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Recent functional magnetic resonance imaging (fMRI) studies have shown that

functional networks can be extracted even from resting state data, the so called

“Resting State independent Networks” (RS-independent-Ns) by applying independent

component analysis (ICA). However, compared to fMRI, electroencephalography (EEG)

and magnetoencephalography (MEG) have much higher temporal resolution and provide

a direct estimation of cortical activity. To date, MEG studies have applied ICA for separate

frequency bands only, disregarding cross-frequency couplings. In this study, we aimed to

detect EEG-RS-independent-Ns and their interactions in all frequency bands. We applied

exact low resolution brain electromagnetic tomography-ICA (eLORETA-ICA) to resting-

state EEG data in 80 healthy subjects using five frequency bands (delta, theta, alpha, beta

and gamma band) and found five RS-independent-Ns in alpha, beta and gamma frequency

bands. Next, taking into account previous neuroimaging findings, five RS-independent-Ns

were identified: (1) the visual network in alpha frequency band, (2) dual-process of visual

perception network, characterized by a negative correlation between the right ventral visual

pathway (VVP) in alpha and beta frequency bands and left posterior dorsal visual pathway

(DVP) in alpha frequency band, (3) self-referential processing network, characterized by

a negative correlation between the medial prefrontal cortex (mPFC) in beta frequency

band and right temporoparietal junction (TPJ) in alpha frequency band, (4) dual-process

of memory perception network, functionally related to a negative correlation between the

left VVP and the precuneus in alpha frequency band; and (5) sensorimotor network in beta

and gamma frequency bands. We selected eLORETA-ICA which has many advantages

over the other network visualization methods and overall findings indicate that eLORETA-

ICA with EEG data can identify five RS-independent-Ns in their intrinsic frequency bands,

and correct correlations within RS-independent-Ns.
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INTRODUCTION

The brain intrinsically interacts between distant regions, building

cortical networks during motor and cognitive tasks. Interestingly,

one network enhances its activity in no-task resting state. In

particular, the so called default mode network (DMN) is known to

be active during resting and attenuates during task performance.

However, recent findings suggest that the DMN is also involved

in internally focused processes such as self-referential thoughts,

envisioning one’s future and autobiographical memory retrieval

(Raichle et al., 2001; Buckner et al., 2008). Furthermore, it has

been reported that several cortical networks cooperate with each

other positively or negatively during performance of complex

cognitive tasks (Spreng and Schacter, 2012). These functional

networks have been investigated by lesional and anatomical

studies and during functional tasks with functional magnetic

resonance imaging (fMRI), which measures regional cerebral

blood flow (rCBF) changes. However, one mathematical method

called independent component analysis (ICA) have received

growing attention (Bell and Sejnowski, 1995; Hyvärinen and

Oja, 2000). ICA is a mathematical decomposing method which

separates mixture of signals like electroencephalography (EEG),

magnetoencephalography (MEG) and fMRI data into a set of

statistical independent components (ICs) that are artifact signals

and physiological signals. In addition, it should be noted that
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using ICA these task positive or negative functional networks

can be extracted from “resting state” fMRI data and MEG data

(Beckmann et al., 2005; Allen et al., 2011; Brookes et al., 2011).

These led to the concept of “Resting State independent Network”

(RS-independent-N). Also, there are some other methods used

for the discovery of interactions in the brain which are seed-

based correlation analyses. These analyses has extracted Resting

State correlated Networks (RS-correlated-Ns) from resting state

fMRI data or MEG data (Biswal et al., 1995; Vincent et al.,

2008; Brookes et al., 2011; Raichle, 2011; Hipp et al., 2012).

In this way, ICA and seed-based correlation analyses with

fMRI data has identified several RS-independent-Ns and RS-

correlated-Ns, including the basal ganglia network, auditory

network, sensorimotor network, visual network, DMN, ventral

and dorsal visual pathway (VVP and DVP), and the frontal

network (Biswal et al., 1995; Allen et al., 2011; Joel et al., 2011;

Raichle, 2011; Meyer et al., 2013). However, correlation analysis

has a problem of an implicit assumption of Gaussianity of the

signal where fMRI signals are approximately Gaussian (Hlinka

et al., 2011) but EEG and MEG signals are non-Gaussian (Stam,

2005). Thus, RS-correlated-Ns derived from correlation analysis

of EEG and MEG data are not independent with each other

in a precise sense because of non- Gaussianity of EEG and

MEG data (Hyvärinen and Oja, 2000; Stam, 2005). In addition,

correlation analyses emphasize the special role of some pre-

selected brain region. However, unlike the seed-based methods,

ICA is appropriate for the discovery of distributed networks,

giving equal importance to all brain voxels (Joel et al., 2011).

