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Abstract

Building an efficient, green, and multifunctional smart grid cyber-physical system (CPS)

while maintaining high reliability and security is an extremely challenging task, particularly

in the ever-evolving cyber threat landscape. This challenge is also compounded by the

increasing pervasiveness of information and communications technologies across the power

infrastructure, as well as the growing availability of advanced hacking tools in the hacker

community. One of the most critical security threats in smart grid CPSs lies in the high-

profile false data injection (FDI) attacks, where attackers attempt to inject either fabricated

measurement data to mislead power grid state estimation & bad data detection or tampered

command data to misguide power management & control. Accordingly, FDI attacks can be

subdivided into false measurement data injection (FmDI) attacks and false command data

injection (FcDI) attacks, respectively.

Detection techniques for FDI attacks have been a significant research focus for smart

grid CPSs to withstand these security threats and further protect the power infrastructure.

However, conventional state estimation based bad data detection approaches have been

proved vulnerable to the evolving FDI attacks. To meet this gap, this thesis introduces four

creative research works to analyze and detect FDI attacks in smart grid CPSs.

First, a stochastic Petri net based analytical model is developed to evaluate and analyze

the system reliability of smart grid CPSs, specifically against topology attacks with system

countermeasures (i.e., intrusion detection systems and malfunction recovery techniques).

Topology attacks are evolved from FmDI attacks, where attackers initialize FmDI attacks by



xviii Abstract

tempering with both measurement data and grid topology information. This analytical model

is featured by bolstering both transient and steady-state analysis of system reliability.

Second, a distributed host-based collaborative detection scheme is proposed to detect

FmDI attacks in smart grid CPSs. It is considered in this work that phasor measurement

units (PMUs), deployed to measure the operating status of power grids, can be compromised

by FmDI attackers. Trusted host monitors (HMs) are assigned to each PMU to monitor

and assess PMUs’ behaviors. Neighboring HMs make use of the majority voting algorithm

based on a set of predefined normal behavior rules to identify the existence of abnormal

measurement data collected by PMUs. In addition, an innovative reputation system with an

adaptive reputation updating algorithm is designed to evaluate the overall operating status of

PMUs, by which FmDI attacks as well as the attackers can be distinctly observed.

Third, a Dirichlet-based detection scheme for FcDI attacks in hierarchical smart grid

CPSs are proposed. In the future hierarchical paradigm of a smart grid CPS, it is considered

that the decentralized local agents (LAs) responsible for local management and control can be

compromised by FcDI attackers. By issuing fake or biased commands, the attackers anticipate

to manipulate the regional electricity prices with the purpose of illicit financial gains. The

proposed scheme builds a Dirichlet-based probabilistic model to assess the reputation levels

of LAs. This probabilistic model, used in conjunction with a designed adaptive reputation

incentive mechanism, enables quick and efficient detection of FcDI attacks as well as the

attackers.

Last, we systematically explore the feasibility and limitations of detecting FmDI attacks

in smart grid CPSs using distributed flexible AC transmission system (D-FACTS) devices.

Recent studies have investigated the possibilities of proactively detecting FmDI attacks on

smart grid CPSs by using D-FACTS devices. We term this approach as proactive false

data detection (PFDD). In this work, the feasibility of using PFDD to detect FmDI attacks

are investigated by considering single-bus, uncoordinated multiple-bus, and coordinated

multiple-bus FmDI attacks, respectively. It is proved that PFDD can detect all these three
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types of FmDI attacks targeted on buses or super-buses with degrees larger than 1, as long as

the deployment of D-FACTS devices covers branches at least containing a spanning tree of

the grid graph. The minimum efforts required for activating D-FACTS devices to detect each

type of FmDI attacks are respectively evaluated. In addition, the limitations of this approach

are also discussed, and it is strictly proved that PFDD is not able to detect FmDI attacks

targeted on buses or super-buses with degrees equalling 1.
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Chapter 1

Introduction

1.1 Background

With energy being a premium resource for economy, society, and national security, ensuring

an accurate, reliable, and efficient power generation, transmission, distribution, and con-

sumption is of prime concern in the 21st century [1]. Unfortunately, the massive blackout in

northeastern North America in 2003 uncovered the ease with which the electric grids could

be taken down. It is, indeed, not the end of the story for the security and reliability breaches

of existing electric grids. To build a fully automated, resilient, and self-healing smart grid,

a series of advanced technologies including information and communications technologies

(ICTs), automation, distributed control, wide area monitoring and control, smart metering,

to name a few, are rapidly incorporated into the existing electric grid over the recent years

[2, 3]. Due to lack of strong and diligent security measures in place, however, these newly

introduced technologies - exposing a great number of access points to the public - have been

opening up possibilities for malignant penetrations [4].



2 Introduction

1.1.1 Cyber Security Events Relating to Electric Grids

Cyber attacks on electric grids are no longer a theoretical concern. The summer of 2010

stroke the world in an unprecedent way by discovering the world’s first digital weapon -

Stuxnet [5]. Unlike any other computer virus or worm that came before, Stuxnet escaped the

digital realm to wreak physical destructions on the equipment that computers controlled. By

infiltrating the Windows computers at the Natanz nuclear plant in Iran, Stuxnet destroyed

an estimate number of 984 uranium enriching centrifuges in total [6]. The impacts of this

event go beyond the immense damages caused to Iran. A great deal of ideas of copying and

re-purposing Stuxnet from the hacking community as well as, correspondingly, research

studies focusing on detection and mitigation of such cyber attacks from the academia and

industry have quickly emerged thereafter.

Started by Stuxnet, a huge wave of cyber security events on electric grids have been

observed since then ( see Fig. 1.1 a timeline of these events). It is reported in 2011 that a cyber

campaign involving a Trojan Horse based malware, also notorious as BlackEnergy, compro-

mised the industrial control systems (ICSs) of numerous national critical infrastructures in

the U.S. [7]. In August 2012, a self-replicating computer virus named Shamoon infected

three quarters of Windows-based corporate PCs at Saudi Aramco, one of the world’s largest

oil companies [8]. A great amount of invaluable data including documents, spreadsheets,

emails, files was eventually erased and replaced with an image of a burning American flag.

An analogous attack on Saudi Aramco was initiated in August 2017, where a malware called

TRITON created operational disruptions towards critical infrastructures in Saudi Arabia [9].

In February 2013, JEA, the seventh-largest community-owned electric utility in the U.S.

was hit by a distributed denial-of-service (DDoS) attack, which led to a crash of online and

telephone payment systems for a few days [10].

The year 2015 has witnessed the world’s most sophisticated and most successful cyber

security event in electric grids to date [11]. It was a Saturday night just two days before

Christmas in 2015, an orchestrated cyber attack simultaneously hijacked several power
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Fig. 1.1 A timeline of recently reported significant cyber security events on electric grids

distribution centers at the Ivano-Frankivsk region of Western Ukraine. Approximately

30 substations were eventually taken offline in this assault, leaving more than 230,000

Ukrainians in the dark for a period of one to six hours. This assault was launched in a

well-choreographed dance, where well-trained hackers synchronously switched off a number

of substations, disabled IT infrastructures, destroyed files stored on the servers, as well as

initiated a telephone denial-of-service (DoS) to deny customers’ reports of power blackouts.

It was exactly the "brilliant" plan for launching such a real cyberattack that shaped the

research landscape of both the power and security community.

1.1.2 Recent Actions and Investments in Security and Reliability of

Electric Grids

The frequent and horrible cyber attacks in recent years have emerged as a driving factor

to promote the advancements of existing electric grids. It becomes a common sense for

nation governors that a secure and reliable power delivery network is of utmost importance
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Fig. 1.2 A summary of recent significant actions and investments in security and reliability

of electric grids

to support a functioning society. Mindful of this, they have been making action plans and

directing investments to reinforce the security and reliability of their electric grids.

Figure 1.2 summaries several recent significant actions and investments in security and

reliability of electric grids in the U.S., Canada, China, and the U.K. [12–16]. As we see, each

nation has announced enormous investments as well as necessary joint strategies to improve

the electric grids’ security and reliability.

1.2 Brief Introduction of A Smart Grid CPS

With such a research background in mind, in this section, we brief the concepts and archi-

tectures of cyber-physical systems (CPSs), the smart grid CPS, the supervisory control and

data acquisition (SCADA) system, as well as the wider area measurement system (WAMS),

respectively.
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1.2.1 Cyber-Physical System

A CPS is an integrated, hybrid networks of cyber and engineered physical elements. It

is co-designed and co-engineered by experts from various domains, including control &

automation, computer science, communications, mechanics, etc., to create an adaptive,

flexible, situation aware, and predictive hybrid system.
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Fig. 1.3 A common layered architecture of CPSs

A common layered architecture of CPSs are presented in Fig. 1.3. In this reference

architecture, the bottom layer is the large-scale physical infrastructure. Widespread sensors

and actuators are deployed over the physical infrastructure to measure its operating status and

execute given control commands towards it. Data collected by sensors will be reported to the

control systems, who also issue the control commands to the actuators. On top of the control

systems, data analytic techniques will be employed to analyze these reported data to further

support various applications such as system modelling, simulation, and optimization. Owners

of the CPSs will make use of these invaluable data as well as corresponding applications for

business purposes and user goals. Note that the networking & communication technologies

running throughout all the layers making its interoperability possible.
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1.2.2 Smart Grid CPS

A smart grid CPS, who’s physical system is the electric grid, incorporates advanced digital

technologies, automation, computer and control to perform a duplex two way communications

between the customers and utilities. Also, a smart grid CPS can be regarded as an Internet of

things - power generators, distributors, meters, utilities, and customers. It is expected that by

employing two way communications, a smart grid CPS can not only enable monitoring and

controlling of power delivery in a (near) real-time mode, but also allow customer interactions

of electricity usage. The promising benefits of the smart grid CPS include [17]

• improved power reliability and quality

• increased resilience against system faults or natural disasters

• auto-scheduling of power delivery

• predictive maintenance, self-healing, and fast remote repair

• increased capacity and energy efficiency, and reduced carbon emissions

• expanded integration of renewable energy sources, e.g., wind, solar, hydro

• load shedding and lowered electricity tariff

• enhanced customers knowledge of energy usage

• real-time pricing

• remote billing and reduced of manpower costs

• support for smart cities and intelligent transportation systems

Figure 1.4 shows the architecture of a smart grid CPS, with which the above-mentioned

promising benefits can be achieved. A smart grid CPS mainly consists of power generation,

power transmission, power distribution, power consumption, and control systems.
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Power Generation Power Transmission Power Distribution Power Consumption

Solar

Wind

Coal, Gas
Hydro

Residential

Business

Industrial

Control Center

Information Flow

Electricity Flow

Fig. 1.4 The architecture of a smart grid CPS

• Power generation: Energy resources can be classified into renewable (e.g., wind, solar,

hydro, biomass, geothermal) and non-renewable resources (e.g., coal, gas, nuclear).

Power generation can be classified into centralized generation and distributed genera-

tion.

• Power transmission: Electricity is transmitted from generating points to substations

through power transmission networks, usually at high voltages - 115kV and above - to

reduce power loss over long-distance transmission.

• Power distribution: Electricity is delivered from the substations to the customer

premises through power distribution networks. Transformers are employed to lower

the high voltage from transmission networks to medium voltage ranging from 2kV to

35kV, and lower it again to the utilization voltage when approaching to the customer

premises.

• Power consumption: Electricity consumers include residential houses, business bodies

(e.g., schools, hospitals, commercial buildings), and industrial plants. Differential

electricity tariffs are usually provided for different purposes of energy usages.
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• Control systems: In existing electric grids, there is usually a centralized control center,

while there will be more distributed control centers in future smart grid CPSs. The

control centers are responsible for power monitoring, management and control to

ensure a reliable, secure, and efficient power generation, transmission, distribution,

and consumption.

1.2.3 The Architecture of SCADA

SCADA is an industrial computer-based comtrol system employed to gather and analyze

the operating status data of the industrial equipment, and to further manage and control the

industrial process. It is popular in diverse fields including oil and gas, electric grids, water

and waste, agriculture and irrigation, transportation, etc. The architecture of SCADA in

electric grids is presented in Fig. 1.5.

SCADA Server

HMI

SONET/SDH

RTU

RTU

RTU

PLC

PLC

PLC

Fig. 1.5 The architecture of SCADA in electric grids
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It consists of a SCADA server, a human machine interface (HMI), multiple numbers of

remote terminal units (RTUs), programmable logic controllers (PLCs), and communication

interfaces. Specifically,

• SCADA server: Serving as a centralized master, the SCADA server monitors and

controls the whole system by analyzing the telemetry data reported from the RTUs and

generate corresponding feedback orders. These orders will be issued to either RTUs or

PLCs.

• HMI: Located in the control room, the HMI presents visualized operating status,

scheduled maintenance procedures, logistic information, and diagnostic information of

the whole system. In addition, it also provides the interactive interface for a system

operator to enable human control and management.

• RTUs: Also termed as remote telemetry units, RTUs are located at the remote substa-

tion employed to gather telemetry data from field devices. RTUs also process simple

orders from the SCADA server, e.g., orders for controlling the connected physical

objects.

• PLCs: As the last-mile controllers, PLCs process the orders from the SCADA server

to trigger a set of actions such as turning on/off a line breaker, increasing power

generation. PLCs are microcomputer based devices that have advanced data handling,

storage, and communication capabilities.

• Communication interfaces: A number of communication interfaces constitute the

communication infrastructure across the large-scale SCADA system to deliver message

among all entities in a SCADA system. Radio frequency (RF) and directed wired

connections are usually used for local communications in a SCADA system, while

synchronous optical networking (SONET) and synchronous digital hierarchy (SDH)

are frequently used for backbone communications.
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1.2.4 The Architecture of WAMS

WAMS, also called WAMCS (wide area measurement and control system) by some re-

searchers, now offers a supplement to existing SCADA system. By incorporating new ICTs,

WAMS is able to provide a highly accurate, dynamic, and real-timely view of electric grids.

WAMS is also featured by phasor synchronization and time stamping of the system operating

status data. The architecture of a WAMS is provided in Fig. 1.6. As is shown, a WAMS is

comprised of a control center (CC), a set of PMUs, a set of phasor data concentrators (PDCs),

global positioning system (GPS), and communication infrastructure - SONET/SDH based

backbone and wired local communication networks [18]. Specifically,

CC

PMUs-PDC 

Group

PDC

PMUPMU

PMU

SONET/SDH

PMUs-PDC 

Group

PMU

PMU

PMU

Fig. 1.6 The architecture of a WAMS

• PMUs: As major measurement devices, PMUs collect synchronized and time-stamped

data of power system operating status such as voltage magnitude and phase, current

magnitude and phase, power frequency, and change of frequency. These real-time data

are collected at a usual frequency of 50/60Hz and then reported to the regional PDC

via local area networks (LANs). The state variables that a PMU can measure are listed

in Table 1.1.
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Table 1.1 The variables that PMUs can measure

State variable Description

f Signal frequency

∆f Signal frequency variation rate

LMW , LMvar Load MW and load Mvar

P/δP , Q/δQ Active and reactive power phasor

VA/ΘVA
, VB/ΘVB

, VC/ΘVC
Phase A, phase B, and phase C voltage phasor

IA/ΘIA
, IB/ΘIB

, IC/ΘIC
Phase A, phase B, and phase C current phasor

V1/ΘV1
, V2/ΘV2

, V0/ΘV0
Positive-, negative-, and zero-sequence voltage phasor

I1/ΘI1
, I2/ΘI2

, I0/ΘI0
Positive-, negative-, and zero-sequence current phasor

On/off State of breakers

• PDCs: The reported measurement data from PMUs are aggregated by regional PDCs

and then sent to CC via backbone communication networks.

