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Abstract. We present a technique for automatic detection of drainage channel
networks on single digital images acquired by conventional remote sensing satel
lites such as Landsat and SPOT. Since these satellites are Sun-synchronous, the
approximate local Sun angle at time of image acquisition is always known.
Consequently, the spatial behaviour of shading with respect to channels and
other topo-morphological features is known. This knowledge has been used to
advantage in this work.

We use a multi-level knowledge-based approach for this detection process.
The first and lowest level deals with image processing: radiometric and edge
enhancement, edge detection and consolidation, and skeletonization; resulting in
a complex network of lines. The second (intermediate) level of knowledge for
network extraction performs a categorization of line segments in order of resemb
lance to channel elements based on the strength and local disposition of shading.
The highest level of knowledge that has been applied, reconstructs the channel
network from the selection of these line segments based on structural considera
tions, including connectivity and streamflow direction. This last stage of network
extraction conforms naturally to a global view of a network. The extracted
networks are smooth and relatively well connected and seem to be quite
encouraging for developing this approach further into practical uses.

1. Introduction
The extraction and analysis of drainage networks is an effective way of studying

Earth-based features and phenomena. Indeed, drainage networks constitute one of
the most widely applicable features in the geosciences. For instance, they often form
the basis upon which the morphology and pattern of landscapes are characterized,
and many geological conclusions are based on inferences derived from them.
Furthermore, almost all maps contain drainage channel networks, to a greater or
lesser extent, for reference.

Manual methods have been traditionally used to extract drainage networks from
either field data, topographical maps, aerial photographs, satellite images, or any
combination of these. Over the past decade, much work has been done on automating
the extraction of drainage networks, although almost all algorithms use Digital
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1660 C. Ichoku et al.

Elevation Models (OEMs) as base data (e.g., Chorowicz et al. 1992). This is evidently
due to the fact that OEMs express terrain morphology directly in a discrete fashion,
and, as such, are conveniently disposed for flow modelling and drainage network
extraction.

However, OEMs are not readily available at reasonable costs for most areas of
the world requiring drainage network based studies, unlike satellite images which
can be acquired for most parts of the Earth's surface on a routine basis. So far,
mainly manual procedures have been employed in extracting drainage networks
from satellite images (Astaras 1985, Astaras et al. 1990). In an attempt to develop a
computerized approach, Benhamou (1987) used an inference method based on the
differences between the spectral properties of bare soil and vegetation to extract
drainage features characterized by the concentration of vegetation within valleys in
an otherwise arid region from Landsat MSS images.

Apart from spectral information, satellite images indirectly express surface mor
phology through topographic shading which occurs especially in certain wave bands.
This shading property was utilised by Wang et al. (1983) to develop an approach
for extracting ridge and valley lines from single satellite images. They applied their
technique to Landsat MSS band 7 data. Although they offered several suggestions
for the use of high level spatial reasoning in detection procedures, especially as
applied to valleys (or channels), these were not implemented in their work. Their
approach was limited to the use of what may be considered as low and intermediate
levels of reasoning. They performed grey-level thresholding followed by region
boundary detection to generate lines (low level), and subsequently, each unbranched
segment of these lines was classified as either a ridge or a valley segment based on
its local characteristics alone (intermediate level).

In this paper, we present an advanced computerized methodology for extracting
drainage channel networks (or simply, channel networks) from single digital satellite
images. Our methodology uses a series of techniques at different (low, intermediate,
and high) levels of abstraction of image understanding (Meisels 1991). The proposed
approach applies to images acquired by remote sensing satellites operating in the
visible/infrared regions of the electromagnetic spectrum such as Landsat and SPOT.
We do not consider other types of satellite images such as thermal or radar images.

2. Theoretical considerations
Visible/infrared sensors of the type addressed in this work (such as Landsat and

SPOT) are flown in Sun-synchronous satellites. As such, image acquisition is done
at approximately the same local Sun time regardless of place. This is usually in the
mid-morning hours, about 9:30 a.m. for Landsat (cf. Freden and Gordon 1983,
p. 537). At this time of day, the Sun is always located in the general east direction.
Although there may be variations in Sun azimuth and zenith angle from place to
place, for an area covered in a single scene, this variation is negligible and direction
of sunlight may be considered constant. The brightness expressed by an elementary
surface (pixel) in a visible/infrared image is a function of both the illumination it
receives and its reflectance. Topographical reflectance depends on several factors
including lithology, vegetation, land use, as well as soil moisture, mineral, and organic
matter content. Detailed discussion of the influence of these factors can be found in
most standard remote sensing books, and will not be undertaken here. However,
assuming uniform reflectance characteristics-which is obtainable for a limited
area-image brightness will depend on illumination which is related to surface
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Detection of channel networks 1661

A B
Figure L Illustration of topographical illumination and shading in relation to the direction

of sunlight for (aj Gully, (bj Valley and Crestline.

exposure and orientation with respect to the direction of sunlight. This relation is
of great importance in the recognition of drainage channels in images.