Furthermore, ICA can remove artifacts such as electromyogram

or base line shift by separating out artifact components (Custo

et al., 2014).

Unlike fMRI, which measures hemodynamic changes that

occur in response to cortical activity, neurophysiological

techniques, such as EEG and MEG measure cortical

electrical/magnetic activity directly and noninvasively with a

high temporal resolution (1–2 ms) (Canuet et al., 2011). Thus,

EEG has been widely used in clinical practice to support clinical

diagnosis and management of neuropsychiatric diseases such as

epilepsy, disturbance of consciousness and dementia, and also

in neuroscience to investigate cortical electrical activities and

functions (Ishii et al., 1999; Canuet et al., 2011; Kurimoto et al.,

2012; Aoki et al., 2013a,b).

Recent findings of EEG and MEG analyses indicate that

electromagnetic oscillatory activity of the functional networks

varies its frequency from lower sensory areas to higher-order

control areas. For instance, intra-cortical investigations using

depth electrodes with syllable auditory task reported that cortical

electrical activity of auditory area changed from evoked activity

(phase-locked to the stimulus) to induced activity (non-phase-

locked to the stimulus) and also its frequency changed from theta

and low gamma to beta and high gamma, as activity shifted from

primary auditory cortices to associative auditory cortex (Morillon

et al., 2012). Another MEG study using a visuospatial attentional

task found that the cortical electrical activity of the DVP changed

from alpha evoked activity to beta induced activity as it shifted

from early visual areas to prefrontal control areas (Siegel et al.,

2008). And recent fMRI and MEG studies using decomposing

methods have repeatedly shown that these functional networks

can also be seen during resting state with changing its power

of activity (Smith et al., 2009; Grady et al., 2010; Brookes

et al., 2011). From these accumulating evidences, we can assume

that RS-independent-Ns are associated with several frequency

bands of electromagnetic activity depending on the function

subserved by the different cortical regions. In support of this

notion, a simultaneous fMRI and EEG study showed that blood

oxygenation level dependent (BOLD) signals of RS-independent-

Ns correlated with EEG waveforms in several frequency bands

(Mantini et al., 2007). In addition, Jonmohamadi et al. (2014)

and Mantini et al. (2011) showed that ICA decomposition of

EEG and MEG data becomes more correct in localization and

more robust to artifacts when applied after source reconstruction.

Taken together, in order to visualize RS-independent-Ns across

several frequency bands, we consider appropriate to apply ICA

to cortical electrical activity reconstructed from EEG or MEG

data, analyzing all frequency bands. To our knowledge, there is

one previous EEG-RS-independent-N study. However, ICA was

applied to scalp recorded EEG data in the time domain, followed

by a second step using a sLORETA source reconstruction on

the ICA-scalp topographies; in contrast, we apply ICA directly

to the reconstructed cortical electrical activity by eLORETA in

the frequency domain. And the results of cortical electrical

distributions of ICs were rather different from known functional

networks (Chen et al., 2013). Also there is a few previous MEG-

RS-independent-N studies. In their studies, ICA was applied

to cortical electrical activity reconstructed from MEG data,

however, in separate frequency bands, disregarding possible

cross-frequency coupling. Furthermore, sample sizes of these

studies were small (Brookes et al., 2011, 2012; Luckhoo et al.,

2012).

Also, ICA of EEG data has been widely used for various

purposes, such as artifact rejection by separating out artifact

components (Custo et al., 2014) and examination of the EEG

resting states (infra-slow EEG fluctuations and EEG microstates).

