Louvre Paris France
U�zi Gallery Florence Italy
British Library London UK
Museum Orsay Paris France
Solomon R. Guggenheim Museum New York USA
Rijksmuseum Amsterdam Netherlands
National Museum of Cinema Turin Italy
Camposanto Pisa Italy
The São Paulo Museum of Art São Paulo Brazil
National War Museum Malta Valletta Malta
Library of Parliament Ottawa Ottawa Canada
Metropolitan Museum of Art New York USA
National Museum Paro Bhutan

Archaeological Machu Pichu Urubamba River valley Peru
Stonehenge Salisbury UK
Mohenjo Daro Sindh Pakistan
Teotihuacan Teotihuacan Mexico
Hagar Qim Qrendi Malta
Palmyra Palmyra Syria
Ajanta Caves Aurangabad India
Pyramids of giza Giza Egypt
Golden Temple of Dambulla Dambulla Sri Lanka
Rani ki vav Ahmedabad India
Petra Petra Jordan
Pompeii Campania Italy
Delphi Phocis Greece
Parthenon Athens Greece
Angkor Wat Siem Reap Cambodia

Artifact in Urban Space Christ the Redeemer Rio de Janeiro Brazil
Terracotta Warriors of Shaanxi Shaanxi China
Statue of Liberty New York USA
The Little Mermaid Statue Copenhagen Denmark
Telephone Booth London London UK
Stroke Fountain Copenhagen Denmark
Lincoln Memorial Washington DC USA
Gateway of India Mumbai India
The Porcellino Florence Italy
Statue of Hans Christian Andersen Copenhagen Denmark
Open Hand Monument Chandigarh India
Flaminio Obelisk Rome Italy
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Christopher Columbus Statue New York New York USA
Dandi March Sculpture New Delhi India
Statue of Mahatma Gandhi in London London UK
Marble Arch London UK
Sphinx Giza Egypt

B LIST OF NOT-HERITAGE SITES

Class Name of the Site Location Country

Architectural India Habitat Center New Delhi India
The Shard London UK
IIM Ahmadabad India
Walkie Talkie London London UK
Kanchanganga Apartment Mumbai India
Dharavi Mumbai India
New Delhi Railway Station New Delhi India
Lucca Railway Station Lucca Italy
IT University of Copenhagen Copenhagen Denmark
Pittsburgh Airport Pittsburgh USA
Northlake Mall Charlotte USA
Wembley Stadium London UK
Radisson Blu Hotel Copenhagen Denmark
Tiaa Cref O�ce Charlotte Charlotte USA
University College Hospital London UK
Danish Opera House Copenhagen Denmark
Hall of Nations New Delhi India
Turning Torso Malmo Sweden
Tata Steel Industry Building Jamshedpur India
Volkswagen Factory Building Salzgitter Germany
Bella Sky Hotel Copenhagen Copenhagen Denmark
CSV Building Wardha Wardha India
Railway O�ce Bilaspur Bilaspur India
Navi Mumbai Railway Station Mumbai India
Belapur Housing Building Mumbai India
8 House Copenhagen Denmark
Munich Airport Munich Germany
Gherkin Building London UK
UNCC Charlotte USA
Fisketorvet Copenhagen Denmark
Great India Place Mall Noida India

Gallery Library Museum Copenhagen Main Library Copenhagen Denmark
Lalit Kala Akademi Delhi India
Husain Doshi Gufa Ahmadabad India
Crafts Museum Delhi New Delhi India
The Blue Planet Copenhagen Denmark
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The Black Diamond Copenhagen Denmark
Wax Museum London Building London UK
Sanskriti Kendra Delhi India
Jawahar Kala Kendra Jaipur India
World Trade Center Museum New York USA
New Jewish Museum Berlin Germany
5 Pointz New York USA
Niterói Contemporary Art Museum Rio de Janeiro Brazil
Petrie Museum building London UK
UNCC Library Charlotte USA