The effect of illumination of drainage channels on the image can be demonstrated
for two categories of channels, namely, gullies with steep walls and valleys formed
between neighbouring parallel or subparallel ridges. This is illustrated in figure 1.
For a gully with steep walls, the wall on the same side as the Sun casts its shadow
into the gully which then appears on the image as a line darker than its immediate
neighbourhood. In the case of a valley formed between two ridges, the hillslope on
the side opposite to the Sun receives a strong direct illumination while that on the
same side as the Sun receives a weak indirect illumination since it is shaded. The
strongly illuminated hillslope appears bright in the image while the other appears
dark, thereby producing a sharp contrast. The valley is therefore represented by the
edge between them. Although a crestline produces a similar effect on the image, since
the position of the Sun is known, the following rule applies: when the shaded side
is on the same side as the Sun with respect to the edge, the latter corresponds to a
valley, whereas when it is on opposite sides with the Sun, the edge corresponds to
a crestline. This contrasting property enables the discrimination between valleys and
crestlines, thereby facilitating the detection of the former. In the case of occurrence
of a lone ridge, although its crestline would still produce a sharp edge, there is no
danger of such at the foot of the shaded side because, since there is no Sun-facing
hillslope to create contrast on this side, shading smoothly diminishes downhill, and
no edge is formed. Thus, the risk of lone ridges creating false channels in the image
is low. In all cases, however, any of the above features whose azimuth is equal (or
close) to the local azimuth of the Sun will be very weakly portrayed, if at all.

It is obvious that if certain other features (such as roads and other man-made
features) present the same image facies as drainage channels, they would be detected
in error. As algorithms are usually incapable of distinguishing desired features from
artefacts, the easiest way to avoid interference from the latter is to use images where
they are either non-existent or rare. Drainage channel detection from satellite images,
as described in this paper, is therefore most applicable to undeveloped homogeneous
terrains such as arid zones.

The steps involved in the multilevel extraction process presented in this work
are the following. First, the image is preprocessed to enhance feature presentation.
Then, edge detection is performed and the resulting edges are consolidated and
skeletonized, reducing them to a network of one-pixel-wide line segments. This line
image is the output of the lowest level of knowledge about channel network extrac-
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1662 C. Ichoku et al.

tion, namely extracting candidate lines for networks. At the intermediate level of
extraction, these line segments are sorted on the basis of knowledge about the local
behaviour (Meisels 1991) of network elements. To achieve this, the line image is
superimposed on the original image, and each segment is rated based on the shading
conditions that apply along and around it. This process facilitates the differentiation
between valleys and crestlines, and enables the estimation of the degree of qualifica
tion of each line segment as a possible channel element. Finally, at the highest level
of knowledge, drainage channel networks are built up through a logical selection of
highly rated segments and others satisfying certain conditions about network flow.
This is clearly high level knowledge of flow channels that is domain dependent and
is unrelated to generic image understanding techniques.

The entire channel network detection process presented in this work is fully
automated. The intermediate and high level procedures are carried out by a single
programme coded in C. We have tested our technique on a Landsat TM subscene
of an area located in the Israeli Negev arid zone.

3. Low level image processing
The low level image processing involves image enhancement followed by edge

extraction, consolidation, and skeletonization. The result is a network of lines to be
used as input data for the higher level processes of this detection.

3.1. lmage enhancement
The objective of image enhancement is to improve the portrayal of the desired

feature in order to facilitate its extraction. Here, the feature of interest is the drainage
channel. We tried several multi-band enhancement techniques including different
image algebras between bands (such as ratios, vegetation indices, and so on), and
spectral transformations such as the principal components and the intensity, hue
and saturation analyses. But none of these gave a satisfactory result as far as our
target feature is concerned. For example, ratio images tend to have much less contrast
and more noise (Goetz 1989, p. 514); qualities that contradict the requirements for
the current work. We, therefore, resorted to the use of a single band. We chose
band 3 (red band) because it appears to be the one that offers the highest contrast
in our image and expresses drainage features most clearly in our study area. The
reason why this is so may be explained by the fact that solar radiation peak occurs
in the visible portion of the electromagnetic spectrum and, within this visible portion,
atmospheric scattering affects the red band much less than it does the other (blue
and green) bands (see Mather 1987, chapter 1). However, our choice is based purely
on visual comparison between the six reflective bands of our Landsat TM image.
Thus, this choice is not strict; any other band could be used depending on circum
stances. For instance, Wang et al. (1983) used the near-infrared band (0'8-1,1 11m) of
Landsat MSS for a vegetated area because, among other reasons, green vegetation
produces very high reflectance in this region and may not be mistaken for topographic
shading. This consideration does not apply to our own case, since our study site is
devoid of green vegetation. Figure 2 shows our test image which is composed of
500 x 500 pixels.