For instance, Hiltunen et al. (2014), found correlations between

the filtered ICA time series (using ultra-low frequencies) of the

EEG with BOLD time series in specific fMRI RS-independent-

Ns. And Yuan et al. (2012), performing ICA on EEG microstates

to decompose into ICs (independent microstates), found that

each fMRI RS-independent-N was characterized by one to a

combination of several independent microstates.

Exact low resolution brain electromagnetic tomography

(eLORETA) is a linear inverse solution method that can

reconstruct cortical electrical activity with correct localization

from the scalp EEG data (Pascual-Marqui et al., 2011; Aoki

et al., 2013a). The implementation of ICA in the eLORETA

software with EEG data allows for decomposition of cortical

electrical activity which is non-Gaussian into ICs in different

frequency bands (Pascual-Marqui and Biscay-Lirio, 2011). Other

decomposing methods (e.g., principal component analysis or

correlation analysis) with EEG data cannot strictly to do so

(Bell and Sejnowski, 1997; Hyvärinen and Oja, 2000; Mantini

et al., 2011). Furthermore, electromagnetic tomography-ICA

(eLORETA-ICA) uses all frequency information of EEG data in

analysis. In this study, we selected eLORETA-ICA which has many
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advantages over the other network visualization methods as we

explained above and applied it to EEG data to obtain complete

set of EEG-RS-independent-Ns across several frequency bands for

the first time.

METHODS

SUBJECTS

We recruited 306 healthy elderly subjects who had no history

of neurological or psychiatric disorders. Elderly subjects over 60

years old underwent clinical tests to ensure that memory and

other cognitive functions were within normal limits (MMSE >

24, CDR = 0). From the participants, 146 subjects were healthy

volunteers, and the remaining 160 subjects were ascertained from

an epidemiological study among inhabitants in Tone, Ibaraki,

Japan. This study was approved by the Ethics Committee of Osaka

University Hospital and followed the Declaration of Helsinki.

Written informed consent was obtained from the subjects.

EEG RECORDING AND DATA ACQUISITION

Subjects underwent EEG recordings in a resting state, eyes closed

condition for about 5 min. Subjects were instructed to keep

their eyes closed while staying awake during the recordings.

Spontaneous cortical electrical activity was recorded with a

19-channel EEG system (EEG-1000/EEG-1200, Nihon Kohden,

Inc., Tokyo, Japan), filtered through a 0.53–120 Hz band-pass

filter, and sampled at 500 Hz. EEG was recorded with the

electrodes positioned according to the International 10–20 system

(i.e., Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,

T4, T5, T6, Fz, Cz, Pz) using a linked ears reference. Electrode

impedances were kept below 5 kΩ. For each subject, 120-s

artifact-free, resting-awake segments were manually selected

by visual inspection using Neuroworkbench software (Nihon

Kohden, Inc., Tokyo, Japan).

EEG-SOURCE RECONSTRUCTION METHOD

We used eLORETA (exact low resolution brain electromagnetic

tomography) to compute the cortical electrical distribution

from the scalp electrical potentials measured at the electrode

sites (Pascual-Marqui et al., 2011). The eLORETA method is a

weighted minimum norm inverse solution, where the weights

are unique and endow the inverse solution with the property of

exact localization for any point source in the brain. Thus, due

to the principles of linearity and superposition, any arbitrary

distribution will be correctly localized, albeit with low spatial

resolution. In the current eLORETA version, the solution space

consists of 6239 cortical gray matter voxels at 5 mm spatial

resolution, in a realistic head model (Fuchs et al., 2002), using

the MNI152 template (Mazziotta et al., 2001). The LORETA

method has been previously used and validated with real human

data during diverse sensory stimulation and in neuropsychiatric

patients (Dierks et al., 2000; Vitacco et al., 2002; Pascual-Marqui

et al., 2011; Aoki et al., 2013a). A further property of eLORETA is

that it has correct localization even in the presence of structured

noise (Pascual-Marqui et al., 2011). In this sense, eLORETA is

an improvement over previously related versions of LORETA

(Pascual-Marqui et al., 1994) and sLORETA (Pascual-Marqui,

2002). eLORETA images of spectral density were computed for

five frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–

13 Hz), beta (13–30 Hz), and gamma (30–60 Hz) (Canuet et al.,

2012).