• CC: As a centralized system controller, CC is in charge of management and control of

the whole electric grids by analyzing the real-time measurement data, diagnostic data,

scheduled information, etc.

• GPS: The highly precise synchronous global positioning signals provided by GPS

enable the synchronization of measurement data, which also makes it possible for CC

to conduct analysis of synchronous data across the whole electric grid.

• Communication infrastructure: Serving as courier among all the entities in smart grid

CPS, the communication infrastructure plays a significant in delivering the measure-

ment data, commands, and any type of information across the electric grid.
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1.3 Security Requirements, Challenges, and Research Mo-

tivations

In this section, we brief the security requirements that must be fulfilled to build a secure

smart grid CPS, the security challenges that a smart grid CPS is facing with, and the research

motivations that stimulates our research studies.

1.3.1 Security Requirements

From a cyber security’s perspective, the security requirements can be classified into the

following three categories [19]:

• Integrity: Protecting against the unauthorized modification or destruction of infor-

mation, e.g., measurement data from meters or command data from control systems.

Modified or destructed information opens the door for mishandling of information,

leading to mismanagement of power or malfunction of power applications.

• Confidentiality: Protecting privacy and proprietary information, e.g., customer energy

consumption data collected by smart meters, by authorizing restrictions on information

access, usage, and disclosure.

• Availability: Ensuring timely and reliable access to information and services, e.g.,

command data from control systems and real-time electricity price to customers.

Compromised availability may cause delayed power delivery or increased electricity

budgets.

• Authentication: Protecting against invalid users joining proprietary computer and

communication systems, e.g., control systems, to ensure the system users are authentic.

Unauthenticated users may deceive or mislead control systems’ decisions, or exhaust

system resources.



1.3 Security Requirements, Challenges, and Research Motivations 13

• Authorization: Ensuring access to system information and services are legitimate. It

is also referred as access control. Unauthenticated user may misuse or jeopardize the

system resources.

1.3.2 Security Challenges

The security challenges that the existing electric grids are encountering originate from three

domains, including cyber domain, physical domain, and cyber-physical domain.

Cyber Threats

Security threats coming from the cyber domain cause damages or compromise the operating

efficiency of electric grids usually by breaching the aforementioned security requirements.

Table 1.2 presents the security breach types with corresponding examples of cyber attacks.

Table 1.2 Some representatives of cyber attacks

Security breach type Example attacks

Integrity False data injections (FDIs), man-in-the-middle

Confidentiality Eavesdropping, theft

Availability DoS, DDoS

Authentication Malware, Trojan

Authorization Malware, Trojan, spoofing

Physical Threats

The physical threats on electric grids include

• cutting fibre optic cables to shut down telecommunication lines

• destroying field equipment, e.g., transformers, cameras, sensors

• destructing documents, installations, and materials
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• theft of proprietary information, or equipment

• on-site tempering of electronic devices

• field measurement and investigation

Cyber-Physical Threats

Recent years has been experiencing an increasing trend of cyber-physical threats on electric

grids. Cyber-physical threats are usually orchestrated combinations of single cyber threats

and physical threats, which are more complicated and threatening than either single threats.

For example, cyber-physical attacks can physically compromise and/or destroy some sensors,

followed by maliciously reporting falsified sensing data on their behalf.

1.3.3 Research Motivations

The rapid and widespread incorporation of ICTs into the smart grid CPS, as mentioned in

the Background section, has been introducing new vulnerabilities and threats even as we

are taking actions to prevent, protect against, or minimize the impacts of known threats and

hazards. At the same time, the growing dependence of the public, business, government,

schools, hospitals, to name a few, on reliable and secure electricity has significantly increased

the overall sensitivity to the impacts of any type of power instability. This, including voltage

disturbances, momentary power outages, long-term service disruptions, and widespread

blackouts with cascading effects, may, regardless of the causes, yield property damages,

public health and safety dangers, and financial and life losses. Enhancing the security and

resilience of the electric grid against malignant activities is critical to a functioning society.

The challenges of ensuring cybersecurity in a smart grid CPS are diverse in nature, due

to the diversity of the components and the contexts where smart grids are deployed. In this

thesis, we will mainly address the challenges of protecting data integrity to hep build a secure

smart grid CPS. Specifically, we will focus on analyzing the system reliability of a smart
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grid CPS under data integrity attacks as well as detection techniques of these data integrity

attacks.

1.4 Research Contributions

The research focuses in this thesis lie in main topics relating to FDI attacks in smart grid

CPSs including modelling and impacts evaluation of FDI attacks, novel detection approaches

for FDI attacks - both FmDI and FcDI attacks. Specifically, our main research contributions

are summarized as follows:

• In Chapter 3, a stochastic Petri net based analytical model is developed to evaluate and

analyze the system reliability of smart grid CPSs, specifically against topology attacks

under system countermeasures (i.e., intrusion detection systems and malfunction

recovery techniques). Topology attacks are evolved from FDI attacks, where attackers

initialize FDI attacks by tempering with both measurement data and grid topology

information. This analytical model is featured by bolstering both transient and steady-

state analyses of system reliability.

• In Chapter 4, a distributed host-based collaborative detection scheme is proposed to

detect FmDI attacks in smart grid CPSs. It is considered in this work that the phasor

measurement units (PMUs), deployed to measure the operating states of power grids,

can be compromised by FmDI attackers, and the trusted host monitors (HMs) assigned

to each PMU are employed to monitor and assess PMUs’ behaviors. Neighboring HMs

make use of the majority voting algorithm based on a set of predefined normal behavior

rules to identify the existence of abnormal measurement data collected by PMUs.

In addition, an innovative reputation system with an adaptive reputation updating

algorithm is also designed to evaluate the overall operating status of PMUs, by which

FmDI attacks as well as the attackers can be distinctly observed.



16 Introduction

• In Chapter 5, a Dirichlet-based detection scheme for FcDI attacks in hierarchical

smart grid CPSs are proposed. In the future hierarchical paradigm of a smart grid

CPS, it is considered that the decentralized local agents (LAs) responsible for local

management and control can be compromised by FcDI attackers. By issuing fake or

biased commands, the attackers anticipate to manipulate the regional electricity prices

with the purpose of illicit financial gains. The proposed scheme builds a Dirichlet-

based probabilistic model to assess the reputation levels of LAs. This probabilistic

model, used in conjunction with a designed adaptive reputation incentive mechanism,

enables quick and efficient detection of FcDI attacks as well as the attackers.

• In Chapter 6, we systematically explore the feasibility and limitations of detecting

FmDI attacks in smart grid CPSs using distributed flexible AC transmission system

(D-FACTS) devices. Recent studies have investigated the possibilities of proactively

detecting FmDI attacks on smart grid CPSs by using D-FACTS devices. We term

this approach as proactive false data detection (PFDD). In this work, the feasibility

of using PFDD to detect FmDI attacks are investigated by considering single-bus,

uncoordinated multiple-bus, and coordinated multiple-bus FmDI attacks, respectively.

It is proved that PFDD can detect all these three types of FmDI attacks targeted on

buses or super-buses with degrees larger than 1, as long as the deployment of D-FACTS

devices covers branches at least containing a spanning tree of the grid graph. The

minimum efforts required for activating D-FACTS devices to detect each type of FmDI

attacks are respectively evaluated. In addition, the limitations of this approach are

also discussed, and it is strictly proved that PFDD is not able to detect FmDI attacks

targeted on buses or super-buses with degrees equalling 1.
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1.5 Thesis Outline

The organization of the remainder of this thesis is as follows. Chapter 2 introduces some

fundamentals relating to FDI attacks in smart grid CPSs, and provides the state-of-the-art

literature reviews. Chapter 3 models the attack strategy of topology attacks using a stochastic

Petri net approach and analyzes the system reliability under such attacks. Chapter 4 presents a

novel distributed host-based collaborative detection scheme for FmDI attacks. In Chapter 5, a

Dirichlet-based detector for FcDI attacks as well as the compromised insiders are introduced,

followed by the discussion of feasibility and limitations of detecting FmDI attacks using

D-FACTS devices in Chapter 6. Chapter 7 concludes the thesis and briefs some promising

research directions for future work.





Chapter 2

Fundamentals and Related Literature

In this chapter, we will introduce some fundamental concepts serving as the building blocks

of our research work, which includes the state estimation, bad data detection, as well as

FmDI attacks against state estimation. In addition, the state-of-the-art literature reviews

on existing intrusion detection systems (IDSs), FDI attacks detection, and insider threats

detection will also be provided.

2.1 State Estimation and Bad Data Detection

In this section, we introduce the fundamental concepts of state estimation & bad data

detection, one of the most important techniques in electric grids.

2.1.1 State Estimation Formulation

In a power system, state estimation is the heart of control systems to support real-time

analysis, contingency analysis, and power management and control. Specifically, state

estimation is used to provide estimates of the internal system states given a collection of

measurement data. The basic relationship, with an AC power flow model, between the
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measurement data and system states are given by [20]

z = h(x) + η, (2.1)

where z ∈ Rm×1 is the measurement vector containing information of power generations,

power loads, and power flows, x ∈ Rn×1 is the system state vector including bus voltage

phase angles, and η ∈ Rm×1 is the measurement noise vector with zero mean and covariance

W ∈ Rm×m, a diagonal matrix. Note that m and n are the numbers of measurements and

system states, respectively, and m > n indicates that redundant measurements introduced.

h(x) is a non-linear function of x, which relates the system states to the ideal measurements.

Since state estimation is usually applied over the high-voltage power transmission net-

works, it is reasonable to approximate AC power flow model to a DC one [21]. In this way,

the measurement data and system states are related by

z = Hx + η, (2.2)

where H ∈ Rm×n is the measurement Jacobian matrix, implying the system connection

and configuration information. Our research studies in later chapters are all based on DC

state estimation. Although AC power flow model is more accurate than DC model, it is

computational expensive and too complex to be used in analysis. In contrast, DC power flow

model is much faster, more robust, and techno-economic than AC, and it has been widely

accepted as a useful simplification of AC model [22–24, 21, 25, 26].

2.1.2 Estimated System States and Measurements

With the relationship shown in Eq. (2.2), the estimated system state vector x̂ using the least

squares is given by

x̂ = arg min
x

(z−Hx)⊺W−1(z−Hx). (2.3)
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The linear DC state estimation has a closed-form solution obtained through a non-iterative

procedure by solving Eq. (2.3), which is given by

x̂ = (H⊺W−1H)−1H⊺W−1z , Λz, (2.4)

where

Λ , (H⊺W−1H)−1H⊺W−1. (2.5)

Then the estimated measurement data ẑ is given by

ẑ = Hx̂ = HΛz. (2.6)

2.1.3 Bad Data Detection

The existing bad data detection approaches usually use the hypothesis testing, by observing

the largest normalized residual (LNR) to detect the bad measurement data. The normal-

ized measurement residual r ∈ Rm×1 is calculated based on the difference between the

measurement data z and the estimated measurement data ẑ, i.e.,

r = z− ẑ = z−HΛz = (I−HΛ)z, (2.7)

where I ∈ Rm×m is the identity matrix. The hypothesis testing is expressed as







Null hypothesis H0 : ∥r∥ > τ

Alternative hypothesis H1 : ∥r∥ <= τ,

(2.8)

where r =
√

W−1r is the normalized measurement residual vector [27]. This testing

is to compare the Frobenius norm of the normalized measurement residual ∥r∥ with a

predefined threshold τ . Specifically, if ∥r∥ > τ , the null hypothesis is accepted indicating

the existence of anomalous residuals; hence, bad measurement data presents in z. Otherwise
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(i.e. ∥r∥ <= τ ), the null hypothesis is rejected, which implies no bad measurement data.

The value of τ can be determined by a chi-squared test with a significance level of α, i.e.,

τ =
√

X 2
m−n,1−α, because ∥r∥2 = ∥

√
W−1r∥2 = ∥

√
W−1(z−Hx̂)∥2 follows a chi-square

distribution X 2
m−n , where m− n is the degree of freedom [27].

2.2 FmDI Attacks Against State Estimation

In 2011, Liu et al. demonstrated that a set of smart attackers can initiate FmDI attacks in

electric grids against the existing state estimation & bad data detection technique, as long

as they can compromise some meter devices and have some knowledge of electric grid

connections and configurations [28]. Specifically, to construct an FmDI attack, the attacker

needs to design an attack vector a ∈ Rm×1, and fabricate a malicious measurement vector

za = z + a. If there exists a vector c ∈ Rn×1 that can satisfy a = Hc, a successful FmDI

is constructed and the original estimated system state vector x̂ is injected with an offset by

x̂a = x̂ + c. This is because that with such false data being injected, the estimated system

states vector x̂a with reference to Eq. (2.4) is given by

x̂a = Λza = Λ(z + a) = x + ΛHc = x + c, (2.9)

where ΛH = I. The physical meaning of c is the injected offset on the system states (i.e.,

voltage phase angles in DC power flow model). Then, the Frobenius norm of the normalized

measurement residual with false data injected ∥ra∥ is given by [28]

∥ra∥ = ∥
√

W−1(za −Hx̂a)∥

= ∥
√

W−1[z + a −H(x̂ + c)]∥

= ∥
√

W−1[z−Hx̂ + (a −Hc)]∥

= ∥
√

W−1(z−Hx̂)∥ ≤ τ.

(2.10)
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As we see, in this case, no anomaly can be observed by the existing bad data detection

approach, which indicates a success of an FmDI attack.

Note that to construct successful FmDI attacks, the attackers must have the valuable

knowledge of the targeted power grid, including branch connection information, system

configuration data, as well as the current system operating status. Various channels can be

exploited by FmDI attackers to illegally obtain these information, including

• Cyber channels: eavesdropping, intrusion into the control center, insider theft or

accidental leaks, and malicious disclosure by disgruntled employees, etc.

• Physical channels: field measurement/investigation acts with specialized tools in areas

with insufficient protection, and physical tampering with the hardware components of

field devices.

• Cyber & physical channels: coordinated cyber intrusions and physical measure-

ment/investigation acts.

Attackers may have various attack capabilities and, therefore, various knowledge levels

of the valuable information of power grids. For example, some of them may have strong

attack capabilities and remotely compromise the IED devices of interest through cyber

intrusions in a short time, while some others may need a long time to gradually accumulate

that information by persistent eavesdropping.

2.3 State-of-the-Art Literature

In this section, we will review the state-of-the-art literature in terms of IDSs, FDI attacks

detection techniques, as well as insider threat detection approaches.
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2.3.1 A Taxonomy of IDSs

IDSs are one of the primary tools for the protection of computer networks, and they identify

and respond to intrusion activities - entities attempting to violate security policies in place

- by monitoring and analyzing system behaviors. A typical IDS is usually composed of

sensors, analysis engine, and an alerting system. Sensors, deployed at different network

places or hosts, are used for collecting network traffic data or host behaviors. The analysis

engine is responsible for data analysis with given security models, policies, or signatures.

The alerting system reports to the system administrator(s) provided that an intrusion activity

is identified by the analysis engine.

Generally, IDSs can be classified as host-based and network-based in terms of the

audit sources; signature-based, anomaly-based, specification-based in terms of the detection

methods; and passive-based and active-based in terms of the reactions [29]. A taxonomy of

IDSs are provided in Fig 2.1. Specifically,

• Host-based: this type of IDSs are deployed at specific hosts, e.g., sensors, substations,

PCs, routers, to monitor the behaviors of such hosts malicious activities.