Artifact in Urban Space Tilted Arc by Richard Serra New York USA
Penis Christmas Tree Paris France
Brown Nosing Sculpture Prague Czech
Milan Stock Exchange Sculpture Milan Italy
Anish Kapoor Versailles Versailles France
Les Deux Plateaux, Colonnes de Buren Paris France
The Vigeland Park Oslo Norway
Sun Dial New Delhi Barahpulla New Delhi India
Sunbather Sculpture Long Island USA
Fearless Girl New York USA
MGR Memorial Chennai India
Rooster National Gallery London UK
Calgary Sculpture Controversy Calgary Canada
Chicago and Milwaukee Eyeball Chicago USA

C LEXICON

All terms are case-insensitive. For presentation purposes we divide them into �ve groups of comma-separated
terms; we do not make any di�erence between the groups for the purposes of matching within a text.
1. Generic words: heritage, heritages, cultural, culturally, culture, cultured, cultures, historically, historic, his-
torical, ancient, ancients, architecture, architectural, architecturally, architectures, archaeology, archaeological,
archaeologically, civilizations, civilization.
2. Bi-grams: traditional building, traditional architecture, cultural center, cultural complex, cultural ensemble,
cultural landscape, cultural masterpiece, historic building, historic town, historic city, historic site, historic archi-
tecture, historic center, historic settlement, historic settings, historic civilization, historic ensemble, historic built,
historic settlement, historic environment, old city, old town, old buildings, sacred building, ancient architecture,
ancient building, ancient settlement, heritage building, heritage city, heritage property, heritage site, ceremonial
architecture, ceremonial buildings, landmark building, iconic site, iconic building.
3. Site types: churches, church, palaces, palace, palace, temple, temples, monuments, monumental, monumentality,
monuments, monastery, monasteries, towers tower, towered, towering, castles castle, cathedral, cathedrals, tombs,
tomb, caves, cave, mosque, mosques, fortresses fortress, forti�ed, fortify, fortifying, chapels chapel, forti�cations
forti�cation, forts, fort, forte, museum, museums, basilicas, basilica, sculptures, sculptural, sculpture, sculptured,
sculpturing, monastic, citadels, citadel, mausoleum, mausoleums, abbey, abbeys, pyramids, pyramid, pyramidal,
memorial, memorials, memories, memory.
4. Styles and periods: romans, roman, romane, romanization, romanized, medieval, empires, empire, dynasty
dynasties, kingdom, kingdoms, gothicized, gothic, gothicism, gothicized, gothicizing, baroque, renaissance,
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imperial imperialism, classical, classic, classically, classicism, classics, buddhist, buddhists, byzantine , byzantines,
romanesque, prehistoric, prehistorical, neolithic, ottoman, ottomans, hellenistic, neoclassical, 1st century, 2nd
century, 3rd century, 4th century, 5th century, 6th century, 7th century, 8th century, 9th century, 10th century,
11th century, 12th century, 13th century, 14th century, 15th century, 16th century, 17th century, 18th century,
19th century.
5. Organization: unesco, #unesco, @unesco.

D ALL EXPERIMENTAL RESULTS ON GOOGLE IMAGES

Table 12. Performance comparison of various CNN features with Logistic Regression classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.93 0.64 0.85 0.81 0.89 0.72

ResNet50 0.94 0.65 0.86 0.82 0.89 0.73
DenseNet121 0.91 0.65 0.87 0.75 0.89 0.70
InceptionResNetV2 0.91 0.63 0.86 0.75 0.88 0.69
Xception 0.92 0.66 0.87 0.78 0.89 0.72
NASNetLarge 0.92 0.71 0.90 0.78 0.91 0.75