FUNCTIONAL ICA

In most of the resting state network (RSN) literature, ICA is the

method most widely used for the discovery of sets of regions

that work together as networks. There are numerous different

processing strategies that are being used in the RS-independent-

N literature, as reviewed by Calhoun (Calhoun et al., 2009).

For instance, in typical fMRI group studies for the discovery of

RS-independent-Ns, the time series images for each subject are

first heavily pre-processed (see Calhoun et al., 2009 for details),

and then all subjects’ time series images are concatenated. This

produces a matrix, where one dimension consists of “space” (i.e.,

the brain voxels), and the other dimension consists of time.

Finally, an ICA algorithm is applied to this matrix, which will

produce a set of spatial components (i.e., images), where each

“component image” consists of a so-called “network”. In order

to interpret a network image, one must threshold its values

appropriately, displaying the brain regions that have highest

loadings. This post-processing is achieved by z-transforming the

component network image, and using an empirical threshold, as

in for example (McKeown et al., 1998; Calhoun et al., 2004; Kelly

et al., 2010; Agcaoglu et al., 2014). In this way, each network image

will display areas whose activities are tightly linked (i.e., they work

together as a network).

In contrast to relatively slow hemodynamic images, high

time resolution images of electrical neuronal activity can be

computed using eLORETA applied to EEG recordings. In an

implicit manner, these images contain an additional dimension

of frequency. Whereas fMRI images have their spectrum

concentrated below 0.1 Hz, EEG contain a wealth of differential

functional information in the classical range from 2 to 60 Hz.

In order to take into account this additional dimension of

information, the classical ICA as applied in fMRI was generalized.

All the technical details can be found in Pascual-Marqui and

Biscay-Lirio (2011).

For the sake of completeness, a brief description follows.

The EEG recording of each subject is first transformed to the

frequency domain, using the discrete Fourier transform. This will

produce a set of cross-spectral EEG matrices, for each frequency

of interest, such as those described above. This information is then

used for calculating the spectral density for each cortical voxel

and for each frequency band, using the methodology described

in detail in Frei et al. (2001). With this initial procedure, each

subject contributes five eLORETA images of cortical spectral

density (one for each frequency band: delta, theta, alpha, beta,

and gamma). From the point of view of mathematics, these data

correspond to a “function” of space (cortical voxel) and frequency.

In the next step, the data from each subject is concatenated, thus

producing a matrix where one dimension corresponds to the

different subjects, and the other dimension corresponds jointly to

space-frequency. This approach is common in a relatively young

field of statistics known as functional data analysis (Ramsay and

Silverman, 2005). When ICs analysis is applied to this matrix, a

more general form of networks are discovered, and the method
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FIGURE 1 | eLORETA-ICA component 4 (IC4). IC4 corresponds to the occipital visual network in alpha frequency band. In the color–coded maps, red and blue

colors represent power increase and decrease with increasing IC coefficient, respectively.

is described as functional ICA, given its origin in the field of

functional data analysis. Each functional network consists of a

set of five images, one for each frequency, because space and

frequency and all their possible interactions are now jointly

expressed. In contrast to a classical fMRI network image which

corresponds to brain regions that “work” together over time, an

EEG-eLORETA based functional network corresponds to brain

regions and frequencies that “work” together across a population

of subjects. This allows not only for the discovery of regions

that work together, but also for the discovery of cross-frequency

coupling.

In this paper, the number of ICs (networks) is estimated

by sphericity test (Bartlett, 1954). In the eLORETA-ICA

algorithm, ICs were obtained by maximizing the independence

between components which was measured by non-Gaussianity.

In particular, non-Gaussianity was calculated by fourth-order

cumulant (Cardoso, 1989; Cichocki and Amari, 2002). Then, ICs

were ranked according to total EEG power and color coded with

a z-score threshold of 3.0, in complete analogy to the methods

used in practice in fMRI-ICA networks (as explained in detail

above). In the color–coded maps, red and blue colors represent

power increase and decrease with increasing IC coefficient which

indicates activity of IC, respectively.