• Network-based: this type of IDSs usually connect two or more network segments to

monitor the traffic over communication links in order to detect malicious intrusions.

Audit Source Method

IDS

Reaction

Host SignatureNetwork Anomaly ActivePassiveSpecification

Fig. 2.1 A taxonomy of IDSs
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Next, when it comes to detection methods,

• Signature-based: this type of IDSs detect attacks when the system or network behav-

iors match an attack signature/pattern stored in a database. Signature-based IDSs are

effective in detecting known-signature/pattern attacks, because a black list of known

threats are stored in the database for comparison. However, this approach works

ineffectively in detecting new threats or variants of known threats.

• Anomaly-based: this types of IDSs detect attacks when the monitored behaviors

deviate from normal behaviors. Anomaly-based IDSs are effectively in detecting

new threats, because a white list of system or network behaviors are stored in the

database for comparison. However, this approach usually suffers from high false

positives, because any difference from the given normal behaviors are considered as

being anomalous.

• Specification-based: this type of IDSs detect attacks when a deviation from pre-

defined rule specifications are observed. Unlike anomaly-based approach, in specification-

based approach, specifications are defined by domain experts manually according to a

set of laws, thresholds, balance requirements, etc. Specification-based approach usually

has lower false positives and false negatives, because manually defined specifications

can avoid known cases of false positives and false negatives. However, this approach

needs to define rule specifications manually to adapt different environments, which

may be time-consuming and error-prone to a certain extent.

After review of state-of-the-art literature, we summarize the recent studies relating to

IDSs in terms of the detection method into Table 2.1. Specifically, Bao et al. in 2016 proposed

a specification-based IDS to detect insider threats in smart grid CPS [21]. Thanigaivelan

et al. in 2016 presented a distributed anomaly-based IDS for detecting routing attacks

for Internet-of-Things (IoT) [30]. Pan et al. in 2015 developed a hybrid of signature-

and specification-based IDS against multiple conventional cyber attacks as well as system
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Table 2.1 A summary of example IDSs in recent years

Reference Security threat Detection method

Bao et al. [21] Insider threat Specification-based

Thanigaivelan et al. [30] Routing attack Anomaly-based

Pan et al. [31] Multiple conventional attacks

and system disturbance

Hybrid signature- and

specification-based

Faisal et al. [32] Multiple conventional attacks Anomaly-based

Lee et al. [33] DoS Anomaly-based

Oh et al. [34] Multiple conventional attacks Signature-based

disturbances [31]. Faisal et al. in 2015 proposed an anomaly-based IDS against multiple

conventional attacks for advanced metering architecture in smart grid [32]. Lee et al. in 2014

developed an anomaly-based IDS against DoS attacks in 6LoWPAN (IPv6 over Low-Power

Wireless Personal Area Networks) [33]. Oh et al. in 2014 proposed a signature-based IDS

against multiple conventional attacks for the IoT [34].

2.3.2 FDI Attacks Detection

In the following two subsections, we will particularly introduce the state-of-the-art literature

relating to FDI attacks detection and insider threat detection - the major focuses in this

thesis. The FDI (false data injection) attack is also referred to as or similar to data deception

attack, data integrity attack in the existing literature. FDI attacks are crucial security threats

to smart grid CPSs, where the attackers attempt to inject false measurement data through

compromised meter devices to blind and mislead the control centers. The success of an FDI

attack may cause system disturbances, power overloading, power outages, and even system

disruptions.

Conventional bad data detection approaches are highly dependent on the power system

state estimation. Unfortunately, Liu et al. in 2011 demonstrated that new security threats can

circumvent the traditional state estimation and bad data detection approach, as long as the
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attacker have the knowledge of power system connection and configuration information and

a set of compromised meter devices [28]. As a result, bad data detection approaches based

on state estimation may no longer be efficient or effective anymore. This type of FDI attacks

is also referred to as false measurement data injection (FmDI) attacks. In terms of the data

content, another type of FDI attacks is false command data injection (FcDI) attacks. Since

FcDI attacks are usually initiated by compromised insiders, we will further review it in the

next subsection. In this subsection, we mainly introduce the recent studies focusing on FmDI

attacks detection. Yang et al. in 2014 studied the optimal FmDI attack strategy to cause

maximum damage by identifying the optimal meter set, and developed the spatial-based and

temporal-based schemes to detect FmDI attacks [35]. Huang et al. in 2013 reviewed the

FmDI attacks as well as the defense solutions in smart grid [36]. Esmalifalak et al. in 2012

investigated the effect of stealthy FmDI attacks on network congestion in market based power

system [37]. Also, Xie et al. in 2010 introduced the FmDI attacks in deregulated electricity

markets and how such attacks can lead to changes of the locational marginal price and obtain

illicit profits [38]. Huang et al. in 2011 proposed an adaptive CUSUM algorithm to defend

FmDI attacks on smart grid network [39]. Esmalifalak et al. in 2011 used independent

component analysis to detect stealth FmDI attacks where the attackers are without prior

knowledge of the power grid topology [40]. In 2015, Li et al. proposed a quickest sequential

detector based on the generalized likelihood ratio to detect FmDI attacks with various attack

strategies [41]. Also in 2015, Chaojun et al. introduced a new detection method against

FmDI attacks in smart grid by tracking the dynamics, indicated by the Kullback-Leibler

distance, of measurement variations [42].

2.3.3 Insider Threats Detection

Cyber security is vital to the success of a smart grid CPS. The major security threats are

coming from the within, as opposed to outside forces. Insider threat detection are significant

part of cyber threat mitigation techniques. Insider threats are more challenging compared to
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outsider threats, because insiders are usually empowered with legal access and privileges.

Each insider has a system role associated with his/her account, such as system administrator,

advanced user, normal user. Various levels of access and privileges are provided for different

roles. The motivations of insider threats include

• compromised insiders

• misoperations

• emotional-driven (e.g., anger, stress, hostility)

• profit-driven

Motivated insiders either intentionally or unintentionally may cause damages to the system,

delay or compromise the services, or stealing or leaking intellectual information. Particularly,

FcDI attack is a type of specific insider threats, where, e.g., in a smart grid CPS, the attackers

attempts to issue fake commands to the system actuators such as generators, breakers, substa-

tions in purpose of causing power outages, overloading, system disturbances, or undesired

changes of electricity prices. A myriad of studies focusing on insider threat detection have

been observed over the years. Chen et al. in 2012 introduced an unsupervised learning

based community anomaly detection system against anomalous insiders in collaborative

information systems [43]. Ambre and Shekokar in 2015 proposed a probabilistic approach to

detect insider threats by using log analysis and event correlation [44]. Legg et al. described

an automated insider threat detection system by using user tree-structure profiling approach

[45]. In 2012, Brdiczka et al. proposed a proactive insider threat detection system based on

graph learning and psychological context approach [46]. In 2015, Mayhew et al. designed

an enhanced behavior-based access control technique by integrating machine learning tech-

niques against insider threat detection in big data analytics [47]. Ring et al. proposed a new

toolset for anomaly-based IDS, particularly for insider threat detection [48].



Chapter 3

SPNTA: Reliability Analysis Under

Topology Attacks: A Stochastic Petri Net

Approach

Building an efficient, smart, and multifunctional power grid while maintaining high reliability

and security is an extremely challenging task, particularly in the ever-evolving cyber threat

landscape. The challenge is also compounded by the increasing complexity of power grids in

both cyber and physical domains. In this chapter, we develop a stochastic Petri net based

analytical model to assess and analyze the system reliability of smart grids, specifically

against topology attacks and system countermeasures (i.e., IDSs and malfunction recovery

techniques). Topology attacks, evolving from FmDI attacks, are growing security threats to

smart grids. In our analytical model, we define and consider both conservative and aggressive

topology attacks, and two types of unreliable consequences (i.e., system disturbances and

failures). The IEEE 14-bus power system is employed as a case study to clearly explain

the model construction and parameterization process. The benefit of having this analytical

model is the capability to measure the system reliability from both transient and steady-
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state analyses. Finally, intensive simulation experiments are conducted to demonstrate the

feasibility and effectiveness of our proposed model.

3.1 Introduction

The smart grid is envisioned as a revolutionary alternative of the legacy power grid with the

primary expectation to achieve enhanced situational awareness of the enormous, and often

dispersed, physical infrastructure [49–51].

Despite those promising benefits mentioned in Section 1.2.2, there are a number of

underlying issues and challenges [51–53]. System reliability is one of the critical concerns

in smart grids, and can be affected by a wide range of grid components [1, 18]. Specifically,

demand-response strategies and peak load shedding techniques play significant roles in

balancing (due to load variability) power demands and generations to preserve grid reliability.

Other considerations important in preserving grid reliability include performance and lifetime

of the substations, transmission lines, and electrical devices. Renewable resources, such

as wind, solar, hydro, and tidal, may also impact on system reliability due to their volatile

nature. Similar to other consumer technologies, ensuring the integrity and authenticity of

measurement data reported by sensing devices (e.g., line meters, circuit breaker monitors, and

smart meters) are also vital to ensure grid reliability (i.e., in terms of system state estimation

and informing decision-making). For example, biased or fabricated measurements could

potentially result in the system control center issuing erroneous feedback commands, and

consequently, compromising the system reliability.

With the increasing trend in smart grids being the target of cyber attacks and physical

sabotages impacting on the reliability of smart grids [6, 54], it is important to ensure a resilient

and reliable system design. A successful attack or compromise can have significant impacts,

as illustrated by recent incidents (e.g., Stuxnet [6]). While there has been recent interest in

smart grid security research, existing literature generally focus on single-event attacks rather
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than coordinated attacks. This is partially because existing mathematical tools for modeling

and analyzing coordinated attacks are not well developed to handle sophisticated coordinated

attacks [55]. For example, attack trees are popular tools in existing literature used to describe

the conceptual diagram of a single attack. However, most existing attack tree models are

not suitable for modeling and capturing concurrent and coordinated attacks, especially when

there are defenses in place. In addition, there are only a few studies introducing modeling

tools that can adequately capture the dynamics between attacks and defenses, as well as

capturing the synthetic idiosyncrasies of a smart grid cyber-physical system [56]. This is the

gap we seek to address in this chapter.

Specifically, we introduce the topology attacks [57], a typical example of coordinated

attacks in the context of smart grids. We then use a stochastic Petri net (SPN) [58, 59] to

model the topology attacks and analyze the system reliability in the presence of both IDSs

and malfunction recovery techniques. Evolving from bad data injection attacks, topology

attacks have been the subject of research in recent years. For example, Liu et al. showed in

2011 that by compromising a set of metering devices, attackers are capable of constructing

an attack vector that can easily circumvent conventional bad data detector; thus, launching

a successful bad data injection attack [28]. A key limitation that may impede a successful

implementation of such attacks is the need to compromise a large set of metering devices.

This is a significantly strong assumption because ordinary attackers usually have limited

time and capabilities to construct FmDI attacks in smart grids. To avoid these limitations

associated with bad data injection attacks, topology attacks have quickly emerged recently

with reduced requirements for attacks. Ideally, by concurrently compromising only a very

small set of sensing devices such as line meters and circuit breaker monitors, the adversary

could initiate a successful topology attack. Petri nets are tools that have been widely used

for modeling various types of asynchronous and concurrent processes; therefore, they are

more suitable for modeling the coordinated topology attacks and capturing the concurrent

behaviors of both cyber and physical processes in smart grids.
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We regard the contributions of this work to be three-fold:

• First, we pioneer to develop a novel analytical model to assess and analyze the system

reliability in the presence of both topology attacks and countermeasures in smart

grids (i.e., IDSs and malfunction recovery techniques). Since topology attacks are

commonly considered as “undetectable" attacks, understanding their attack behaviors

and corresponding potential impacts contribute to the building of a more resilient and

reliable smart grid.

• Second, we define and characterize two types of topology attacks, namely conservative

topology attacks and aggressive topology attacks. Different attack behaviors and their

associated impacts on smart grids are then discussed.

• Third, we propose a scheme to determine whether the undetected compromised sensing

devices can launch a successful topology attack. Following this, different types of the

impacts, e.g., system disturbances or failures, of successful attacks are discussed. In

addition, an algorithm for construction of a maximum spanning tree (MxST) [60] in a

power system is proposed.

This is to the best of our best knowledge, the first study to use an SPN to study topology

attacks in the context of smart grids. The choice of SPN is due to its capability of incorporat-

ing features of both the cyber domain (e.g., cyber intrusion process and corresponding state

transition process) and the physical domain (e.g., physical measurement data and possible

impacts and outages).

We will introduce some preliminaries in Section 3.2, before presenting the system

model, threat model, and our design goals in Section 3.3. Our proposed analytical model

is elaborated in Section 3.4, and the performance evaluation is presented in Section 3.5.

Section 3.6 concludes the chapter.
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3.2 Preliminaries

In this section, we introduce some preliminaries relating to Petri net modeling as well as

coordinated attacks.

3.2.1 Petri Net Modeling

The Petri net modeling techniques are increasingly popular, partly due to the rapid advance-

ments of networked and distributed systems [59]. A basic Petri net can be described as

a 4-tuple (P , T ,F ,M), where P is a finite set of places (or states), T is a finite set of

transitions (or actions, behaviors), F ⊂ (P ×T )∪ (T ×P) is a finite set of input and output

arcs, andM is a finite set of markings that denote the number of tokens in each place. A

token represents an object that holds a specific condition or the occurrence of a specific event.

Tokens can be transferred from place to place when a specific condition changes or event

occurs. Since a basic Petri net can only model fairly simple processes, a number of extended

Petri nets have been proposed in the literature to support a broader range of applications [61].

The Petri net technique was first used for modeling cyber attacks by, presumably, McDer-

mott as an alternative tool to traditional attack trees [62]. It was demonstrated that Petri nets

were more effective than traditional attack trees in describing the concurrent processes. The

generalized stochastic Petri net (SPN) technique was subsequently introduced by Bause et

al. to model cyber attacks [63]. An SPN is a timed Petri net, where the firing time between

the transitions is assumed to be exponentially distributed. With the SPN, the state transition

process can be easily transformed to a reachability graph, and then a continuous time Markov

chain. In this way, it facilitates system administrators in performing steady-state analysis.

SPNs are increasingly accepted by the research community, and have been used to support

diverse applications [64–68]. Another extension is the colored Petri net, where tokens are

represented by different colors. Different from the basic Petri net, a colored Petri net can

be used to model more complex systems or processes. For example, Jensen suggested that



34SPNTA: Reliability Analysis Under Topology Attacks: A Stochastic Petri Net Approach

colored Petri nets can be used for a wide range of practical applications, such as ATM

networks, ISDN networks, and naval vessel systems [65].

Petri net modeling techniques have also been used in power systems to describe the

state transition processes of physical systems and the communication infrastructures [66–

68]. For instance, Laprie et al. used a Petri net to model the interdependence related

failures of both electric infrastructure and connected information system. In addition, Zeng

et al. analyzed the dependability of control center networks in smart grids using SPN by

considering that the servers in control center networks can suffer from Byzantine failures and,

thus compromise the network dependability. However, there has been no effective modeling

technique developed for modeling topology attacks in smart grids, especially in the presence

of system countermeasures.

3.2.2 Coordinated Attacks

In the increasingly complex and large-scale cyber-physical infrastructures, it is usually far

beyond the capability of a single attacker to disrupt such an infrastructure. It is more likely

that well-resourced attackers (e.g. state-sponsored actors and organized cyber crime groups)

will attempt to launch a coordinated attack collectively, an observation echoed in the report

from CERT [69].