We tried several image enhancement operations on the single band and found
out that, since the presence of drainage channels is mainly depicted by either dark
lines on brighter backgrounds or edges between bright and shaded areas, it follows
that the main, and virtually the only, preprocessing requirement in our case are
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Detection of channel networks 1663

Figure 2. Input image (Landsat-TM band 3 of a part of the Israeli Negev arid zone, after
linear stretching); 500pixels by 500pixels.

contrast and edge enhancements. As a first step towards achieving this, we performed
contrast stretching. There are several methods of doing this of which the most
standard are linear stretch, histogram equalization, and Gaussian stretch. We adopted
linear contrast stretching because it is the only one that stretches the existing
spectrum of grey levels linearly without redistribution of values; a process which
may distort the hierarchical order of grey levels which forms the basis of our work.

After the contrast stretching, we applied an edge enhancement convolution filter
using a 3 x 3 window. The following kernel was used:

o -1 0

-1 5-1

o -1 0

As explained by Mather (1987), the application of this high-pass filter amounts
to subtracting the Laplacian of an image from the image itself. This is equivalent to
removing the diffused element of the signal from a given pixel (Mather 1987, p. 258).

3.2. Edge detection and consolidation
The detection of coherent edges suitable for use as a main structural framework

for feature recognition and extraction has proven to be a goal-directed task. Several
approaches have been proposed in the literature. Some of the most frequently cited
examples include the works of Marr and Hildreth (1980), Haralick (1984), and
Canny (1986). Since different edge extractors produce different results, there has
been a great deal of argument in computer vision circles as to which approach is
the optimal (Chen and Medioni 1989) but, it appears that performance is application
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1664 C. Ichoku et al.

dependent. In other words, edges cannot be considered in isolation of the context of
work. We tested several edge extractors (including those mentioned above) and each
result was visually assessed with a view to selecting the one that best suits our
purpose. We finally chose the Difference Recursive Filter (DRF) edge detector
proposed by Shen and Castan (1986) because it gave the best performance for
drainage channel detection, especially with regard to edge localization. The DRF
edge detector is based on the difference between the input image and the output of
a recursive symmetric exponential filter. Details of the mathematical basis of this
edge detector are given in Shen and Castan (1986) and will not be discussed here.
We used the DRF edge detector as it exists in the KHOROS Open Software Package
available in many image processing laboratories. The user is required to supply
numerical values for a number of parameters for which default values are also
provided. After testing with different values, we found that the default values gave
us the best result and we used them as such. The result of edge detection by the
DRF is a binary edge image in which all edge pixels have the same value, 255, and
other pixels form the image background with value O. Our edge image is shown
in figure 3.

In general, edge detection algorithms, including the DRF used in this work,
usually do not recognize lines as single edges because they search mainly for abrupt
changes in grey levels. Thus, if there is a line in the image, an edge is detected on
both sides of it, even if it is only one pixel wide. In our case, a drainage channel
(such as a gully) occurring as a line in the original image would yield two, close,
quasi-parallel edges that touch intermittently. Neither of the two edges could be said
to represent the original line. In order to recover the latter, first, a single edge is
created from this dual edge by filling the space between them. We refer to this process

Figure 3. Result of edge enhancement and edge detection performed on figure 2.
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Detection of channel networks 1665

as 'edge consolidation'. Then the consolidated edge is skeletonized and the resulting
line corresponds to the line formed by the drainage channel in the original image.
To achieve consolidation, one-pixel-wide lines constituted by background pixels
bordered on both sides by edge pixels are traced and their pixel values changed from
o to 255.

3.3. Skeletonization
After the steps of edge detection and consolidation, the next step of low level

processing is skeletonization in order to recover one-pixel-wide streamlined edges.
For this purpose, we employed the parametrizable skeletonization algorithm pro
posed by Riazanoff et al. (1990). The details of the .skeletonization algorithm are
given in that paper and will not be reproduced here. The actual implementation
employs an iterative procedure to remove object pixels (in this case, edge pixels) and
replace them with background pixels based on the relative number and arrangement
of object and background pixels in a 3 x 3 neighbourhood. We worked in the
8-connected mode in which all eight immediate neighbours of a central pixel are
considered as its neighbours, as opposed to the 4-connected mode in which only
those related to it in the horizontal or vertical sense are considered so. In Riazanoff
et al. (1990), a contour pixel is defined as an object pixel with at least one background
neighbour, while a connection pixel is defined as an object pixel linking at least two
object parts. During iteration, only contour pixels may be removed. An important
condition for the removal of a contour pixel is that its convexity K should be less
than a threshold convexity K T supplied by the user. The convexity K of a contour
pixel is defined as the highest number of background pixels that are contiguous
among its eight immediate neighbours. If, in the 3 x 3 neighbourhood, we denote
the contour pixel by C, other object pixels by 1, and background pixels by 0, the
following are examples of configurations for K = 3 to K = 7:

0 0 0 0 0 0 0 0 0

C 0 0 C 0 C 0 0 C 0 0 C 0

0 1 0 0 1 0 0 0 0 0 0 0 0

K=3 K=4 K=5 K=6 K=7

We carried out test skeletonizations with all possible convexity threshold KT

values (1 to 8) and found that 5 gave the best result; therefore, we used K T = 5 in
our work. In the process of skeletonization, for each iteration, the algorithm scans
the image row after row. If a contour pixel is encountered, it can be removed only
if: (I) its convexity K is less than the threshold convexity K T ; (2) it was not a
connection point before the preceding iteration; and (3) it is not currently a connec
tion point. The skeletonization process stops only after an iteration in which no
pixel is removed in the entire image. The result obtained from skeletonizing our edge
image is shown in figure 4. In this image, sets of one-pixel-wide line segments join
in a seemingly haphazard manner, forming a complex line network of which the
drainage channel network is a subset. The procedure for recovering channel networks
from the skeletonized edge image employs higher levels of knowledge: intermediate
level knowledge of shading conditions and local channel topography and high level
knowledge of flow in channel networks. We turn next to the intermediate level
processing and describe the grading of channel segments.
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1666 C. Ichoku et al.

Figure 4. Result of edge consolidation and skeletonization performed on figure 3.

4. Intermediate level of extraction: rating from shading
The skeletonized edge image (figure 4) is composed of lines representing drainage

channels as well as crestlines and other curvilinear features. In this intermediate
level, these lines are rated (or graded), thereby quantifying them in readiness for the
high level process of drainage channel detection. The basic element for this procedure
is the unbranched line segment joining either two consecutive junctions or an
extremity and the closest junction.

Each network of connected line segments is traced. Although tracing is done
segment after segment, it is necessary that all interconnected line segments be traced
as a set in order to establish the directional relation between them. This coordination
will be of special usefulness during channel network reconstitution. Ichoku and
Chorowicz (1994) recommend that the tracing of a channel network begin at the
outlet and advance toward the various sources. This procedure cannot be strictly
implemented in the current work because the input line networks are not pure
channel networks since they are not only composed of channel elements but also of
crestlines and other curvilinear features; all interconnected. As such, they do not
have outlets. Therefore, the tracing of each of these line networks begins from the
first encountered free end of a line. Each segment is traced by recursive displacement
from pixel to pixel. When a junction is reached, the current segment is regarded as
ended, and each branch is traced in turn in a similar fashion. This process continues
until the whole line network is traced. During this process, each segment is assigned
an identification number and its details are recorded in an array. These details
include the coordinates of its beginning and end, the number of pixels of which it is
composed, its direction, and the identification numbers of the segment before it and
those succeeding it, including indications about how they are connected.
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Detection of channel networks 1667

The major part of intermediate level processing is to apply knowledge about
shading differences between gullies, valleys, and crestlines (with a given Sun azimuth)
in grading segments. We have used a system of grading or rating which expresses a
measure of the likelihood of a line segment to represent a drainage channel. The
grades range from 0 (totally unlikely) to 10(very likely). The grade or rating attributed
to each segment is dependent upon the conditions of shading that gave rise to its
formation in the image. Shading condition is estimated from the original stretched
image (figure 2). To achieve this, each segment is superimposed on the image and
the values of all image pixels underlying it are obtained and their mean computed.
Also, image pixels bordering the segment on the left and right sides are obtained
and a mean value is computed for either side. These mean pixel values on the
segment and on its left and right sides are denoted by P" P" and P, respectively.
The computed values represent the average brightness expressed by the feature
corresponding to the segment and by its immediate left and right borders respectively.
In the rest of this discussion, for each segment, the smallest of the three values P"
P" and P, will be denoted by Pmin and the largest by Pma x .

The direction of a segment is measured as a whole-circle clockwise bearing
(ranging from 0 to 360 degrees) referred to an axis parallel to the columns of the
image. Since the segments are usually curved, in order to avoid bias, a least squares
line is fitted to each segment, and the direction of this line becomes that of the
segment. However, if the segment is composed of less than five pixels, its direction
is computed from the coordinates of its two end points. The bearing of each segment
from the Sun, denoted by B", is computed from the direction of the segment and
the azimuth of the Sun. This bearing shows the location of the Sun with respect to
the segment. When the value of B" is between 0° and 180° the Sun is on the left of
the segment, whereas when it is greater than 180° it is on its right. However, since
no shading will be produced when the Sun is lying more or less in the direction of
the segment, when the bearing is in the range B" = 0° ± 5° or B" = 180°± 5° the
Sun is considered not to be on the left or right of the segment. Thus, if we use PSUN
to designate the position of the Sun relative to the segment then:

when

B" = 0° ± SO or B" = 180°± 5°, PSUN = C (centre)

when

PSUN = L (left)

when

PSUN = R (right)

The rating of segments is achieved in two steps. First, the segments are classified
into anyone of the groups gully, valley, or crestline, then, segments belonging to
each group are rated. The following gives the criteria for classifying a segment into
anyone of the groups:

(a) Gully:
Pmin = P, and PSUN = Lor R

This is because, as demonstrated in figure 1, the average brightness of a gully
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should be less than those of its two sides, when the Sun is not in the direction of
the gully.