H
er
it
ag
e
M
od

el
-2 VGG16 0.94 0.63 0.84 0.84 0.88 0.72

ResNet50 0.93 0.63 0.84 0.81 0.88 0.71
DenseNet121 0.94 0.66 0.86 0.84 0.90 0.74
InceptionResNetV2 0.93 0.62 0.84 0.81 0.88 0.70
Xception 0.94 0.62 0.83 0.84 0.88 0.72
NASNetLarge 0.94 0.67 0.86 0.84 0.90 0.74

Table 13. Performance comparison of various CNN features with Support Vector Machine classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.93 0.63 0.84 0.82 0.88 0.71

ResNet50 0.93 0.64 0.85 0.81 0.89 0.72
DenseNet121 0.92 0.63 0.86 0.76 0.88 0.69
InceptionResNetV2 0.91 0.61 0.84 0.74 0.88 0.67
Xception 0.92 0.64 0.86 0.77 0.89 0.70
NASNetLarge 0.92 0.70 0.89 0.76 0.90 0.73

H
er
it
ag
e
M
od

el
-2 VGG16 0.93 0.62 0.83 0.82 0.88 0.71

ResNet50 0.93 0.62 0.84 0.81 0.88 0.70
DenseNet121 0.94 0.66 0.86 0.83 0.90 0.73
InceptionResNetV2 0.93 0.59 0.81 0.80 0.87 0.68
Xception 0.93 0.58 0.80 0.82 0.86 0.68
NASNetLarge 0.93 0.64 0.85 0.82 0.89 0.72
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Table 14. Performance comparison of various CNN features with Random Forest classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.89 0.72 0.91 0.66 0.90 0.69

ResNet50 0.90 0.71 0.91 0.69 0.90 0.70
DenseNet121 0.89 0.72 0.92 0.67 0.90 0.70
InceptionResNetV2 0.90 0.68 0.89 0.69 0.90 0.69
Xception 0.88 0.66 0.89 0.64 0.89 0.65
NASNetLarge 0.91 0.73 0.91 0.71 0.91 0.72

H
er
it
ag
e
M
od

el
-2 VGG16 0.91 0.72 0.90 0.74 0.91 0.73

ResNet50 0.93 0.73 0.90 0.78 0.91 0.75
DenseNet121 0.91 0.71 0.90 0.74 0.91 0.73
InceptionResNetV2 0.92 0.68 0.88 0.75 0.90 0.71
Xception 0.90 0.67 0.89 0.70 0.89 0.69
NASNetLarge 0.93 0.72 0.90 0.81 0.92 0.76

Table 15. Performance comparison of various CNN features with AdaBoost classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.91 0.64 0.87 0.74 0.89 0.69

ResNet50 0.92 0.62 0.85 0.77 0.88 0.69
DenseNet121 0.93 0.67 0.87 0.79 0.90 0.72
InceptionResNetV2 0.91 0.65 0.87 0.72 0.89 0.68
Xception 0.90 0.60 0.84 0.73 0.87 0.66
NASNetLarge 0.91 0.70 0.90 0.74 0.90 0.72

H
er
it
ag
e
M
od

el
-2 VGG16 0.92 0.63 0.85 0.78 0.88 0.70

ResNet50 0.94 0.65 0.86 0.82 0.89 0.73
DenseNet121 0.93 0.63 0.84 0.81 0.88 0.71
InceptionResNetV2 0.92 0.61 0.84 0.77 0.88 0.68
Xception 0.91 0.62 0.85 0.74 0.88 0.68
NASNetLarge 0.93 0.64 0.85 0.81 0.89 0.72
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E ALL EXPERIMENTAL RESULTS ON SMERP IMAGES

Table 16. Performance comparison of various CNN features with Logistic Regression classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.11 0.97 0.81 0.46 0.20 0.63

ResNet50 0.10 0.96 0.85 0.34 0.17 0.50
DenseNet121 0.10 0.97 0.87 0.34 0.18 0.50
InceptionResNetV2 0.12 0.98 0.85 0.50 0.22 0.66
Xception 0.10 0.97 0.85 0.38 0.18 0.55
NASNetLarge 0.10 0.97 0.91 0.28 0.17 0.44