In the context of smart grid CPS, coordinated attacks include false data injection attacks

[28, 52, 51], topology attacks [70, 57], DoS, and DDoS attacks [71, 72]. Since Liu demon-

strated that a set of coordinated attackers can successfully circumvent the traditional bad

data detection mechanisms in power systems [28], researchers have started studying such

attacks (e.g., see the survey of attack strategies, potential impacts on power systems, and

potential countermeasures in [52]). False data injection attackers can construct an attack vec-

tor containing injected false measurement data by compromising an ideal set of data meters.

The injected attack vector, if well designed, will easily circumvent bad data detector at the

data center without triggering an alarm. Hug et al. introduced a new analytical technique
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for vulnerability analysis of state estimation, designed to detect hidden false data injection

attacks [73]. A distributed host-based collaborative detection scheme for false data injection

attacks in smart grid cyber-physical system was also recently proposed [51].

The focus of this work is on the topology attacks that have not yet been widely investigated.

Topology attacks are generally considered evolved false data injection attacks, where meter

data and breaker status data used for determining the current system topology need to be

manipulated. Similar to false data injection attackers, topology attackers also try to blind

the bad data detector by constructing matched meter data and breaker status data. A small

number of existing studies have discussed such attacks. For example, Weimer et al. proposed

a distributed detection and isolation method for topology attacks in power networks [70].

Kim and Tong proposed a graph theory based scheme to counter topology attacks by placing

the phasor measurement units across the power gird in an optimal way [57]. Apart from the

above-mentioned few studies that focus on topology attacks, one particular relevant area that

is understudied is topology attack modeling and system reliability analysis when subject to

such attacks. Thus, in this chapter, we provide an SPN-based analytical model for smart

grids to model the attack behaviors of topology attacks and analyze the system reliability in

the presence of such attacks.

3.3 Models and Design Goals

In this section, we formalize both the system and threat models, as well as describing the

design goals.

3.3.1 System Model

In this work, we use the power system state estimation workflow as our system model (see

Fig. 3.1). The basic concepts of state estimation can be found in Section 2.1. In this section,
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we provide additional introduction of how the measurement data can be processed and fed

into the state estimator, topology processor, as well as the bad data detector.
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Fig. 3.1 System model: power system state estimation

In state estimation, the system control center collects two types of data from the sens-

ing devices throughout the grid. One type of data is the line flow and nodal injection

analog measurement data z = ¶Pi,Qi,Pij,Qij,V,θ♦ provided by line meters, where

Pi,Qi,Pij,Qij,V,θ denote real power injection, reactive power injection, real power flow,

reactive power flow, bus voltage magnitude, and bus voltage angle, respectively. Another

type of data is the circuit breaker on/off status data s = sN
i , where si ∈ ¶0, 1♦ and N is the

total number of branches in a power grid. The status data s is provided by circuit breaker

monitors [74] and then analyzed by the topology processor to determine the current grid

topology G, that is G = f(s). After that, both measurement data z and grid topology G are

fed into the state estimator for further data processing. Using an AC or DC power flow model,

the state estimator produces the estimated real system status data x = ¶V̂, θ̂♦. At the last
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step, through residual checking, the bad data detector determines whether any bad data is

collected by the sensing devices.

As mentioned in Section 2.1, the relationship between the measurement data z and real

system status data x based on the DC power flow model is given by [52]:

z = HGx + η, (3.1)

where, particularly, HG ∈ Rm×n is the measurement Jacobian matrix associated with the

current system topology G. Then, the estimated x̂ is given by

x̂ = arg min
x

(z−HGx)⊺W−1(z−HGx) = (H⊺
GW−1HG)−1H⊺

GW−1z , Λz, (3.2)

where

Λ , (H⊺
GW−1HG)−1H⊺

GW−1. (3.3)

Then, the estimated measurement data ẑ can then be given by

ẑ = HGx̂ = HGΛz, (3.4)

and the measurement residual r is calculated by

r = z− ẑ = z−HGΛz = (I−HGΛ)z. (3.5)

3.3.2 Adversary Model

In this work, we consider the case where the adversaries are topology attackers whose

objective is to compromise the system reliability and survivability. As previously discussed,

topology attacks can be regarded as evolved FmDI attacks. With regard to false data

injection attacks, adversaries generally tamper with only the measurement data z. In practice,

these false data can often be detected by the bad data detector due to mismatches with the
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current system topology G. However, topology attackers may also attempt to falsify both

measurement data z and circuit breaker status data s associated with the system topology G
(i.e., G = f(s) [57]. In other words, they attempt to construct a pair of matched measurement

data and the grid topology. Such an attack strategy can be more effective to blind the bad

data detector.
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Fig. 3.2 Adversary model

In our adversary model as shown in Fig. 3.2, we assume that the sensing devices (i.e., line

meters and circuit breaker monitors) deployed throughout the power grid can be compromised

by malicious attackers (including malicious insiders and external attackers). These attackers

are capable of controlling the sensing devices to report false measurement data. In Fig. 3.2,

compromised line meters and circuit breaker monitors, represented by red circles and squares,

construct attack vectors a and as. Then, the reported measurement data za and circuit breaker
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status data sa are respectively expressed as the followings:

za = z + a, (3.6)

and

sa = s + as. (3.7)

Correspondingly, the processed grid topology is given by

Ga = f(sa) = f(s + as), (3.8)

where f(·) is the system function of the topology processor.

Likewise, according to the DC power flow model, the relationship between the measure-

ment data za and real system status data x is described as follows:

za = HGa
x + η. (3.9)

Then, the estimated x̂a is given by:

x̂a = arg min
x

(za −HGa
x)⊺W−1(za −HGa

x) = (H⊺
Ga

W−1HGa
)

−1
H⊺

Ga

W−1za , Λaza,

(3.10)

where

Λa = (H⊺
Ga

W−1HGa
)−1H⊺

Ga

W−1. (3.11)

Thus, the estimated measurement data ẑa is calculated by

ẑa = HGa
x̂ = HGa

Λaza. (3.12)
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The normalized residual ra is then given by

ra =
√

W−1(za − ẑa) =
√

W−1(I−HGa
Λa)za. (3.13)

One last and critical step is to detect the bad data. The Frobenius norm ∥ra∥ = ∥
√

W−1(I−
HGa

Λa)za∥ can be seen as a function of a and sa (recall that G = f(s)). In this way, as long

as the constructed vectors a and sa can lead to

∥ra∥ = ∥
√

W−1(I−HGa
Λa)za∥ < τ, (3.14)

and the adversaries can launch successful topology attacks.

In this work, we define two types of topology attacks in terms of the attack strategies,

which are shown as follows:

• Conservative topology attacks: such attacks aim to manipulate a single or a few

transmission lines or buses by compromising a small number of sensing devices.

Accordingly, manipulation of these limited resources results in minor impact on the

power system (e.g. disturbances).

• Aggressive topology attacks: such attacks attempt to manipulate as large an area of

power grid as possible (e.g. by compromising as many sensing devices as possible).

These attacks usually result in devastating damages to the power system (e.g. system

failures), if successful.

Note that in the adversary/threat model of each piece of work presented in this thesis,

we do not consider those data integrity attacks targeting on the communication links (e.g.,

man-in-the-middle attacks). We propose solutions to detect FDI attacks on the basis that

the data integrity while data transmission networks are ensured. If in need, the BLS short

signature [75] can be employed to ensure data integrity during transmission.
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3.3.3 Design Goals

The key objective of our work is to provide an analytical model for studying topology attacks

in smart grids, as well as analyzing the system reliability in the presence of such attacks.

Specifically, our design goals are as follows:

1. Carrying out in-depth analyses on the attack strategies of different types of topology

attacks and potential impacts on the power system they may cause.

2. Establishing an SPN-based state transition model for smart grids to describe the system

behaviors in the presence of topology attacks.

3. Defining credible metrics to accurately assess the system reliability of smart grids.

3.4 Proposed Analytical Model

In this section, we present our SPN-based analytical model (see Fig. 3.3) to describe the sys-

tem behaviors in the presence of both topology attacks and system security countermeasures

(e.g. IDSs and malfunction recovery techniques).

3.4.1 Construction of the Proposed SPN Model

We now present the construction of the proposed SPN model. Tables 3.1 and 3.2 annotate the

physical meanings of places and transitions in the SPN model, respectively. Cyber transitions

are denoted using blank bars, while physical transitions are shown as filled bars. Note that, in

particular, immediate transitions also appear in our model, which belong to cyber transitions

and they are presented by slim vertical bars. In this SPN model, we mainly consider two

types of sensing devices, namely line meters and circuit breaker monitors. Small filled circles

in red (tokens) are used to represent the sensing devices holding specific conditions. In

terms of countermeasures, we use filled black stars ⋆ to denote the presence of IDSs. The

IDSs are deployed for periodical detection of sensing device malfunctions. In addition, the
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Fig. 3.3 Analytical SPN model

malfunction recovery techniques, represented by blank hearts ♥, are designed for recovering

the malfunction devices identified by the IDSs.

The SPN model has an 11-element set of placeP = {P_GLM, P_BLM, P_GBM, P_BBM,

P_DBLM, P_UBLM, P_DBBM, P_UBBM, P_DIST, P_FAIL, P_MALF}. Specifically,

places P_GLM, P_BLM, P_GBM, P_BBM hold the counts for good line meters, bad line

meters, good breaker monitors, and bad breaker monitors, respectively. Likewise, places

P_DBLM, P_UBLM, P_DBBM, P_UBBM hold the counts for detected bad line meters,

undetected bad line meters, detected bad breaker monitors, and undetected bad breaker

monitors, respectively. Place P_DIST, if holding a token, represents a system disturbance

event resulting from places P_UBLM and P_UBBM when transition T_DIST is enabled.

Similarly, place P_FAIL, if holding a token, represents a system failure event resulting from

places P_UBLM and P_UBBM when transition T_FAIL is enabled. In particular, if place

P_MALF holds a token, the whole power system is encountered with a system malfunction

transferred from places P_DBLM and P_DBBM when detected bad line meters and breaker

monitors are unable to be recovered timely.
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Table 3.1 Places in the SPN model

Place Meaning

P_GLM Place of good line meters

P_BLM Place of bad line meters

P_GBM Place of good breaker monitors

P_BBM Place of bad breaker monitors

P_DBLM Place of detected bad line meters

P_UBLM Place of undetected bad line meters

P_DBBM Place of detected bad breaker monitors

P_UBBM Place of undetected bad breaker monitors

P_DIST Place of system disturbance: 0 before and 1 after

P_FAIL Place of system failure: 0 before and 1 after

P_MALF Place of system malfunction: 0 before and 1 after

Table 3.2 Transitions in the SPN model

Transition Meaning

T_CLM Transition that the attacker compromises a line meter

T_CBM Transition that the attacker compromises a breaker monitor

T_DBLM Transition that the IDS detects a bad line meter

T_UBLM Transition that the IDS fails to detect a bad line meter

T_DBBM Transition that the IDS detects a bad breaker monitor

T_UBBM Transition that the IDS fails to detect a bad breaker monitor

T_RLM Transition that the system operator recovers a line meter

T_RBM Transition that the system operator recovers a breaker monitor

T_DIST Transition that the power grid encounters a system disturbance

T_FAIL Transition that the power grid encounters a system failure

T_MALF Transition that the power grid encounters a system malfunction
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{ ,0, ,0,0,0,0,0,0,0,0}glm gbmm m { ,0, 1,1,0,0,0,0,0,0,0}glm gbmm m −{ 1,1, ,0,0,0,0,0,0,0,0}glm gbmm m− clmλ cbmλ

Fig. 3.4 System state transitions triggered by the second event

{ 1,1, 1,1,0,0,0,0,0,0,0}glm gbmm m− −

{ 1,1, 1,0,0,0,1,0,0,0,0}glm gbmm m− −{ 1,0, 1,1,1,0,0,0,0,0,0}glm gbmm m− −
dbbmλ

{ 1,1, 1,0,0,0,0,1,0,0,0}glm gbmm m− −{ 1,0, 1,1,0,1,0,0,0,0,0}glm gbmm m− −
ubbmλ

ublmλ

dblmλ

Fig. 3.5 System state transitions triggered by the third event

We use the following events to show how this SPN model is constructed, and how the

system behaves under various event triggers.

• The first event is model initialization. We use tokens in a place to represent the

sensing devices that meet the conditions specified by this place. Particularly, as

for places P_DIST, P_FAIL, and P_MALF, holding a token represents the occur-

rence of this event; otherwise, empty places denote no occurrence of such events. A

marking is a sequence of token states in all the places, which is denoted by M =

¶mglm,mblm,mgbm,mbbm,mdblm,mublm,mdbbm,mubbm,mdist,mfail,mmalf♦, where, par-

ticularly as abovementioned, mdist, mfail, and mmalf can only take values of either 0

or 1. Initially, all the devices are uncompromised/good, thereby the marking can be

initialized asM0 = ¶mglm, 0,mgbm, 0, 0, 0, 0, 0, 0, 0, 0♦.

• The second event is an attacker compromising a line meter or a breaker monitor.

We use the compromising rates λclm and λcbm to denote, for each token in good

places, the average number of tokens per unit time that can be transferred to bad

places. Such transitions can be seen from Fig. 3.4. Firing a transition will move one

token from the input place to the output place. For example, firing T_CLM in state

¶mglm, 0,mgbm, 0, 0, 0, 0, 0, 0, 0, 0♦ will move one token from P_GLM to P_BLM,

transforming to state ¶mglm − 1, 1,mgbm, 0, 0, 0, 0, 0, 0, 0, 0♦.
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dblmλ dbbmλ
{ 2,0, 1,0,1,1,0,1,0,0,0}glm gbmm m− −{ 2,0, 1,0, 2,0,0,1,0,0,0}glm gbmm m− − { 2,0, 1,0,1,1,1,0,0,0,0}glm gbmm m− −

Fig. 3.6 System state transitions triggered by the fourth event

rlmλ rbmλ
{ 2,0, 1,0,1,1,0,1,0,0,0}glm gbmm m− −{ 1,0, 1,0,0,1,0,1,0,0,0}glm gbmm m− − { 2,0, ,0,1,1,0,0,0,0,0}glm gbmm m−

Fig. 3.7 System state transitions triggered by the fifth event

• The third event is concerned with detecting or failing to detect a compromised bad

sensing device from place P_BLM or P_BBM using the IDS. For a newly com-

promised device within a detection interval, the IDS may fire two kinds of transi-

tions. For example, as shown in Fig. 3.5, if the IDS successfully detects a bad line

meter in state ¶mglm − 1, 1,mgbm − 1, 1, 0, 0, 0, 0, 0, 0, 0♦, T_DBLM will be fired

transforming the system into state ¶mglm − 1, 0,mgbm − 1, 1, 1, 0, 0, 0, 0, 0, 0♦ with

a rate λdblm; otherwise, T_UBLM will be fired transforming the system into state

¶mglm − 1, 0,mgbm − 1, 1, 0, 1, 0, 0, 0, 0, 0♦ with a rate λublm. Similar transitions for

bad breaker monitors transitions are also shown in Fig. 3.5.