(b) Valley:
either (Pmax '" P, and Pmin = P, and PSUN = L)
or (Pm,x '" P, and Pmin = P, and PSUN = R)

This is because the hillslope on the same side as the Sun (with reference to the
edge) is shaded and should have the minimum average brightness, provided the
average brightness of the segment itself is not the maximum.

(e) Crestline:
either (Pm.x '" P, and Pmin= P, and PSUN = R)
or (Pm. x '" P, and Pmin = P, and PSU N = L)

This is because the hillslope on opposite sides with the Sun (with reference to
the edge) is shaded and should have the minimum average brightness, provided the
average brightness of the segment itself is not the maximum.

(d) Other: Segments which cannot be classified into any of the above three classes
are classified as Other. These include the following cases:

(i) Segments composed of just a single pixel which could not be classified
because their parameters are indeterminable since they have no direction.

(ii) When Pmax = P,
This is a segment showing a higher average brightness than both of its sides.
(It could be any highly reflecting curvilinear feature.)

(iii) When PSUN = C
This is a segment oriented in the direction of the Sun. (It may be any
curvilinear feature with its own radiometric identity not related to shading.)

Segments belonging to the three known classes (Gully, Valley, and Crestline) are
rated separately but in a uniform fashion. In each case, the rating value assigned to
a segment depends on the value of Pmin . The ratings applied are shown in table 1.
In respect of the segments classified as Other, those composed of a single pixel are
assigned the median rating value of 5 (because they have equal chances of being or
not being channel elements) while the rest are assigned the value of 4 (because they

Table I. Categorization and rating of line segments based on shading conditions.

Range of the minimum
mean pixel value

o~ Pmin ~ 25
25 < Pmin ~ 50
50~Pmin~75

75 ~ Pmin~ 100
100 < Pmin~ 125
125 < Pmin~ 150
r.;» 150

Gully

10
9
8
7
6
5
4

Ratings

Valley

10
9
8
7
6
5
4

Crestline

o
1
2
3
4
5
4
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Detection of channel networks 1669

have lesser chances of being channel elements, though there is still the possibility
that they might be).

It is interesting to observe that the average pixel value for a shaded area is
independent of the regional brightness of the zone where it is located. This is why
the Pmin values are used independently in the foregoing rating procedure. However,
as these values are computed from the linearly stretched image, they can be regarded
as standardized values because conventionally, images with full linear stretching
have pixel values in the range of 0 to 255.

5. High level extraction: channel network construction
The high level part of network detection involves a logical build-up from a

selection of the rated segments. Although a segment's rating indicates its likelihood
as a drainage channel element, it is not a sufficient criterion for selecting a segment.
This is because, due to some imperfections either in the imaging or one or more of
the lower level processes, certain segments which actually represent channels might
have low ratings whereas some others corresponding to other features might have
high ratings. Therefore, in order to augment the robustness of the detection, know
ledge of the principles of network formation and the topological relationships between
network elements has been integrated in this process of network reconstitution.

It is assumed that drainage channel networks start as short segments which
subsequently extend both upstream and downstream, each eventually joining a
mainstream as a tributary and may itself constitute a mainstream to which other
tributaries may join. Our high level extraction technique simulates this hypothesis.
It starts from segments with very high ratings (8 to 10). Each of these starting
segments is extended in both directions by progressively linking contiguous segments
with ratings of 5 or higher which satisfy a certain condition of collinearity. Testing
for linking involves the computation of the directional deflection or deviation between
the last linked segment and each segment connected to it at the other end, whose
rating is up to the threshold value (which is 5). Deflections to the left side are
assigned a negative sign while those to the right are assigned a positive sign. Thus,
the absolute deflection between any two directions can only be in the range of 0 to
180 degrees. The segment which offers the lesser absolute directional deflection is
further tested for collinearity before it is linked. The condition adopted for collinearity
is that the absolute value of the individual deflection should not exceed 30 degrees
(60 degrees is allowed for segments shorter than five pixels, since such small segments
are apt to produce wider deflections even when they are subsumed in a generally
collinear series of segments) and the cumulative deflection over the linked series of
segments should not exceed 90 degrees. Each linked series of segments (which we
shall refer to as a 'series') is stored in an array together with its parameters. These
include the identification numbers of its component segments, the total number of
pixels, and its general direction. It is pertinent to mention that during the linking
process series are not allowed to cross each other.