RESULTS

Artifact-free 120-s epochs were obtained in 80 out of 306 healthy

subjects. The age distribution of the 80 healthy subjects (57

men and 23 women) was as follows: 18–29 years (25 men

and 2 women), 30–49 years (15 men and 4 women), 50–69

years (14 men and 11 women) and 70–87 years (3 men and 6

women) (44 ± 20 (mean ± standard deviation)). The median

of MMSE scores over 60 years old was 30 (interquartile range;

29–30). It can be seen an overall male predominance, which

may reflect a bias of our healthy volunteers, and the female

predominance in the 70–87 years group, which may reflect a

delay of age-related cognitive decline in female. The number of

ICs estimated by the sphericity test was 12.0. Subsequently, we

applied eLORETA-ICA as the number of components varied from

11 to 13. Then, 11 ICs were most consistent with physiological

assumption that is topography and frequency of some known

networks and artifacts such as electromyogram is at frontal or

temporal cortex in gamma frequency band, therefore we selected

11 as the number of components. Next, we identified, based

on spatial distributions of power and frequency ranges, IC4,

IC5, IC6, IC9 and IC10 as RS-independent-Ns (Figures 1–5);

IC1, IC2, IC3, IC7, IC8 and IC11 as artifacts of frontal and

temporal electromyogram or frontal and occipital baseline shifts

(Figure 6).

When identifying the different ICs derived from our analyses,

we found that IC4 corresponded to the occipital visual network

in alpha frequency band (Figure 1). IC5 consisted of the right

VVP, corresponding to the right occipitotemporal cortex and

the right ventral prefrontal cortex (vPFC), and the left posterior

DVP. The right VVP linked right occipitotemporal cortex in

alpha frequency band to the right vPFC in beta frequency

band. The left posterior DVP, comprised the ipsilateral posterior

occipito-parietal cortex, caudal intraparietal sulcus (cIPS) and

posterior end of middle temporal gyrus (MT+) in alpha frequency

band, which correlated negatively with the areas of the right

VVP (Figure 2). IC6 was formed by the medial PFC (mPFC)

in beta frequency band and the right temporoparietal junction

(TPJ) in alpha frequency band, which showed negative correlation

(Figure 3). IC9 comprised the precuneus in alpha frequency

band and the left VVP in alpha frequency band, which also

showed negative correlation (Figure 4). IC10 comprised the

medial postcentral regions (Brodmann area 5 and 7 (BA 5–7))

in beta frequency band and the pre supplementary motor area

(pre-SMA) in gamma frequency band, which showed positive

correlation (Figure 5).

DISCUSSION

In this study, using eLORETA-ICA, we could identify five RS-

independent-Ns corresponding to (1) the occipital visual network

in alpha frequency band (IC4), (2) the right VVP in alpha and
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FIGURE 2 | eLORETA-ICA component 5 (IC5). Left IC5 regions (the

left posterior occipito-parietal cortex, caudal intraparietal sulcus (caudal

IPS) and middle temporal + (MT+)) corresponds to left posterior dorsal

visual pathway (DVP). Right IC5 regions (the right occipitotemporal

cortex, temporoparietal junction (TPJ), parahippocampal gyrus,

fusiform gyrus and ventral prefrontal cortex (vPFC)) corresponds to

right ventral visual pathway (VVP). The right VVP links right

occipitotemporal cortex in alpha frequency band to the right vPFC in

beta frequency band. The left posterior DVP correlates negatively with

the areas of the right VVP.

beta frequency bands and left posterior DVP in alpha frequency

band (IC5), (3) the mPFC in beta frequency band and right TPJ

in alpha frequency band (IC6), (4) the precuneus and left VVP

in alpha frequency band (IC9); and (5) the medial postcentral

regions in beta frequency band and the pre-SMA in gamma

frequency band (IC10).

INDEPENDENT COMPONENT 4

IC4 was found at the occipital cortex in alpha frequency band

(Figure 1). It is well known that the occipital cortex is involved

in visual perception processing. Consistent with this fact and

with our result, previous neurophysiological studies found that

visual processing related activity in the occipital regions occurred

in the alpha frequency band. In particular, alpha oscillation in

the occipital regions is enhanced during no expectation of visual

stimulus and is reduced during expectation and presentation of

visual stimulus (Klimesch et al., 1998).