• The fourth event is concerned with detecting a compromised bad device from place

P_UBLM or P_UBBM using the IDS. Devices fell in place P_UBLM or P_UBBM

are compromised bad devices that, heretofore, have not been detected yet. The IDS

runs periodically to check all the devices, perhaps by trust reputation [49]; thus, the

compromised devices may be identified at any detection interval or even undetected for

a significantly long period. As shown in Fig. 3.6, if the IDS successfully detects a bad

line meter in state ¶mglm − 2, 0,mgbm − 1, 0, 1, 1, 0, 1, 0, 0, 0♦, T_DBLM will be fired

transforming the system into state ¶mglm − 2, 0,mgbm − 1, 0, 2, 0, 0, 1, 0, 0, 0♦ with a

rate λdblm. Similarly, if transition T_DBBM is fired, a bad breaker monitor will be

detected transforming the system into state ¶mglm−2, 0,mgbm−1, 0, 1, 1, 1, 0, 0, 0, 0♦
with a rate λdbbm.
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• The fifth event is concerned with recovering a detected bad device using malfunction

recovery techniques. When a bad device is successfully detected by an IDS, the

system administrator will carry out the malfunction recovery techniques to record

and reset the compromised bad device. As shown in Fig. 3.7, if transition T_RLM is

fired with a rate λrlm in state ¶mglm − 2, 0,mgbm − 1, 0, 1, 1, 0, 1, 0, 0, 0♦, a detected

bad line meter is recovered to a good line meter, transforming the system state into

¶mglm − 1, 0,mgbm − 1, 0, 0, 1, 0, 1, 0, 0, 0♦. Likewise, if transition T_RBM is fired

with a rate λrbm in state ¶mglm − 2, 0,mgbm − 1, 0, 1, 1, 0, 1, 0, 0, 0♦, a detected bad

breaker monitor is recovered to a good breaker monitor, transforming the system state

into ¶mglm − 2, 0,mgbm, 0, 1, 1, 0, 0, 0, 0, 0♦.

• The sixth event considers a successful topology attack, usually conservative, causing a

system disturbance. A small number of undetected bad line meters and breaker moni-

tors can construct a conservative topology attack to fire transition T_DIST. An example

is shown in Fig. 3.8, where a system disturbance occurs with state ¶mglm−3, 0,mgbm−
1, 0, 1, 2, 0, 1, 1, 0, 0♦ resulting from state ¶mglm − 3, 0,mgbm − 1, 0, 1, 2, 0, 1, 0, 0, 0♦
when T_DIST is enabled. The enabling function is a complex process based on the

spanning tree of the power grid topology, which is detailed in the unreliability enabling

scheme that will be introduced in the next subsection.

• The seventh event considers a successful topology attack, usually aggressive, causing a

system failure. A multitude of undetected bad line meters and breaker monitors can col-

lectively construct an aggressive topology attack to fire transition T_FAIL. An example

is shown in Fig. 3.9, where a system failure occurs with state ¶mglm − 5, 0,mgbm −
2, 0, 1, 4, 0, 2, 0, 1, 0♦ resulting from state ¶mglm − 5, 0,mgbm − 2, 0, 1, 4, 0, 2, 0, 0, 0♦
when T_FAIL is enabled. Likewise, the enabling function is a complex process based

on the spanning tree of the power grid topology, which is detailed in the unreliability

enabling scheme that will be introduced in the next subsection.
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distλ
{ 3,0, 1,0,1, 2,0,1,0,0,0}glm gbmm m− − { 3,0, 1,0,1,2,0,1,1,0,0}glm gbmm m− −

Fig. 3.8 System state transitions triggered by the sixth event

failλ
{ 5,0, 2,0,1,4,0,2,0,0,0}glm gbmm m− − { 5,0, 2,0,1,4,0,2,0,1,0}glm gbmm m− −

Fig. 3.9 System state transitions triggered by the seventh event

• The last event considers a system malfunction caused by insufficient good sensing

devices. If the system has a low recovery rate (i.e., λrlm and λrbm are significantly

small values), the detected bad sensing devices cannot be recovered in time leav-

ing many detected bad devices remained in places P_DBLM and P_DBBM. In this

case, insufficient good sensing devices can operate normally to support the wide area

monitoring functionality. Then, the power system malfunctions because the system

states are no longer fully observable to the system control center [76]. As we see,

a number of unrecovered bad line meters and breaker monitors can collectively fire

transition T_MALF to cause a system malfunction. As shown in Fig. 3.10, a system

malfunction with state ¶mglm − 9, 0,mgbm − 5, 0, 8, 1, 5, 0, 0, 0, 1♦ may occur from

state ¶mglm − 9, 0,mgbm − 5, 0, 8, 1, 5, 0, 0, 0, 0♦ with a rate λmalf when T_MALF is

enabled. The enabling function is straightforward and integrated in the unreliability

enabling scheme that will be introduced in the next subsection.

3.4.2 Maximum Spanning Tree Based Unreliability Enabling Scheme

We will now present the proposed scheme composed of two algorithms to determine under

what conditions the power system will fall into the unreliability status (i.e., disturbance,

failure, or malfunction).

malfλ
{ 9,0, 5,0,8,1,5,0,0,0,0}glm gbmm m− − { 9,0, 5,0,8,1,5,0,0,0,1}glm gbmm m− −

Fig. 3.10 System state transitions triggered by the eighth event
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Table 3.3 Weights assigned to each bus

Bus type Description Weight assigned

Type 1 Bus with line(s) only but no generator or load 1 unit

Type 2 Bus with line(s) and load(s) but no generator 2 units

Type 3 Bus with line(s) and generator but no load 3 units

Type 4 Bus with line(s), generator and load(s) 4 units

MxST Construction Algorithm

In our scheme, we use the spanning tree in graph theory to determine the most critical

measurements. According to the contraction-deletion theorem [77], there may be multiple

spanning trees for a graph G. To obtain the best results, we use the MxST [60]. MxST is a

spanning tree of a weighted graph G, where the weight sum of all edges is the maximum

over all G’s spanning trees. In our scheme, we allocate weights towards the branches to

indicate the different levels of significance to the power grid, in terms of its observability and

reliability. This is how we use the MxST of a grid topology to determine the most critical

branches of a power grid.

There may be various methods to determine the weights assigned to each line. In this

work, we use a straightforward approach to achieve this goal as shown in Table 3.3. Buses

can be classified into four types, namely: (1) buses with line(s) only but no generator or load;

(2) buses with line(s) and load(s) but no generator; (3) buses with line(s) and generator but no

load; and (4) buses with line(s), generator and load(s) [79]. From the system administrator’s

perspective, the system administrator may be more interested in buses with generators and/or

loads than those with only transmission lines; and in buses with generators than those with

loads, due to cost savings and reliability concerns. As such, we simply assign branches

connected to a bus with a total weight of 1, 2, 3, and 4 units respectively for the four types of

buses. Then, the total weight is equally divided among all connected branches. For example,
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Algorithm 3.1 MxST Construction

Input: Initial graph G = ¶VG, EG♦ of a power grid topology; set of weightsW assigned for

all the branches

Output: A MxST S = ¶VS , ES♦
1: Initialization: VS = ∅, ES = ∅
2: Step 1: Weight Assignment for each branch.

3: (1.1). Assign a total weight to each bus according to Table 3.3.

4: (1.2). Equally divide the weight assigned for each bus into k parts, where k is the

number of branches connected to this bus.

5: (1.3). Assign the divided weights to each connected branch.

6: (1.4). Add the weights for each branch assigned from the two end buses.

7: Step 2: Arrange all branches in a decreasing order of their weights using, for example,

the quicksort algorithm [78].

8: Step 3: Add to ES with ϵij that has the maximum weight ωij ∈ W; add to VS with νi and

νj that is connected by ϵij .

9: Step 4: Remove νi and νj from VG , and ϵij from EG .

10: Step 5: Loop over all the remaining edges ϵkt ∈ EG connecting to vertices νk ∈ VS . Add

the edge ϵkt has currently the maximum weight ωkt ∈ W to ES ; add νt ∈ VG but νt /∈ VS

to VS .

11: Step 6: Remove the edge ϵkt from EG and νt from VG concerned in the last step.

12: Step 7: Repeat Steps 5 and 6 until VG = ∅.
13: Step 8: Add all generators to VS , and generator and load edges to ES .

14: Return: S = ¶VS , ES♦
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if a type 2 bus has 4 branches, then this bus is assigned a total weight of ω = 2 units, and

each of its 4 branches is allocated a weight of ωi = 2/4 = 0.5 unit, where i ∈ ¶1, 2, 3, 4♦.
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G

G
G

Bus 9

Bus 8
Bus 6 

Bus 5
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Fig. 3.11 The MxST of the IEEE 14-bus system

Based on this method, we develop an algorithm to show the construction of an MxST in

a power grid (see Algorithm 3.1), with reference to the existing algorithm for constructing a

minimum spanning tree [80, 81]. In Algorithm 3.1, the weights for all branches are calculated

by equally dividing the total weights of each bus and adding the two component weights

for each branch. Then, MxST is constructed for the weighted graph step by step. Starting

from a branch with the highest weight, branches and buses of interest are added to MxST

following a decreasing order of weights, until all bus nodes are added to MxST but avoid

adding them repeatedly. Lastly, put in all generators, and generator and load edges to MxST

as well, because generators and loads are always important to a power grid. Note that the

time complexity of Algorithm 3.1, which is mainly determined by the time complexity of the

sorting algorithm used in Step 2, is O(♣EG♣ log ♣EG♣) if using the quicksort algorithm [78].
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In order to prove the correctness of this algorithm, we give the following theorem with

its proof.

Theorem 1. After running Algorithm 3.1 on a connected weighted graph G, its output S is

an MxST.

Proof. First, S is a spanning tree. This is because:

• S is a forest. No cycles are ever created.

• S is spanning. Suppose that there is a vertex νk that is not incident to the edges of

S. Then the incident edges of νk must have been considered in the algorithm at some

step. The first edge (in edge order) would have been included because it could not have

created a cycle, which contradicts the definition of S.

• S is connected. Suppose that S is not connected. Then S has two or more connected

components. Since G is connected, then these components must be connected by some

edges in G, not in S . The first of these edges (in edge order) would have been included

in S because it could not have created a cycle, which contradicts the definition of S.

Second, S is a spanning tree of maximum weight. We will prove this using induction. Let

S∗ be an MxST. If S = S∗, then S is an MxST. If S ≠ S∗, then there exists an edge e ∈ S∗

of maximum weight that is not in S. Further, S ∪ e contains a cycle C such that:

1. Every edge in C has weight larger than wt(e), where wt(·) presents the weight of an

edge. (This follows from how the algorithm constructed S.)

2. There is some edge f in C that is not in S∗. (Because S∗ does not contain the cycle

C.)

Consider the tree S2 = S \ ¶e♦ ∪ ¶f♦:

1. S2 is a spanning tree.
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2. S2 has more edges in common with S∗ than S did.

3. And wt(S2) ≤ wt(S). (We exchanged an edge for one that is no more expensive.)

We can redo the same process with S2 to find a spanning tree S3 with more edges in

common with S∗. By induction, we can continue this process until we reach S∗, from

which we see wt(S) ≥ wt(S2) ≥ wt(S3) ≥ · · · ≥ wt(S∗). Since S∗ is a MxST, then

these inequalities must be equalities and we conclude that S is an MxST.

Let us take the IEEE 14-bus power system (as shown in Fig. 3.11) as an example to

introduce the construction of an MxST in a power system. Based on our proposed scheme,

the bus types of this power system and the total weights assigned to each bus are summarized

in Table 3.4. Then, the weights of all branches in the power system are calculated and listed

in Table 3.5. According to Algorithm 3.1, we construct the MxST of the IEEE 14-bus system

as shown in Fig. 3.11, wherein all the MxST branches are denoted by solid red lines and the

weights of all the MxST branches are annotated.

Table 3.4 The bus type and total weight assigned in IEEE 14-bus system

Bus Bus type Weight Bus Bus type Weight

#1 Type 3 3 units #8 Type 3 3 units

#2 Type 4 4 units #9 Type 2 2 units

#3 Type 4 4 units #10 Type 2 2 units

#4 Type 2 2 units #11 Type 2 2 units

#5 Type 2 2 units #12 Type 2 2 units

#6 Type 4 4 units #13 Type 2 2 units

#7 Type 1 1 unit #14 Type 2 2 units
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Table 3.5 Weights assigned for each branch in IEEE 14-bus system (g denotes generator and

l denotes load)

Branch Weight Branch Weight Branch Weight

ϵ1,2 3/3+2/3=5/3 ϵ4,7 2/6+2/3=1 ϵ8,g 3/2

ϵ1,5 3/3+2/5=7/5 ϵ4,9 2/6+2/5=11/15 ϵ9,10 2/5+2/3=16/15

ϵ1,g 3/3=1 ϵ4,l 2/6=1/3 ϵ9,14 2/5+2/3=16/15

ϵ2,3 4/6+4/4=5/3 ϵ5,6 2/5+4/6=16/15 ϵ9,l 2/5

ϵ2,4 4/6+2/6=1 ϵ5,l 2/5 ϵ10,11 2/3+2/3=4/3

ϵ2,5 4/6+2/5=16/15 ϵ6,11 4/6+2/3=4/3 ϵ10,l 2/3

ϵ2,g 4/6=2/3 ϵ6,12 4/6+2/3=4/3 ϵ11,l 2/3

ϵ2,l 4/6=2/3 ϵ6,13 4/6+2/4=7/6 ϵ12,13 2/3+2/4=7/6

ϵ3,4 4/4+2/6=4/3 ϵ6,g 4/6=2/3 ϵ12,l 2/3

ϵ3,g 4/4=1 ϵ6,l 4/6=2/3 ϵ13,14 2/4+2/3=7/6

ϵ3,l 4/4=1 ϵ7,8 2/3+3/2=13/6 ϵ13,l 2/4=1/2

ϵ4,5 2/6+2/5=11/15 ϵ7,9 2/3+2/5=16/15 ϵ14,l 2/3

Unreliability Judgement Scheme

We employ MxST in our analytical model with the expectation to find the most critical

branches, which (together with all the buses) provide the most useful information of power

system operation status. As such, we can define the critical devices and critical data.

Definition 1. Given an MxST S of a power grid topology G, sensing devices are termed as

critical devices if they host on branches ϵij that are involved in S, that is

ϵij ∈ G ∩ S, i, j ∈ ¶1, 2, · · · , NS♦ and i ̸= j, (3.15)

where NS is the number of edges in S; otherwise, they are termed as non-critical devices if

ϵij ∈ G \ S, i, j ∈ ¶1, 2, · · · , NS♦ and i ̸= j. (3.16)
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Algorithm 3.2 Unreliability Judgement Scheme

Input: Set of compromised line meter L; set of compromised breaker monitor B; grid

topology G; MxST S of G; number of unrecovered detected bad devices NL and NB

Output: Decision outcome O
1: Initialization: threshold Nth, the maximum number of unrecovered detected bad devices

a system can tolerate prior to a system malfunction

2: if NL > Nth or NB > Nth then

3: O ← system malfunction

4: else if at least one pair of the compromised line meters and breaker monitors are located

at the same branch then

5: The attacker is capable of launching a topology attack.

6: if at least one of the compromised line meters and breaker monitors are critical

devices then

7: O ← system failure

8: else

9: O ← system disturbance

10: end if

11: else

12: O ← bad data detected with no system unreliability

13: end if

return O

Accordingly, the measurement data or status data generated by these critical devices are

critical data, and data generated by the non-critical devices are termed as non-critical data.