The heart of the high level construction process consists of channelling the series
based on their topological interrelationship with one another. Channelling involves
the determination of the sense of flow in each series based on its directional relation
with other series connected to it. In what follows, we shall use the terms 'rear' and
'front' to refer respectively to the beginning and end of a series (or a single segment).
These terms depict the sense in which the general direction of the series (or segment)
is reckoned (i.e., from rear to front). A new orientation parameter has been introduced
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to relate the actual sense of flow to the orientation of a series (or segment). This
parameter has value I if it is determined that flow goes from front to rear, - I if it
goes from rear to front, and 0 if the sense of flow is not yet determined. In determining
flow orientation on the basis of the directional relations between contiguous series,
the basic assumption used is that a tributary joins a mainstream in such a way that
flow does not deflect by more than 90 degrees. In our implementation, all possible
configurations between contiguous series are taken into consideration. The accept
ance of a series depends on its compatibility with its already accepted neighbours.
In order that the acceptance of very short series which happen to have been encoun
tered first does not ruin the chances of those of considerable length which may be
encountered later, the series are processed from the longest to the shortest. Any
series currently being considered may be referred to as the 'candidate series'. The
following procedure has been used in processing each candidate series. It is evident
that the algorithm will not be sufficiently clear to the reader if presented as a
flowchart, so we have decided to give it in detail for clarity.

5.1. Algorithm for the assessment of candidate series
(A) If any of the series connected to the front end of the candidate series has

been previously accepted (that series is denoted by front connection), perform the
following:

(i) Compute the directional deviation between the candidate senes and the
front connection.

(ii) Determine whether the point of contact is at the front or rear end or
somewhere in the middle of the front connection.

(iii) If neither the candidate series nor the front connection is channelled, try to
channel one or both of them using their directional deviation.

(iv) If one of them is channelled, try to use it to channel the other one.
(v) If both are channelled, determine whether they are compatible; without

which the candidate series is rejected.

Figure 5 presents all the possible relations that may exist between a candidate series
and a front connection. It illustrates the interplay of series orientation, directional
deflection, and channelling orientation in determining whether or not a candidate
series should be rejected.

(B) If the candidate series is not yet rejected, then if any of the series connected
to the rear end of the candidate series has been previously accepted, denote it by
rear connection and carry out a similar procedure to the one described above for
front connection.

(C) If the candidate series is not yet rejected, then identify all its tributaries (i.e.,
all series and single segments that meet the threshold rating which are connected to
the main body of the candidate series as opposed to its front or rear end) whether
they have been accepted or not.

(i) For all tributaries which correspond to already accepted series perform the
following operations:
(a) Compute the directional deviation between the candidate series and each

of the tributaries
(b) If the candidate series is not yet channelled, use the first of these tributaries

to channel it
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Figure 5. Sketches of possible topological relations that may exist between a candidate series
and a front connection. Arrows indicate the sense of direction reckoning. A branch is
attached to each already channelled series (either candidate series or front connection
or both) in order to better depict the general configuration. Boxes marked with R at
the lower right-hand corner represent configurations in which the candidate series
is rejected.

(e) Once the channelling of the candidate series is established, if any of these
accepted tributaries would join it in a contradictory sense, reject the
candidate series

(d) Channel any of these accepted tributaries yet unchannelled
(ii) If the candidate series is not yet rejected and is not yet channelled, it follows

that none of its tributaries has been accepted. Then for all the tributaries
(using only the segments directly connected to the candidate series) perform
the following:
(a) Compute the directional deviation of each of them from the candidate

series
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(b) Distinguish those making directional deviations of 90 degrees and under
from those making more than 90 degrees (segments belonging to each
group are not simply counted, rather, their rating values are summed up,
in order that rating may be given due consideration)

(e) Channel the candidate series based on the group with the higher sum
of ratings

(D) If the candidate series is not yet rejected, then if it is channelled but any of
its connections (front or rear) is not channelled, then repeat all of the above steps in
order to channel all the connections.

(E) If the candidate series is not yet rejected, then for each of its connections
(including tributaries) which has been channelled in the current process, propagate
channelling from connections to connections-of-connections, until all previously
accepted series which are directly or remotely connected to the current series are
channelled. If any channelling contradiction is detected (even at this stage), then
reject the candidate series.

(F) If the candidate series is not yet rejected, then

(i) Accept it.
(ii) If it is channelled, then accept its single segment tributaries which conform

with its channelling (do not accept tributaries which are series; series can
only be accepted when they are processed as candidate series).

After processing all the series currently acquired, the detected channels (compris
ing all series and single segments accepted in the foregoing algorithm) would consti
tute only portions of networks separated from one another. To improve the
connectivity between them, more series must be processed. Unlike the first set of
series, subsequent sets are not obtained from independent locations but at extensions
of already detected portions of networks. In the second phase, series may be taken
from the extensions of different parts of the existing portions of networks to enable
further extension of channels in accordance with the principle of channel network
formation described above. This process will also provide an opportunity to deter
mine the channelling of some of the unbranched portions which are yet unchannelled.
This second set of series is acquired with a lower rating threshold (we set the
threshold value to 4). They are processed exactly the same way as the previous ones
except that priority is not given to length of series any more. Series are treated on
the basis of first-acquired-first-processed. Even though the rating threshold is lowered,
if any of the series meets the set topological criteria, it is integrated as part of the
network whose extension it is. This is because, as previously stated, certain legitimate
parts of the network may have low rating values due to a variety of factors. After
the second phase, the main structure of the network is established, although there
would still be gaps. In order to try to fill up gaps, to obtain more connectivity in
the channel networks presently detected as well as more continuity in flow, a third
phase of acquiring and processing of series is embarked upon. In this phase, the
series are taken only at extensions of the actual downstream end of each of the
currently existing portions of networks. The rating threshold value of I is used this
time. The threshold has been brought so low to prevent rating values from singly
constituting an impediment to the continuity of flow. The idea is to route flow as
much as possible. However, each series is subjected to the same topological tests
described in the algorithm above, and is accepted only if it passes them. This third
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Detection of channel networks 1673