INDEPENDENT COMPONENT 5

IC5 was found at the right occipitotemporal cortex in alpha

frequency band and at the right vPFC in beta frequency band with

left posterior occipito-parietal cortex, cIPS and MT+ in alpha

frequency band (Figure 2). Left IC5 regions (the left posterior

occipito-parietal cortex, cIPS and MT+) corresponds to left

posterior DVP and right IC5 regions (the right occipitotemporal

cortex, TPJ, parahippocampal gyrus, fusiform gyrus and vPFC)

corresponds to right VVP. DVP is a functional network involved

in automatic visual guidance of spatial movements. Within this

network cIPS and MT+ is linked to action-relevant features of

objects such as shape and orientation from visual information
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FIGURE 3 | eLORETA-ICA component 6 (IC6). IC6 is formed by the medial PFC (mPFC) in beta frequency band and the right TPJ in alpha frequency band,

which shows negative correlation.

processed in the occipital lobe. Right VVP is a visual recognition

network where visual information that has flowed from the

occipital lobe is compared to visual/spatial memory in right

temporal cortex then identified in right temporal cortex or

right vPFC (Fairhall and Ishai, 2007; Kravitz et al., 2011,

2013; Milner, 2012). Taking into account these findings, IC5

corresponds to a network that activity of the right VVP correlated

negatively with left posterior DVP activity. Previous accumulating

studies revealed that function of DVP is“online” “unconsciously

occurred (automatic)” visual perception of spatial components

to guide spatial movements, while function of VVP is “off-

line” “conscious” visual perception and recognition of feature

components (Kravitz et al., 2011, 2013; Harvey and Rossit,

2012; Milner, 2012). Therefore, we can assume IC5 as dual-

process of visual perception: the left posterior DVP for automatic

visual perception to guide spatial movements and right VVP for

detailed perception and recognition of visual input. Our result of

negative correlation between right VVP and left posterior DVP

is consistent with dual-process of visual perception. In addition,

our result of emergence of VVP only on the right side also

fit with the fact that right dominant engagement of VVP in

visuospatial search and recognition (Corbetta et al., 2005). This

negative correlation was also seen in visuospatial neglect patients,

who injured right VVP area, enhanced left posterior DVP activity

(not whole DVP) at acute stage and attenuated its activity with

clinical recovery (Corbetta et al., 2005; He et al., 2007; Rossit et al.,

2012).

INDEPENDENT COMPONENT 6

IC6 was found at the mPFC in beta frequency band and right TPJ

in alpha frequency band (Figure 3). Medial PFC is anterior hub

of the DMN and right TPJ is a hub of the right VAN (Corbetta
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FIGURE 4 | eLORETA-ICA component 9 (IC9). IC9 comprises the precuneus in alpha frequency band and the left VVP in alpha frequency band, which shows

negative correlation.

and Shulman, 2002; Buckner et al., 2008). Connectivity analysis

of resting fMRI data has showed that mPFC has maximal positive

connectivity with right posterior TPJ (Mars et al., 2012; Kubit and

Jack, 2013). Taking into account these findings, IC6 corresponds

to a network that activity of anterior hub of DMN (mPFC)

positively correlated with that of right VVP. The DMN enhance

its activity in autobiographical memory retrieval (Cabeza et al.,

2004). However autobiographical memory retrieval involves

both self-referential processing and memory retrieval process.

So, Kim (2012), by subtracting fMRI activity in laboratory-based

memory retrieval from autobiographical memory retrieval,

found that self-referential processing was related to mPFC, right

parahippocampal cortex and posterior cingulate cortex (PCC).

So, we can speculate IC6 as self-referential processing. In support

to this notion, there is a case report of a patient with loss of

the sense of self-ownership who also showed hypometabolism

in the right inferior temporal cortex as well as in the right

parietooccipital junction and precentral cortex (Zahn et al., 2008).

INDEPENDENT COMPONENT 9

IC9 was found at the precuneus and left VVP in alpha

frequency band (Figure 4). The precuneus is dominantly related

to familiarity of the memory (Yonelinas et al., 2005) and

left VVP is memory recognition area whose activation reflects

retrieval and identification of memory (Cabeza, 2008; Ravizza

et al., 2011; Angel et al., 2013). IC9 showed the precuneus was

negatively correlated with left VVP in alpha frequency band.