With the constructed MxST and the above definitions, we design an unreliability judge-

ment scheme to show under what circumstances can transitions T_DIST, T_FAIL and

T_MALF be fired to cause system unreliability. As described in Algorithm 3.2, the first step

is to check whether the compromised devices have the capability to collectively construct

a topology attack. We consider a most optimistic condition from the attackers’ perspective

that, if the line meter and the circuit breaker monitor on the same branch are unfortunately

compromised by the adversary and undetected by the IDS, the attackers are considered to

have the capability to launch a topology attack. Otherwise, the injected false meter data can

be easily detected by the bad data detector. Then, for cases where the attackers have the ca-

pability to launch a topology attack, further classification is conducted to determine whether

a system failure or disturbance happens. Note that, this classification procedure also, to a
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large extent, successfully differentiates between conservative topology attacks and aggressive

topology attacks. The reason is that, according to the definition provided in Section 3.3.2,

conservative topology attacks usually cause system disturbances while aggressive topology

attacks usually cause system failures. The time complexity of Algorithm 3.2, which is mainly

determined by the operation as Line 4 shows, is O(NL ×NB).

3.5 Performance Evaluation

3.5.1 Performance Metrics

In this chapter, the reliability performance of the smart grids using our analytical model is

analyzed using both transient analysis and steady-state analysis.

Transient Analysis

The metrics for transient analysis are the mean time to disturbance (MTTD) and mean time to

failure (MTTF). Specifically, MTTD is the average time before the power system functions

into a system disturbance. Likewise, MTTF is the average time before the power system

functions into a system failure. They are given by

MTTD =
∫ ∞

0
t[1−QD(t)]dt, (3.17)

and

MTTF =
∫ ∞

0
t[1−QF (t)]dt, (3.18)

where QD(t) is the probability of the first visit to a system disturbance, and QF (t) is the

probability of the first visit to a system failure. Note that in the transient analysis, we ignore

the mean time to malfunction (MTTM). The reason is that compared to MTTD and MTTF,

MTTM is considerably larger due to the negligible probability of a system malfunction

occurrence.
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Steady-State Analysis

The steady-state analysis is presented by a self-defined metric: reliability R, which is defined

by

R = (1− pmalf ) ∗ (1− α ∗ pdist + β ∗ pfail

α+ β
)k, (3.19)

where

pmalf = 1−
Nth∑

i=0

Nth∑

j=0

pdblm(i)pdbbm(j), (3.20)

denoting the steady-state probability of a system malfunction occurrence when the number

of unrecovered detected bad devices in either place P_DBLM or P_DBBM exceeds the

acceptable threshold Nth. pdist and pfail denote the steady-state probabilities of system

disturbance and failure, respectively. In addition, α and β represent the negative impacts of

pdist and pfail posed to the system reliability. k is the average number of pairs of compromised

line meter and breaker monitor that host on the same transmission line. k describes the

average number of attack events in the power system under the optimistic condition. In

practice, the power system usually has a sufficient recovery rate, wherein a really small value

can be satisfied; therefore, pdblm(i) and pdbbm(j) always hold large probabilities when i and j

are small values (e.g., 0 or 1). According to Eq. (3.20), pmalf approaches to zero in steady

state, which is negligible. In this case, Eq. (3.19) can be reduced to

R = (1− α ∗ pdist + β ∗ pfail

α+ β
)k. (3.21)

Since the steady states of P_DIST and P_FAIL are absorbing states, it is hard to find the

corresponding steady-state probabilities. Therefore, we transform this problem into several

sub-problems. A corresponding workflow is shown in Fig. 3.12. In this workflow, the

SPN model is reduced by temporarily removing places P_DIST and P_FAIL (P_MALF as

well) and corresponding transitions T_DIST and T_FAIL (T_MALF as well). Then, the

steady-state probabilities of publm(i) and pubbm(j), where i, j ∈ ¶1, 2, · · · , N♦, can be easily
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Fig. 3.12 The workflow of calculating reliability

obtained using steady-state analysis of the remaining SPN. Next, we determine the expected

probability of constructing a topology attack patt, which is given by

patt =
N∑

i=1

N∑

j=1

publm(i)pubbm(j)×







∑i

l=1
Ci

l
CN−i

j−l

CN

j

, i+ j ≤ N

1, i+ j > N,

(3.22)

where i = min¶i, j♦ and j = max¶i, j♦.
Ci

l
CN−i

j−l

CN

j

calculates the probability of l (out of i)

pairs of undetected compromised line meters and breaker monitors with a same host location.

The dual summations then calculate the average probability of at least one pair of undetected

compromised line meters and breaker monitors with a same host location, which is the

optimistic condition as stated in the above section. After that, the steady-state probabilities

pdist and pfail can then be determined by

pdist = patt
NS

N
, (3.23)

and

pfail = patt
NS

N
, (3.24)

where NS and NS are the number of non-spanning tree branches and spanning tree branches,

respectively. Particularly, when the compromising rate is sufficiently large, there are always

enough compromised bad devices in places P_UBLM and P_UBBM. As a result, i+ j > N

in Eq. (3.22) is always satisfied so that we always have patt = 1. In this case, the reliability
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R is reduced as

R = (1− α ∗ patt ∗NS/N + β ∗ patt ∗NS/N

α+ β
)k = (1− α ∗NS/N + β ∗NS/N

α+ β
)k.

(3.25)

Note that k, describing the average number of attack events in the power system, is

defined by

k =
N∑

x=1

x ∗ p(x), (3.26)

where

p(x) =
N∑

i=x

N∑

j=x

publm(i)pubbm(j)×







Ci
xCN−i

j−x

CN

j

, i+ j ≤ N

1, i+ j > N,

(3.27)

calculating the probability of x pairs of undetected compromised line meters and breaker mon-

itors with a same host location. Then, k is determined by the expectation of the probability

distribution.

3.5.2 Numerical Results

In the simulation experiments, we use MATLAB 2015a and PIPE 2 [82] as our simulators

for transient and steady-state analysis, respectively. To facilitate comparison, we set the same

levels of compromising rates, detection rates, and recovery rates for the two sensing devices,

i.e., λclm = λcbm, λdblm = λdbbm, and λrlm = λrbm. The detection interval is set as 10 hours

for the IDS. Note that in this section, we do not explicitly differentiate between conservative

topology attacks from aggressive topology attacks, because the various compromising levels

actually simulate all levels of the attack capability ranging from the conservative topology

attacks all the way to aggressive topology attacks. The numerical results of all the simulations

are shown as follows.

In Fig. 3.13, we plot the MTTD and MTTF of the IEEE 14-bus test system versus the

compromising rate λclm = λcbm, for different detection rates λdblm = λdbbm. Note that,
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(λrlm = 0.08)
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a sufficient recovery rate of λrlm = λrbm = 0.08 is used as a constant parameter while

analyzing the compromising rate and the detection rate. Figure 3.13 shows that when the

compromising rate is relatively small, the power system has good operating conditions that

both the MTTD and MTTF levels are significantly high. Larger compromising rates result in

lower MTTD and MTTF levels as more sensing devices can be compromised by the adversary,

increasing the probability to initiate a topology attack. In addition, we observe that MTTF

is usually larger than MTTD. This is because when we have constrained knowledge and

capability, it is much easier for an adversary to construct a relatively weak attack that causes

system disturbances than construct a complicated strong attack to cause system failures.

Also, higher levels of MTTD and MTTF can be obtained by increasing the detection rate, for

example, from 0.02 to 0.06.

Figure 3.14 shows the MTTD and MTTF of the IEEE 14-bus test system versus the

detection rate λdblm = λdbbm, for different compromising rates λclm = λcbm. Clearly, when

the detection rate increases, the MTTD and MTTF improve quickly because high detection

rates will be more likely to detect compromised bad sensing devices and prevent them

from launching topology attacks; thus leading to higher MTTD and MTTF levels. Similar

observation is being made in Fig. 3.14, where lower compromising rates can also enhance

the MTTD and MTTF levels.

In comparison to IEEE 14-bus test system, similar experiments pertaining to the MTTD

and MTTF are also conducted in IEEE 24-bus and 39-bus test systems. The results are plotted

in Figs. 3.15 and 3.16 for the compromising rate and detection rate, respectively. As is shown

in Fig. 3.15, similar to all the three test systems, larger compromising rates correspond to

lower MTTD and MTTF levels, while smaller compromising rates correspond to higher

MTTD and MTTF levels. Most importantly, under the same level of compromising rate,

detection rate, and the recovery rate, the IEEE 14-bus system has the highest levels of MTTD

and MTTF, followed by the IEEE 24-bus system, and IEEE 39-bus system. This is because

when the total number of sensing devices increases, the average number of sensing devices
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that can be compromised per unit time also increases; thus, the probability of constructing

a topology attack will increase, resulting in relatively lower levels of MTTD and MTTF.

Figure 3.16 presents the parallel results that for all three test systems, MTTD and MTTF

grow exponentially as the system detection rate increases, and the IEEE 14-bus system has

the highest levels of MTTD and MTTF while the IEEE 39-bus system has the lowest.

After presenting the numerical results of transient analysis, we now present the steady-

state analysis. Using PIPE 2 simulator, the steady-state probability distribution of the number

of tokens in each place can be obtained. Figures 3.17 and 3.18 present the steady-state

probability distribution of the number of tokens in place P_UBLM (also P_UBBM) under

different compromising rates and detection rates, respectively, for IEEE 14-bus system.

As observed from Fig. 3.17, when the compromising rate is relatively low where only a

few good devices may be transferred to bad ones and most devices remain in good status,

Pr¶#P_UBLM = 0♦ is significantly high with narrow probabilities for other number of

tokens. Pr¶#P_UBLM > 0♦ can be increased by increasing the compromising rate. In

contrast, as shown in Fig. 3.18, a smaller detection rate value of, for example, λdblm =

λdbbm = 0.015 (λdblm = λdbbm = 0.04 in Fig. 3.17), may result in more bad compromised

devices being undetected, and result in relatively larger Pr¶#P_UBLM > 0♦. Increasing

the detection rate can improve Pr¶#P_UBLM = 0♦; thus, reducing the potential for an

adversary to construct a topology attack.

With the obtained steady-state probability distribution, system reliability can be deter-

mined by Eq. (3.21). Figure 3.19 plots the system reliability of IEEE 14-bus system versus

the compromising rate for various values of α/β. We used the α to β ratio in our experi-

ments because based on Eq. (3.21), the definition of system reliability R can be written as

R = (1− α∗pdist+β∗pfail

α+β
)k = (1− pdist

1+β/α
− pfail

α/β+1
)k. Thus, it is more convenient to use the

ratio α/β for analyzing the system reliability. As shown in Fig. 3.19, under the same level of

compromising rate, detection rate, and recovery rate, higher values of α/β result in higher

reliability. The reason is that, according to Eqs. (3.23) and (3.24), pfail is usually greater than
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Fig. 3.17 Steady-state probability distribution of the number of tokens in place P_UBLM

under different compromising rates for IEEE 14-bus system (λdblm = 0.04 and λrlm = 0.08)
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pdist due to NS > NS . Thus, increasing α/β assigns more weight to pdist and less weight to

pfail, which as a result decreases the value of
α∗pdist+β∗pfail

α+β
. Therefore, the resulting value

of reliability will be increased, and vice versa. More interestingly, the reliability decreases

gradually from R = 1 at the origin and drops quickly to nearly zero as the growth of the

compromising rate. This is because when the compromising rate is less than the detection

rate, bad devices can be usually detected so that high reliability can be obtained, but when the

compromising rate is large enough that exceeds the detection rate, there are a multitude of

bad devices that cannot be successfully detected. In this case, there are always sufficient bad

devices together in places P_UBLM and P_UBBM that can easily launch topology attacks,

i.e., patt = 1 holds all the time. In addition, the higher the compromising rate is, the larger

the k is, which indicates the presence of multiple topology attacks and the large value of k

will decrease the reliability in an exponential manner.

The relationship between the system reliability of IEEE 14-bus system and the detection

rate for various values of α/β is plotted in Fig. 3.20. Likewise, this figure shows that under

the same conditions, increasing the value of α/β can lead to higher system reliability, while

decreasing it can lead to lower system reliability. In addition, the full simulation trace shows

that system reliability experiences a slight growth from the beginning and eventually reaches

a plateau at around R = 1 when the detection rate increases. This indicates that rise of the

detection rate can slowly mitigate the number of undetected compromised devices, reduce

the probability of initiating an attack, and further improve the system reliability.

In addition to the IEEE 14-bus system, simulation experiments concerning steady-state

analysis for IEEE 24-bus and 39-bus systems are conducted as well. Figure 3.21 presents

the system reliability of the three test systems against the compromising rate under different

values of α/β. Similar results to the IEEE 14-bus system can be obtained for the IEEE 24-

bus and 39-bus systems. Specifically, for all the three test systems, the reliability decreases

gradually from R = 1 as the compromising rate increases, and drop quickly when the

compromising rate exceeds the detection rate. In addition, we can also observe that the power
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systems can have a high system reliability when α/β is set to be high. Furthermore, the

numerical results show that the IEEE 39-bus system has generally the highest reliability,

followed by the 24-bus system and 14-bus system the last. The reason is that a power system

with more redundant branches and higher connection complexity may be more resilient to

the attacks.

In Fig. 3.22, the reliability of different power systems against the detection rate is plotted.

As we can see, the reliability stabilizes at nearly zero at the origin of each test system, due to

insufficiency of the detection rate to identify compromised bad devices. When the detection

rate increases gradually, the reliability begins to increase drastically and finally approaches

to R = 1 when the detection rate is sufficient.

Finally, our simulation experiments focus on steady-state analysis against the recovery

rate. The corresponding numerical results are summarized in Figs. 3.23 and 3.24. As observed

in Fig. 3.23, three groups of comparative experiments show that under the same compromising

rate and detection rate, the steady-state probability distribution of the number of tokens in

place P_UBLM are the same for different recovery rates. This is because the number of

detected bad devices arriving in place P_UBLM is determined by the compromising rate and

detection rate collectively; thus, the same compromising rate and detection rate will result in

the same distribution of tokens in steady states. Meanwhile, it can be seen that the recovery

rate is of little impact on this distribution, i.e., different values of the recovery rate do not

make any significant differences to the probability of topology attacks. The other curves

once again show that the number of compromised devices in place P_UBLM can be further

mitigated by increasing the detection rate or reducing the compromising rate.

In Fig. 3.24, we observe that from the two groups of red and blue curves, the system

reliability experiences a sharp increase from 0 to 1 as the slight growth of the recovery

rate. In such cases, system malfunctions occur when the recovery rate is not sufficient (e.g.,

λrlm = λrbm < 0.02 here) to recover the detected bad devices under a compromising rate

of λclm = λcbm = 0.01 and a detection rate of either λdblm = λdbbm = 0.02 or 0.04. In
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contrast, as the two black curves show that under a rather small compromising rate (i.e.,

λclm = λcbm = 0.001), a recovery rate of λrlm = λrbm = 0.002 is reasonably sufficient to

recover all the detected bad devices. This leads to a full system reliability (i.e., R = 1) with

no system malfunction occurs. In previous simulations related to the compromising rate

and detection rate, we use a sufficient recovery rate of λrlm = λrbm = 0.08 to exclude the

impacts on system reliability that insufficient recovery rate may cause. Compared to the

compromising rate and detection rate, we observe that, in this figure, the recovery rate has

relatively marginal impact on the system reliability as long as it can reach a basic acceptable

level. More importantly, the recovery rate highly relies on the compromising rate and, then,

the detection rate.

Such observations help inform future design of the system, so that system designers can

devote more efforts to significant aspects, such as mitigating the compromising rate and

improving the detection rate, rather than focusing too much on the recovery rate.

3.6 Summary

Smart grid cyber-physical systems will be increasingly deployed in the foreseeable future,

and there are a number of research challenges that need to be addressed.