Figure6. The final result of the computerized drainage channel network detection.

phase is performed iteratively until no more series qualifies in the entire image.
Throughout the entire operation, the rating threshold value for considering single
segments as tributaries remains 5, because such single segments usually do not have
continuity at the other end, and when they have low ratings, they are probably not
channels. The final result of this high level stage of the processing is shown in figure 6.

6. Evaluation of the extraction process and result
Images portraying natural scenes normally contain a wide variety of features as

well as noise. Computerized detection of one or more specific features from such
images is not an easy task. There are numerous practical difficulties that hamper the
smooth implementation of feature detection. First, it is not all image characteristics
of a feature that can be integrated in algorithms. Even those that can be integrated
are not exclusive to one or a clearly distinct group of features. Secondly, noise and
other factors may, on one hand, suppress certain characteristics of the target features
thereby hindering their detection, and on the other hand, modify those of other
features causing them to respond to detection erroneously. In our specific case of
drainage channel network detection from digital satellite images, we have been faced
with several difficulties. The current discussion tries to highlight some of the practical
problems associated with this work. We expect that they will be of some relevance
to future investigations in this domain.

Drainage features are three-dimensional but are imaged in two dimensions. This
dimensionality degradation is not peculiar to drainage features, as all images repres
ent objects in two dimensions even though most objects are three-dimensional in
reality. To facilitate detection, such objects may either produce a well-defined spectral
thumbprint or signature, or have a recognizable geometric shape, relative size or
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location. Drainage features lack all of these except in special cases when they bear
water (which has a spectral signature). In general, all that is known is that they are
curvilinear features which appear as edges or lines in images and which are sometimes
connected. It is obvious that these characteristics may also apply to other features,
of which typical examples include crestlines, roads and other tracks, and even
lithological boundaries and other natural and artificial boundaries. In our inter
mediate level processing of the skeleton image of edgelets (figure 3) we use domain
specific knowledge of shading conditions to enable a rough differentiation between
crestlines and drainage channels. However, we find that this level of processing and
the level of knowledge which it uses (Meisels 1991) is still insufficient. As a result,
we apply higher level knowledge about the order of precedence in channel network
formation as well as the topological relations between network components. Even
then, channels with the same azimuth as the Sun may not be clearly expressed in
the image and very wide channels are difficult to detect because in the automatic
mode there is no way of distinguishing their image presentation from that of other
areas.

Some of the errors that may have occurred in this work may be attributed to
the low level processes. Although the purpose of these processes is to provide a
suitable background for enhanced higher level detection, sometimes due to certain
imperfections, they may yield poor results. In edge detection for instance, accurate
localization of detected edges is of crucial importance, yet it is one of the most
difficult aspects in this type of work. It is obvious that once an edge is wrongly
localized, all subsequent values computed for use in its evaluation as a drainage
channel will be wrong. Furthermore, at the occurrence of a line, like any other edge
detector, ours detects a dual edge. In order to recover the original line, this dual
edge is consolidated, then subjected to skeletonization. If the resulting line is wholly
or partially shifted with respect to the line it represents in the original image, then
some or all pixels used for the computation of rating (at the intermediate level) are
taken from wrong locations, resulting in an erroneous rating value. However, in this
work, we have tried to use one of the best currently available edge detectors as far
as the quality of localization is concerned. thus curbing the error sources.

The high level channel detection process may also have been affected by a number
of problems. The topological concept which has been applied in this detection is
based on the assumption that the deflection made by flow in moving into a stream
from its tributary does not exceed 90 degrees. Although this is the general rule for
the common types of channel patterns such as dendritic and parallel, it is not always
true for other types such as some trellis and rectangular networks (Ichoku and
Chorowicz 1994) and for some cases of drainage anomalies (Howard 1967). Non
conformity with directional deflection specifications may have resulted in the disquali
fication of a number of candidate series which would have qualified otherwise. It
has not been possible to avoid this in our investigation, because there is no way of
identifying such segments in order to accord them special considerations. One other
source of inconvenience in the detection process relates to the fact that the qualifica
tion of a series (or a single segment) depends on its relationship with other already
qualified ones with which it has connection. Thus, any non-channel feature which
happens to have qualified erroneously may prevent the qualification of a legitimate
piece of channel that is tested by the extraction procedure after it has accepted the
erroneous feature. In any case, the approach used is justified because series must
be processed one after the other and consideration must be given to topological
interrelationships.
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Detection of channel networks 1675

Figure7. Channel networks manually extracted from the original image shown in figure 2.