Consistent with our result, EEG study using sLORETA showed

the same correlation between decreasing alpha power in the

precuneus and increasing alpha power in the left temporal

cortex with WM load during WM retention period in some

healthy subjects (Michels et al., 2008). Dual-process models of

memory recognition have been proposed by many researchers

which suggest memory has two separate systems: familiarity of

the memory (sense of knowing) and recollection (Yonelinas,

2002). In memory retrieval, the precuneus engages in familiarity,

while left VVP regions (left TPJ, parahippocampal cortex and
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FIGURE 5 | eLORETA-ICA component 10 (IC10). IC10 comprises the medial postcentral regions (Brodmann area 5 and 7) in beta frequency band and the pre

supplementary motor area (pre-SMA) in gamma frequency band, which shows positive correlation.

hippocampal formation) engage in episodic memory retrieval

(Yonelinas et al., 2005; Sestieri et al., 2011). Familiarity is a

working memory which is a sense of knowing temporarily

occurred (several tens of seconds) after encoding. That is,

familiarity is “unconsciously occurred (automatic)” “online”

“sensory component” of short-term memory to be manipulated

in multiple cognitive processes (working memory). On the

other hand, episodic memory retrieval is a “conscious” “off-

line” “detailed” perception and recognition of long-term episodic

memory (Baddeley and Hitch, 1974; Huijbers et al., 2010,

2012). Therefore, we can conclude that familiarity and episodic

memory have properties of the DVP and the VVP, respectively

(please refer to the discussion of IC5). In fact, the precuneus

showed strong coherence with DVP by fMRI connectivity analysis

(Huijbers et al., 2012). Taken together, we can speculate that

IC9 reflects dual-process of memory perception: the precuneus

for automatic sensory component of the memory to guide

multiple cognitive processes in memory domain and left VVP

for detailed perception and recognition of episodic memory. Our

results elucidated that similarity of perception and recognition

between vision (IC5) and memory (IC9). Lesion studies also

presented a case of neglect in memory domain analogous to

visuospatial neglect: patients who had bilateral TPJ lesions

showed a deficit in detailed memory retrieval in free recall

(subserved by the left VVP), although they can access to

these memories when guided by probe questions (function

subserved by the precuneus; Berryhill et al., 2007; Cabeza,

2008).
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FIGURE 6 | eLORETA-ICA component 1, 2, 3, 7, 8 and 11 in above

written frequency bands. These components correspond to artifacts of

electromyogram or baseline shifts, based on spatial distributions of power

and frequency ranges.

INDEPENDENT COMPONENT 10

IC10 was found at the medial postcentral regions (BA5–7) in beta

frequency band, and at the pre-SMA in gamma frequency band

(Figure 5). Beta activity in medial sensory regions is known as

Rolandic beta rhythm, which is typically observed in resting state

and suppressed by voluntary movements (Pfurtscheller, 1981).

This beta oscillation is thought as an idling rhythm of sensory

regions (Ritter et al., 2009). From our result, gamma oscillation in

the pre-SMA can also be assumed as idling rhythm of pre-SMA. In

support of this notion, the gamma oscillation in the pre-SMA was

suppressed by voluntary movements (Hosaka et al., 2014). Taking

into account these findings, we identified IC10 as sensorimotor

network.

Overall, topographies of alpha and beta frequency bands is

consistent with their roles: alpha oscillation for inhibition of

the visual pathway (Snyder and Foxe, 2010; Capotosto et al.,

2012; Capilla et al., 2014), beta oscillation in PFC for higher

cognitive functions such as evaluation and prediction (Arnal et al.,

2011; Hanslmayr et al., 2011; Buschman et al., 2012; Aoki et al.,

2013b; Kawasaki and Yamaguchi, 2013) and beta oscillation in

sensorimotor area for motor control (Engel and Fries, 2010).