In this chapter, we developed an SPN-based analytical model for smart grid cyber-

physical systems to assess and analyze the system reliability in the presence of both topology

attacks and system countermeasures. We also demonstrated how to construct successful

topology attacks in a smart grid. In our analytical SPN model, we took into account two

types of sensing devices involving line meters and circuit breaker monitors, and two kinds

of typical system countermeasures (i.e., IDSs and malfunction recovery techniques), we

demonstrated how we can use several events to describe the system behaviors under these

event triggers. Moreover, using the IEEE 14-bus as example, we proposed two algorithms

pertaining to the construction of an MxST and identification of system disturbances, failures,
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and malfunctions. Finally, simulation experiments on the IEEE 14-bus, 24-bus, and 39-bus

test systems and, correspondingly, both transient- and steady-state analysis demonstrated the

utility and efficiency of our proposed analytical model. The findings (e.g., confirming that

compromising rate and detection rate are of paramount significance to system reliability)

will inform future system design.



Chapter 4

DHCD: Distributed Host-Based

Collaborative Detection for FmDI

Attacks

FmDI attacks are a crucial security threat to smart grid CPS, and could result in cataclysmic

consequences to the entire power system. However, due to the high dependence on open

information networking, countering FmDI attacks is challenging in smart grid CPS. Most

existing solutions are based on state estimation at the highly centralized control center; thus,

computationally expensive. In addition, these solutions generally do not provide a high level

of security assurance, as evidenced by recent work that smart FmDI attackers with knowledge

of system configurations can easily circumvent conventional state estimation-based false data

detection mechanisms. In this paper, in order to address these challenges, a novel distributed

host-based collaborative detection method is proposed. Specifically, in our approach, we use a

conjunctive rule based majority voting algorithm to collaboratively detect false measurement

data inserted by compromised PMUs. In addition, an innovative reputation system with

an adaptive reputation updating algorithm is also designed to evaluate the overall running

status of PMUs, by which FmDI attacks can be distinctly observed. Extensive simulation
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experiments are conducted with real-time measurement data obtained from the PowerWorld

simulator, and the numerical results fully demonstrate the effectiveness of our proposal.

4.1 Introduction

In recent times, a number of high-profile incidents targeting smart grid as well as other CPSs

have been reported, e.g., Stuxnet [6], Conficker [83], and US drones hack [84]. Malicious

attackers may attempt to falsify sensor measurements, embed fake control commands, delay

or drop sensor readings or control commands [49, 21, 85–87]. FmDI attacks are increasingly

recognized as a serious threat to smart grid CPS, and unsurprisingly, have been the focus

of computer security researchers and industry practitioners. FmDI attacks and mitigation

strategies on smart grid CPS have been also evolved over the years. Conventional FDD

approaches are generally based on system state estimation [88–90]. For example, Merrill and

Schweppe presented a bad data suppression estimator based on a non-quadratic cost function

to improve the performance of static state estimation [88]. Handschin et al. presented a

method to detect and identify the bad data and structural error problems, and improved bad

data analysis (detection probability, and effects of bad data) [87]. Cutsem et al. also proposed

an identification method attempting to alleviate some existing difficulties, such as multiple

and interacting bad data [91].

However, Liu et al. in [28] showed that smart FmDI attackers armed with the knowledge

of system configurations could easily bypass the traditional state estimation-based FDD

schemes without detection. Consequently, existing FDD approaches may be ineffective

against newer or emerging FmDI attacks. The major limitation of legacy FDD schemes is

that they mainly focus on the inter-correlations among the measurement data (e.g., residuals

and errors), rather than the malicious behaviors of meter devices, such as PMUs and smart

meters. Furthermore, in existing literature FDD is generally performed by the power system’s

centralized CC, due to the demanding computational requirements [89, 90]. Although



4.1 Introduction 73

a small number of hierarchical or distributed FDD schemes are designed to reduce the

computation requirements at the CC [92, 93], most of them are still based on state estimation;

thus, vulnerable to smart attackers. Another limitation of legacy FDD methods is that

some prevailing countermeasures against cyber intrusion only aim to detect the “bad" data

without further evaluating the true running status of the meter devices that might already

be compromised by malicious attackers [88, 92, 87]. These undetected hidden attackers

can continue to launch or improve their attacks subsequently. Therefore, countering against

FmDI attacks in smart grid CPS remains a research challenge, and one that we seek to address

in this paper.

Thus, we propose a distributed host-based collaborative detection (DHCD) method

based on rule specifications, rather than state estimation. DHCD can not only reduce the

computational burden of the CC, but also achieve fast FDD and the capability to evaluate

the running status of meter devices. Specifically, in our method, each PMU is assigned a

trusted host monitor (HM) serving as the distributed local false data detector. Based on

a set of pre-defined rule specifications, the monitors determine the anomalous levels of

measurement data collected by their supervised PMUs. Then, by sharing and comparing

the anomalous levels of the measurement data collected by the neighboring interconnected

PMUs, these interconnected monitors collaboratively make a decision based on the majority

voting algorithm to determine whether their own measurement data is falsified. To evaluate

the overall running status of the PMUs, a reputation system with an adaptive reputation

updating (ARU) algorithm is designed, where a malfunction PMU can be easily identified.

The contributions of our work are summarized as follows:

• We develop a DHCD method to detect FmDI attacks in smart grid CPS based on rule

specifications, which can be used to effectively mitigate smart FmDI attacks.

• Our method can not only achieve fast and high accuracy of FDD, but also allow the

identification of compromised PMUs using our designed reputation system.
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• Our distributed detection method will “displace" the computational burden of the CC

by delegating FDD tasks to the local monitors.

The remainder of this paper is organized as follows. Section 4.2 presents the system model,

the threat model, and our design goals. The DHCD method is detailed in Section 4.3,

followed by the performance evaluation in Section 4.4. Section 4.5 concludes the paper with

future research directions.

4.2 Models and Design Goals

In this section, we introduce the system model, the threat model, and our design goals.

4.2.1 System Model

A smart grid CPS is a fully automated system capable of achieving self-healing, cost reduction,

improved reliability and efficiency. These promising benefits are intensively grounded on

the WAMS, as it can provide high-level observability and controllability in power system

operations [18, 94, 95]. Thus, in this paper, we consider the hierarchical WAMS as our

system model.

As shown in Fig. 4.1, WAMS is an integrated system consisting of PMUs, PDCs, het-

erogenous communication networks, and a CC. Specifically, PMUs, located at the substations

of the power generation and transmission system, are capable of measuring the real-time

status of the power system. For example, the real-time amplitude and phase angle of voltage

at the bus, of current on the transmission line, and of the power at each branch, can be

measured by the PMUs. These measurement data are then periodically transmitted to the

the PDCs, usually in 50Hz, through the LAN. Then, the aggregated data at the PDCs are

delivered to the CC via the WAN for further data analysis, such as state estimation, event

diagnostics, and contingency analysis.
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Fig. 4.1 The hierarchical architecture of WAMS

4.2.2 Threat Model

The real-time data provided by PMUs serve as the basis for automated, efficient, and reliable

system control. However, adversaries seeking to intervene or manipulate system operations

can attempt to inject false measurement data through compromised PMUs. Successful FmDI

attack may compromise the above-mentioned promising functionalities or even jeopardize

the system operations.

In our threat model, we consider that PMUs in the WAMS can be compromised by FmDI

attackers (e.g., rewriting the program settings, or stealing the secret information for data

communication). Note that, in smart grid CPS, a single piece of false measurement data

may not have significant impact on system operations, because the system is capable of

correcting trivial faults or mistakes. However, the system may not be able to auto-correct in

the event that consecutive false measurement data are received; consequently, resulting in

system failures. As such, to successfully launch an FmDI attack in practice, attackers usually

recklessly and persistently inject false measurement data once they have an opportunity. This

is the behavior pattern of FmDI attackers we consider in the threat model.
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4.2.3 Design Goals

Based on the aforementioned system model and threat model, our design goals are to develop

an accurate, efficient, and scalable FDD method in smart grid CPS. Specifically, the following

specific objectives should be achieved.

Accuracy: The devised method is able to effectively detect smart FmDI attacks, achieving

both high detection rate and low false alarm rate.

Efficiency: The detection method should not introduce extensive computational burden to

the system, particularly to the CC inherent in traditional FDD schemes. In other words, a

light-weight detection scheme is expected.

Scalability: The smart grid CPS needs to be scalable (similar to a cloud system) by

allowing new devices to be added, etc, without incurring expensive (financial) costs.

4.3 Proposed DHCD Method

In this section, we present the proposed DHCD method, which is composed of two steps

(subsections): collaborative FDD and determination of compromised PMU. In the first step,

we employ a set of rule specifications to identify anomalous measurement data reported by

the PMU. Then, in the second step, we devise a reputation system with an ARU algorithm to

monitor and assess PMUs’ overall behaviors in order to further detect compromised PMU.

4.3.1 Collaborative FDD

In normal operational circumstances, the power grid operates in a stable status. In other

words, all state variables vary in a mutual balanced manner according to Kirchhoff’s law,

demand-response constraints, etc. As such, any change of a variable state on one bus or

transmission line, resulting from either the normal demand variation or system faults, would

lead to corresponding state changes of the same and/or other variables on interconnected

buses or transmission lines. For example, as shown in Fig. 4.2, the contouring maps with
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comparison are plotted, which describe the distribution of the current amplitude on each

transmission line (a) before and (b) after an open circuit event on transmission line from Bus

16 to Bus 17. As shown in Fig. 4.2(b), after the occurrence of this open circuit event, the

current amplitude values near Line 16 to 17 shift. The closer to this line, the more the value

changes.

(a) (b)

Fig. 4.2 Comparison of contouring maps describing the distribution of current amplitude on

transmission lines: (a) before open circuit and (b) after open circuit on line from Bus 16 to

17 (marked by a red dashed elliptical circle) in IEEE-39 bus system.

In contrast, if only some changes of variable states occur on one bus, without a corre-

sponding shift in the parallel variables of interconnected buses, such changes can be regarded

as anomalous. These anomalies may originate from either malfunction PMU devices or

malicious activities due to compromised PMUs. In this paper, we only consider possible

malicious activities rather than device malfunction, as there are many existing approaches

to address issues relating to device malfunction. Based on the inter-correlations of power

systems, we design a collaborative detection method to detect anomalous measurement data

reported by PMUs [96, 97].
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Normal Rule Specifications

When power system is under normal operation, all state variables must naturally follow some

constraints and hold some properties. Let us take active power P as an example, which

should obey the following rules:

• Pmin < P t < Pmax: P at any time under stable status must vary within an experienced

range [Pmin, Pmax].

• ♣P t − P t−1♣ < P∆: The variation of P within one time interval should be less than an

experienced threshold P∆.

• ♣P t
in − P t

out♣ < Ploss: The difference of P flowing into a bus and flowing out the bus

ought to be less than an experienced power loss threshold Ploss.

• Other more complicated rules.

As such, we pre-define some useful but example rule specifications as listed in Table

4.1 that PMUs have to coincide with in the stable status. These rule specifications serve as

the basis of our method to identify the anomalous measurement data (for convenience, the

superscript t is omitted).

Table 4.1 Rules specifications for PMUs in stable status

Index Variable Rule description

1 Active Power Angle ∆δ < δ∆

2 (Phase A) Voltage Amplitude ∆V < V∆

3 Load Mvar ∆LMvar < LMvar∆

4 Load MW ∆LMW < LMW ∆

To represent the results of whether the rule specifications have been violated, we employ

a binary system, where “0” denotes that the measurement data of one variable follows the

relevant rule specification and “1” indicates a violation. A binary sequence with length E (E

is the number of rule specifications, and here E is 4) is utilized to represent the conjunctive
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results pertaining to the entire measurement data. For instance, “1001” denotes that both

rules 1 and 4 are violated. A non violation of the conjunctive four rule specifications is

represented by “0000”, which is our baseline of PMUs’ behaviors.

In order to assess to what extent each piece of measurement data is anomalous, we

introduce a normalized Euclidean distance strategy to determine the anomalous level lt,

which is shown as follows:

lt = D0(seq
t, seq0), (4.1)

where seqt is the binary sequence representing the conjunctive results of measurement data at

time t, while seq0 = “0000” is the baseline. D0 is the normalized Euclidean distance of the

two sequences seqt and seq0. Euclidean distance is the square root of the sum of results that

are different between two sequences. For example, the Euclidean distance between sequence

“1001” and the baseline “0000” is
√

12 + 0 + 0 + 12 ≈ 1.414. Then, the anomalous level l

is computed by the normalized distance, i.e., 1.414/
√

12 + 12 + 12 + 12 ≈ 0.707.

FDD algorithm with Iterative Majority Voting

Figure 4.3 shows the distributed host-based collaborative FDD system, where each HM (host

monitor) is responsible for monitoring and assessing the behaviors of its administrated PMU.

LetM = ¶M1,M2, · · · ,MN♦ denote the set of monitors and U = ¶U1, U2, · · · , UN♦ the

set of PMUs, where N is the total number of HMs or PMUs. HMs communicate among

each other following the connection pattern of the PMUs, which means each HM only

communicates with HMs that their monitored PMUs have interconnection relations. Note

that these host monitors are trusted entities for monitoring PMUs. It is designed that host

monitors and the networks between them are equipped with high-level security mechanisms

to ensure their trustworthiness.

As stated above, we utilize the inter-correlations between the state variables to build our

detection method. Algorithm 4.1 outlines the FDD algorithm with iterative majority voting
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Fig. 4.3 The distributed host-based collaborative FDD system

process. Concretely, setM is initialized asM = ¶M1,M2, · · · ,MN♦, and a flag variable

repeat_flag as ‘0’. Note that repeat_flag = ‘0’ indicates that the procedure does not need

to be repeated, while repeat_flag = ‘1’ indicates the need to repeat the procedure. Next,

each monitor Mi ∈M determines the conjunctive result Rt
i of current piece of measurement

data, and broadcasts the result to neighbouring connected monitorsMi = ¶Mj♣Mj ∼Mi♦.
An example is shown in Fig. 4.4.

Then, Mi launches the false data identification process. If there is no bit “1" in the

result Rt
i, then no false data is detected. Otherwise, Mi needs to determine how many of its

connected monitors have a bit “1" in their conjunctive results Rt
j . If more than or equal to

half of the connected monitors have a bit “1" at the same position in Rt
j , Mi concludes that

Ui has reported a piece of false measurement data; otherwise, Rt
i is tentatively considered

suspicious. After all Mi ∈M have concluded the first procedure, the termination criterion is

determined. If repeat_flag == ‘1’, this procedure is repeated to further identify the false
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Fig. 4.4 An example of the conjunctive results transmitted between HMs

data; otherwise, the procedure goes to the end. Note that the time complexity of Algorithm

4.1 is O(N × L), where L = 1
2

∑N
i=1 ♣Mi♣, the number of branches in a power grid.

4.3.2 Determination of Compromised PMU

FDD step is a critical process to detect false data, but it is not sufficient to identify com-

promised PMUs. Therefore, in the second step, we employ a reputation-based algorithm to

monitor and assess the PMUs’ overall behaviors over a period of time, which allows us to

identify compromised PMUs if their reputation level drops below an acceptable threshold

[98, 99].

Specifically, in this subsection, we first model the probability distribution of the anoma-

lous level of measurement data with a Beta distribution. Then, we estimate its two shape

parameters α and β using maximum likelihood estimation (MLE) and Newton-Raphson

method. Then, a detailed description of an adaptive reputation updating (ARU) algorithm is

presented.