To do some appraisal of our final result (figure 6), we carried out a manual
extraction of channel networks from a hardcopy of the original image (figure 2).
Figure 7 shows the result of manual extraction. A visual comparison of figures 6
and 7 shows that there is a substantial agreement between them; a proof of the high
capacity of our computerized approach to detect drainage features from satellite
images.

However, in order to be able to relate our results to a standard that would be
as close as possible to the truth, we performed a manual extraction of channel
networks from a topographical map of scale 1: 50000. The map-extracted network
is shown in figure 8. Since our image was not geometrically corrected, there is some
geometric distortion in figures 6 and 7 (image products) with respect to figure 8 (map
product), and their boundaries do not match exactly. For this reason and due to the
slight shifts that may have affected the extracted channels, it is not possible to
compare the extracted networks quantitatively; although the correspondence between
them is quite evident visually. We can, however, make a qualitative comparison
between these networks, bearing in mind that the map network (figure 8) is assumed
to be the closest to the truth. We have chosen to measure their various qualities on
a scale of: poor, fair, very fair, medium, high, very high, excellent. Table 2 shows our
assessment of the network qualities. The criteria considered are the following:

1. Coverage: This represents the extent to which the extracted networks cover
all parts of the data source (image or map) where channels exist.

2. Connectivity: This indicates the extent of connection between extracted
channels relative to their connection in reality.

3. Purity: This expresses the relative amount of extracted channels that actually
represent real channels (and not other features or artefacts).
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Figure 8. Channel networks manually extracted from a 1: 50000 scale topographic map.

4. Accuracy of localization: This is a measure of the location of extracted channels
relative to their location in the data source.

Based on the foregoing criteria and on our assessment as given in table 2, the manual
extraction performs a little better than our computerized detection method only in
terms of connectivity and purity. These few gaps and artefacts occurring in the result
of the computer detection (figure 6) are probably due to the effect of some of the
factors discussed in the first four paragraphs of this section. On the other hand,
manual extraction processes enjoy much higher level of knowledge than can be
incorporated in a computer programme. For instance, the human extractor has a
global view of the image and can easily know the general character of the network.
Also, he usually exercises much freedom in dealing with exceptional cases.

Table 2. Qualitative comparison between channel networks extracted from a topo
graphic map and those extracted from the image manually and automatically.
The scale of comparison is constituted by: poor, fair, very fair, medium, high,
very high, excellent.

Assessment

Network quality

Coverage
Connectivity
Purity
Accuracy of localisation

Map network

Excellent
Excellent
Excellent
Very high

Manually
extracted network

Very high
Very high
Very high
Very high

Automatically
detected network

Very high
High
High

Very high
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Nevertheless, the computerized detection process presented here has been very suc
cessful. Moreover, considered in the context of such inherent advantages of computer
ized approaches as rapidity and consistency, it can be said that this technique shows
great potential.

7. Conclusion
This paper has demonstrated the capability for detecting drainage channel

networks from digital satellite images (especially of arid regions). The method
ology developed here covers a wide spectrum of image processing and pattern
recognition techniques which fit the structure of multi-level architectures for Image
Understanding (Meisels 1991). The detection of drainage channel networks on
satellite images is a complicated task because channel networks do not have substan
tial image attributes that would facilitate their detection. They do not fall within any
specific range in the greyscale, neither do they have a spectral signature. Furthermore,
neither channel networks nor their parts exhibit any defined shape, size, orientation,
or other unique quantitative characteristics, either relatively or absolutely. This may
be why the prospect of performing this detection has hitherto not offered any
significant appeal to researchers.

Despite the inherent handicaps and the generalizations applied to cope with them
in certain steps of the detection process, the result has been satisfactory. This
successful achievement may be attributed to two main factors. The first one concerns
the study area. It is an arid zone with extremely sparse low vegetation. Also,
lithological differences are not prominent and other curvilinear features such as
roads are rare. Furthermore, most of the channels appear prominently on the image,
few have the same azimuth as the Sun, and there are very few wide channels. The
second factor relates to the fact that good knowledge-based techniques, embodied
in a multi-level approach, have been applied in the detection process. For instance,
at the high level stage, the drainage channel network was reconstituted by applying
knowledge about channel network formation procedures and the common topolo
gical dispositions. The visual comparison between the final result of this extraction
process and that of the human expert is very encouraging. Although our technique
has been' tested on the image of an arid region, we believe that it can also be applied
to areas with smooth uniform vegetation cover.

The methodology presented in this work has high potentials for even better
performance if further improvement is achieved in the associated techniques such as
image enhancement, image segmentation, filtering, and edge detection. Furthermore,
as modern spatial data handling techniques tend towards the use of Geographical
Information Systems (GIS), if our methodology is adapted and operated under this
framework-whereby complementary information can be derived from other
sources-its efficiency will be further enhanced, such that its application can even
be extended to other (non-arid and heterogeneous) situations with improved results.
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