This is the first study presenting ICs using eLORETA-ICA with

resting state EEG data, and more importantly, which highlight the

differences in some aspects from the previous RS-independent-

Ns using ICA with resting state fMRI data. First, eLORETA-

ICA of EEG data presented right and left VVP separately,

strikingly different from ICA results of fMRI data showing VVP

bilaterally. However, de Pasquale et al. (2010) using correlation

analysis showed that MEG has greater correlations between intra-

hemispheric nodes than inter-hemispheric nodes in RSNs. They

elucidated that this difference stemmed from the difference of

temporal resolution: EEG and MEG have much higher temporal

resolution (1–2 ms) of cortical activity than fMRI, which has

2 s temporal resolution. These findings indicate that only

EEG and MEG, which have millisecond temporal resolution,

combined with ICA can detect the correct ICs of cortical activity.

Furthermore, our result of right and left separation of VVP is

consistent with previous findings that left lateralized activation

of VVP during episodic memory retrieval and right lateralized

activation of VVP during visual target detection (Corbetta et al.,

2005; Daselaar et al., 2006; Angel et al., 2013). Second, our

results were restricted to cortical areas whereas RSNs derived

from fMRI data included deep brain structures such as basal

ganglia, hippocampus and cingulate cortex. This caused from the

fact that EEG cannot detect electrical activity of the deep brain

because electrical potential drastically attenuated by conduction

from deep brain to the surface of the head. Therefore, for instance,

we cannot determine the PCC is involved in IC6 or IC9, although

controversy exists whether the PCC should be involved in self-

referential processing or episodic memory retrieval (Kim, 2012;

Angel et al., 2013).

Although the fact is known that cortical electrical activity

reconstructed from EEG data using sLORETA showed several

topographic distributions somewhat similar to RS-independent-

Ns for a short period (microstate; Musso et al., 2010), no

one could extracted independent sets of cortical electrical

activity (EEG-RS-independent-Ns). And there are some other

decomposing methods such as principal component analysis and

correlation analysis, they cannot decompose cortical electrical

activity into ICs in a precise sense because cortical electrical

activity is non-Gaussian (Bell and Sejnowski, 1997; Hyvärinen

and Oja, 2000; Stam, 2005; Mantini et al., 2011). Therefore, we

selected eLORETA-ICA to detect EEG-RS-independent-Ns.

Our results should be interpreted with caution based on the

following limitations. First, relative small number of electrodes

(19 electrodes) and realistic head model in eLORETA may affect

the source localization results. However, the good localization

property of the LORETA tomography was validated in several

studies as we mentioned in the Methods section and our

source localization results of eLORETA-ICA are consistent

with neuroimaging findings of RSNs. Second, low spatial

resolution of eLORETA, which blur the cortical sources, may

cause non-detection of the low-electrical-activity cortical

sources. Thus, subsequent ICA may have missed some low

activity RS-independent-Ns. Third, our present study has

made use of the hypothesis that healthy subjects have common

RS-independent-Ns which are consistent throughout a very

wide age range, thus aging-related changes are restricted to

activities of RS-independent-Ns (IC coefficients). However, we

confirmed that occipital basic oscillations of all subjects were
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in the alpha frequency band by visual inspection and almost all

the RS-independent-N results did not change even excluding 9

subjects aged 70 years or more from eLORETA-ICA. In addition,

our source localization results of eLORETA-ICA are consistent

with neuroimaging findings of RSNs. Fourth, we supposed

correspondences between RS-independent-Ns and functional

networks. However, these correspondences should be confirmed

by comparing the activities of RS-independent-Ns with cognitive

test scores in the future study.

CONCLUSION

We selected eLORETA-ICA which has many advantages over

the other network visualization methods and overall findings

indicate that eLORETA-ICA with EEG data can identify five

RS-independent-Ns with their intrinsic oscillatory activities, as

well as functional correlations within these networks, while

conventional methods used to examine RSNs such as fMRI

with functional tasks or fMRI with ICA have not been shown

to do so. Moreover, once RS-independent-Ns are determined

by eLORETA-ICA, this method can accurately identify activity

of each RS-independent-N from EEG data as it removes EEG

artifacts by separating artifact components. Therefore, eLORETA-

ICA with EEG data may represent a useful and powerful tool

to assess activities of RS-independent-Ns, which correspond to

specific functions, in patients with neuropsychiatric disease such

as dementia and depression.
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