H
er
it
ag
e
M
od

el
-2 VGG16 0.24 0.97 0.73 0.81 0.36 0.88

ResNet50 0.24 0.97 0.74 0.81 0.37 0.88
DenseNet121 0.26 0.98 0.76 0.82 0.39 0.89
InceptionResNetV2 0.24 0.97 0.74 0.81 0.37 0.88
Xception 0.23 0.97 0.76 0.79 0.35 0.87
NASNetLarge 0.25 0.98 0.79 0.81 0.38 0.88

Table 17. Performance comparison of various CNN features with Support Vector Machine classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.11 0.97 0.81 0.48 0.20 0.64

ResNet50 0.10 0.96 0.83 0.35 0.17 0.51
DenseNet121 0.09 0.97 0.87 0.31 0.17 0.47
InceptionResNetV2 0.12 0.97 0.84 0.48 0.21 0.64
Xception 0.10 0.97 0.85 0.38 0.18 0.54
NASNetLarge 0.10 0.98 0.91 0.32 0.18 0.48

H
er
it
ag
e
M
od

el
-2 VGG16 0.22 0.97 0.72 0.79 0.34 0.87

ResNet50 0.23 0.97 0.73 0.79 0.35 0.87
DenseNet121 0.25 0.97 0.74 0.82 0.38 0.89
InceptionResNetV2 0.23 0.98 0.77 0.78 0.35 0.87
Xception 0.20 0.97 0.73 0.76 0.32 0.85
NASNetLarge 0.22 0.98 0.77 0.77 0.34 0.86
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Table 18. Performance comparison of various CNN features with Random Forest classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.10 0.98 0.94 0.26 0.17 0.41

ResNet50 0.09 0.98 0.96 0.15 0.16 0.26
DenseNet121 0.09 0.98 0.97 0.13 0.16 0.24
InceptionResNetV2 0.09 0.97 0.93 0.23 0.17 0.38
Xception 0.09 0.97 0.93 0.18 0.16 0.30
NASNetLarge 0.09 0.97 0.95 0.15 0.16 0.27

H
er
it
ag
e
M
od

el
-2 VGG16 0.19 0.98 0.86 0.69 0.31 0.81

ResNet50 0.17 0.99 0.90 0.64 0.29 0.78
DenseNet121 0.19 0.99 0.89 0.69 0.32 0.81
InceptionResNetV2 0.20 0.98 0.85 0.72 0.33 0.83
Xception 0.16 0.98 0.84 0.62 0.26 0.76
NASNetLarge 0.18 0.99 0.88 0.67 0.30 0.80

Table 19. Performance comparison of various CNN features with AdaBoost classifier.

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er
it
ag
e
M
od

el
-1 VGG16 0.10 0.97 0.86 0.35 0.18 0.52

ResNet50 0.11 0.97 0.86 0.41 0.19 0.58
DenseNet121 0.10 0.97 0.88 0.30 0.17 0.46
InceptionResNetV2 0.10 0.97 0.88 0.31 0.17 0.47
Xception 0.09 0.97 0.89 0.28 0.17 0.43
NASNetLarge 0.10 0.97 0.86 0.38 0.19 0.55

H
er
it
ag
e
M
od

el
-2 VGG16 0.20 0.98 0.78 0.74 0.32 0.84

ResNet50 0.24 0.98 0.78 0.80 0.37 0.88
DenseNet121 0.24 0.98 0.76 0.80 0.37 0.88
InceptionResNetV2 0.20 0.98 0.80 0.73 0.32 0.84
Xception 0.20 0.98 0.81 0.73 0.32 0.84
NASNetLarge 0.20 0.98 0.82 0.73 0.32 0.84
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F IMAGES

Fig. 10. Examples of images classified with Lexicon-based Model.

Fig. 11. Examples of images classified with Heritage Model 1.
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