82 DHCD: Distributed Host-Based Collaborative Detection for FmDI Attacks

Algorithm 4.1 FDD Algorithm

1: initialization: M = ¶M1, M2, · · · , MN♦, Upperbound = 5, Iteration = 0, repeat_flag =
‘0’

2: procedure

3: for each monitor Mi ∈M do

4: (1). determines the conjunctive result Rt
i of current piece of measurement data.

5: (2). broadcasts the result Rt
i to the neighbouring connected monitorsMi = ¶Mj ♣Mj ∼

Mi♦.
6: (3). identifies false data:

7: if there is no bit “1" in the result Rt
i then

8: output: no false data detected.

9: else if more than or equal to half of the monitors inMi hold bit “0" at the same position

in the result Rt
j then

10: (a). output: false data detected.

11: (b). removes Mi fromM and its connections with other monitors.

12: else

13: (a). keeps Rt
i as suspicious result.

14: (b). repeat_flag = ‘1’.

15: end if

16: end for

17: (4). judges the termination criteria:

18: if repeat_flag == ‘1’ and Iteration < Upperbound then

19: (a). repeats procedure.

20: (b). Iteration = Iteration + 1.
21: else

22: ends the procedure.

23: end if

24: end procedure

Probability Distribution of Anomalous Level

Let random variable X be the anomalous level of a piece of measurement data, where X

can either be 0 or 1 and it is determined by the normalized Euclidean distance (see section

4.3.1). Particularly, X = 0 represents compliance of the rule specifications, while X = 1

represents a violation. Here, to determine the exact distribution of the probabilities of

different anomalous level and its future values, we model the random variable X using a

Beta(α, β) distribution. Beta distribution family can represent a collection of probability

distributions, and can be used to depict a prior distribution of an unknown distribution with

only a series of collected observations.
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The probability density function of a Beta distribution is

f(x;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, (4.2)

where α and β are the two shape parameters. The mean value of a Beta distribution is

µ = E[X] =
∫ 1

0
x

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx =

α

α+ β
. (4.3)

To obtain the exact distribution of X , we estimate the parameters α and β using a

well-known method MLE. We suppose that the n independent and identically distributed

observations ¶x1, x2, ..., xn♦ are from an unknown distribution with pdf f0(·♣θ⃗), θ⃗ is a vector

of parameters. As for our model, the Beta distribution, θ⃗ = [α β]. By using MLE, we

formulate the joint density probability function of these n independent and identically

distributed observations ¶x1, x2, ..., xn♦ as

f(x1, x2, . . . , xn ♣ α, β) =
n∏

i=1

f(xi ♣ α, β). (4.4)

Now we look at this equation from a different perspective by fixing the observed samples

¶x1, x2, ..., xn♦ of this function, then α, β are the variables of the function that we call the

likelihood:

L(α, β ♣ x1, x2, . . . , xn) =
n∏

i=1

f(xi ♣ α, β). (4.5)
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In most cases, it is easier to work with the natural logarithm of the likelihood function. We

rewrite it as

lnL(α, β ♣ x1, x2, . . . , xn) = ln
n∏

i=1

f(xi ♣ α, β)

=
n∑

i=1

ln

{

Γ(α+ β)

Γ(α)Γ(β)
xi

α−1(1− xi)
β−1

}

= n ln Γ(α+ β)− n[ln Γ(α) + ln Γ(β)] + (α− 1)
n∑

i=1

ln xi + (β − 1)
n∑

i=1

ln(1− xi).

(4.6)

Then, we have to find the optimal values of α and β that maximize lnL(α, β ♣ x1, . . . , xn).

Since logarithm is a strictly monotonically increasing function, the maximum value, if it

exists, could be calculated by






∂ ln L
∂α

= 0,

∂ ln L
∂β

= 0.

(4.7)

That is

g1(α, β) = ψ(α)− ψ(α+ β)− 1

n

n∑

i=1

ln xi = 0, (4.8)

g2(α, β) = ψ(β)− ψ(α+ β)− 1

n

n∑

i=1

ln(1− xi) = 0. (4.9)

where ψ(x) is the digamma function defined as

ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
. (4.10)

There is no closed-form solution to Equations (4.8) and (4.9), so we use the Newton-

Raphson method to find the approximate roots. The parameters
⃗̂
θ = [α̂ β̂] can be iteratively

estimated by [100]

⃗̂
θi+1 =

⃗̂
θi −

⃗
g(
⃗̂
θi)

J⃗g(
⃗̂
θi)
, (4.11)
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where g⃗ = [g1 g2], and
⃗

Jg(θ̂i) is an 2× 2 Jacobian matrix defined over the function vector

⃗
g(θ̂i) defined as






dg⃗1

dα
dg⃗1

dβ

dg⃗2

dα
dg⃗2

dβ




 , (4.12)

with

dg⃗1

dα
= ψ′(α)− ψ′(α+ β), (4.13)

dg⃗1

dβ
=
dg⃗2

dα
= −ψ′(α+ β), (4.14)

dg⃗2

dβ
= ψ′(β)− ψ′(α+ β). (4.15)

This Newton-Raphson method converges when the estimates of θ̂ and β̂ change by less than

an acceptable threshold with each successive iteration.

ARU Algorithm

With the exact probability distribution of the anomalous level, we can obtain its expectation

value µ, which is the best indicator of the overall performance of the PMUs over the

observation period. Here, we define the history reputation level of a PMU as

T = 1− µ =
β

α+ β
. (4.16)

While, a dependable reputation system should be able to adaptively adjust the reputation

values according to dynamic behavioral changes [101]. Thus, in this paper, we incorporate

the history reputation level and the subsequent behavior fluctuations of PMUs to assess

their real-time reputation levels. In addition, adaptive parameters are used to allow different

impacts due to the reputation levels with different behavior observations. The real-time
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reputation level of a PMU is then defined as

T t = ω · Th + (1− ω) · T t
u

= ω · β

α+ β
+ (1− ω) · λg ·N t

g + 1

λg ·N t
g + λt

b ·N t
b + 1

,
(4.17)

where Th is the history reputation level of a PMU, and T t
u is the updating reputation level

at time instant t. ω is the weight assigned for the history reputation level to evaluate

the importance of history experience to the real-time reputation level, while 1 − ω is for

the updating reputation level to evaluate the impacts of recent performance to the real-

time reputation level [102]. N t
g and N t

b denote the cumulative number of observations

regarding “good" data (not false data) and “bad" data (false data) of a PMU, respectively.

Correspondingly, λg and λt
b are designed as the impact factors for “good" data and “bad"

data. It is natural that, from the social perspective, one needs to spend a longer period of

time performing successive good behaviors to establish a high reputation level, yet only a

few bad behaviors would adversely affect the reputation built over time [103]. As such, we

penalize the PMUs when “bad" data are observed. In our algorithm, λt
b is designed relatively

larger than λg, and λt
b will be increased if successive “bad" data are observed to amplify the

impacts.

Algorithm 4.2 presents the ARU procedure, where St
b denotes the number of successive

observations of “bad” data. They increment by 1 when corresponding behavior occurs. If

successive “bad” data is observed, the corresponding impact factor λt
b will be increased by

λt−1
b · (eτ − 1), otherwise, the counter for successive “bad” observations St

b will be reset

to 0 and the impact factor λt
b remains unchanged. Here, τ is initialized as a small value

(e.g., 0.0001) in our experiments, and can be adjusted according to different application

environments. Note that the time complexity of Algorithm 4.2 is O(1).
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Algorithm 4.2 Adaptive Reputation Updating Algorithm

1: procedure

2: Input: N t−1
g , N t−1

b , λg, λt−1
b ,St−1

b , τ
3: if the judgement result of current data is “good" then

4: N t
g ← N t−1

g + 1;
5: St

b ← 0;
6: else

7: N t
b ← N t−1

b + 1;
8: St

b ← St−1
b + 1;

9: if St
b > 1 then

10: λt
b = λt−1

b · eτ ;
11: end if

12: end if

13: Compute updating reputation level by:

14: T t
u =

λg ·Nt
g+1

λg ·Nt
g+λt

b
·Nt

b
+1

,

15: and the overall reputation level by:

16: T t = ω · β
α+β + (1− ω) · λg ·Nt

g+1

λg ·Nt
g+λt

b
·Nt

b
+1

.

17: output: T t.

18: end procedure

With the real-time reputation level of each PMU, it is easy to identify the compromised

PMU by testing the following binary hypothesis:







H0: PMU Uj is compromised, if T t
j < Dth

H1: PMU Uj is not compromised, otherwise.

(4.18)

where Dth is an acceptable detection threshold. This hypothesis is tested once the reputation

level is updated in order to ensure real-time detection.

4.4 Performance Evaluation

In this section, we present a set of simulation experiments and the results to demonstrate

the efficacy of our proposed DHCD method, including the collaborative FDD process and

determination of compromised PMU process. Figure 4.5 shows the IEEE 39-bus power

system that is used as a benchmark system in our simulation experiments. IEEE 39-bus
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Fig. 4.5 IEEE 39-bus power system

power system is a well-known New England power system with 10 generators, 39 buses,

and 46 transmission lines, which is commonly used as a benchmark system to test and

verify new schemes [49, 21, 104]. Combined with the PowerWorld simulator [105], the

power system can provide real-time, accurate and precise state information of the power

system. Our experiments are conducted using the PowerWorld simulator on an IEEE standard

39-bus power system, where a number of scenarios are simulated and corresponding real-

time measurement data from PMUs are collected. These data are then used to evaluate our

proposed DHCD method in MATLAB. The key parameters are summarized in Table 4.2.

4.4.1 Efficacy of FDD Algorithm

In this section, we simulate two groups of simulation experiments. The first group shows that

only one piece of the four rule specifications is violated (with a single “1" in Rt
j). In contrast,
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Table 4.2 Parameter settings

Parameter Default setting

Th 0.8

Sb 10

Dth 0.6

ω, τ ω = 0.4, τ = 0.001

λg, λ
0
b λg = 0.1, λ0

b = 0.5

Number of PMUs: N 39

Number of samples each test: K 1000

State variables that collected δ, V, LMvar, LMW

the second group shows that multiple pieces of the four rule specifications are violated (with

multiple “1"s in Rt
j). Further, as shown in Fig. 4.6, each group is divided into four different

cases: (a) single, (b) sparse, (c) random, and (d) dense, representing four distribution types

of false measurement data. To be specific, case (a) describes that only single PMU is inserted

with false measurement data; case (b) describes that multiple sparsely distributed PMUs are

inserted with false measurement data; case (c) describes that multiple randomly distributed

PMUs are inserted with false measurement data; and case (d) describes that multiple densely

distributed PMUs are inserted with false measurement data.

Table 4.3 The detection rate and the average iterations of FDD algorithm with single rule

violated false measurement data under four different distribution types. The number of PMUs

with false measurement data is 6

Distribution type Detection rate Average iterations

Single 100.0% 1.000

Sparse 100.0% 1.000

Random 97.10% 1.173

Dense 80.40% 2.071

Tables 4.3 and 4.4 show the simulation results in terms of the detection rate and the

average iterations of the FDD algorithm for detecting false measurement data with single

violated rule and multiple violated rules, respectively. We observe from both Tables 4.3

and 4.4 that, either singly or sparsely distributed PMU(s) with inserted false measurement
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(a) single (b) sparse

(c) random (d) dense

Fig. 4.6 Four different cases of the distribution of PMUs with inserted false measurement

data: single, sparse, random, and dense

Table 4.4 The detection rate and the average iterations of FDD algorithm with multiple rules

violated false measurement data under four different distribution types. The number of PMUs

with false measurement data is 6

Distribution type Detection rate Average iterations

Single 100.0% 1.000

Sparse 100.0% 1.000

Random 97.90% 1.107

Dense 93.70% 1.520

data can be easily detected by our FDD algorithm with a 100% detection rate. As for either

randomly or densely distributed PMUs with inserted false measurement data, FDD has a
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high detection rate but not 100%. The reason is that, in most cases, the collaborative FDD

performs well for detecting anomalous data when these corresponding PMUs are located near

the inner regions of the grid. The anomalies can be identified by starting from the peripheral

PMUs at the first iteration to the inner PMUs at the subsequent iterations. While, in some

extreme and rare cases, if these anomalous PMUs are concentrated at the marginal regions of

the grid, only peripheral PMUs in the vicinity of the inner regions can be identified. After the

first or two iterations, the peripheral anomalous PMUs can be identified and their connections

to other PMUs removed. Therefore, other anomalous PMUs in marginal regions may be

isolated with only anomalous neighbouring PMUs. They can collude with each other to

mutually protect each other by showing the same results Rt
i. Such extreme cases may occur

in dense distribution type simulation experiments, so the dense type holds relatively lower

detection rate in both group one and group two.

The average iterations for either singly or sparsely distributed PMU(s) with inserted false

measurement data in both group one and group two are 1.000, as the inserted anomalous

data of these two types can be easily identified by collaborative detection with only one

iteration. In random distribution type, the average iterations are 1.173 and 1.107 for the two

groups, respectively. This means that one round FDD can successfully detect the inserted

false data, but in some situations, it requires another one to two rounds to detect the false data.

Note that, in our simulation experiments, for undetected false data, the number of iterations

is set as 5, the upper bound of FDD algorithm. As for the densely distribution type, the

average iterations are 2.071 and 1.0520 respectively. This shows that, compared with random

distribution type, more cases require additional FDD iterations to detect the inner false data.

Interestingly, the simulation results also show that, group two simulations can achieve a

higher or equal detection rate with fewer average iterations than group one. This is because

our FDD algorithm detects the false data when at least one rule is violated, so in group two it

is much easier for FDD to detect the anomalous data.
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Fig. 4.7 The average iterations needed for FDD algorithm vs. different numbers of PMUs

with false measurement data
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In addition to the above results, we studied the relationship between the average iterations

and the number of PMUs with false data under random distribution type as shown in Fig. 4.7,

and the corresponding detection rate as well in Fig. 4.8. Clearly, the value of the average

iterations increases, and eventually up to 5, the upper bound, as the increase in the number

of PMUs with false data. Correspondingly, the value of the detection rate drops from 1 to

0 while the number of PMUs with false data increases. We also observe similar results in

the sense that both values of the average iterations and the detection rate of multiple rules

violation outperformed the single rule violated data.

4.4.2 Identification of Compromised PMUs with Our Reputation Sys-

tem

The performance of our reputation system can be affected by the following critical parameters:

(1) ω, the weight assigned for weight assigned for the history reputation level; (2) Dth,

the detection threshold; (3) λb, the impact factor; and (4) St
b, the number of successive

observations of “bad” data.

Figure 4.9 shows the fluctuations of a PMU’s reputation level under various values of ω.

Three FmDI events, each lasting 10 samples, are inserted into the PMU’s measurement data.

This figure shows that, the higher the ω is, the more the current reputation level T t relies on

its history value Th. Particularly, ω = 0.0 indicates that T t = Th, and ω = 1.0 indicates that

T t = T t
u.

Figure 4.10 shows the fluctuations of a PMU’s reputation level under various values of

Dth. Six FmDI events, each lasting 10 samples, are inserted into the PMU’s measurement

data. We observe from this figure that a higher Dths hold a lower tolerance to PMUs’ “bad”

behaviors, while lower Dths have higher tolerance to PMUs’ “bad” behaviors. In other

words, higher Dths are more sensitive than lower Dths. For example, when Dth = 0.65, our

reputation system raises an alarm when the first FmDI event is inserted.
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10, λ0
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Fig. 4.11 The reputation level of a PMU under various values of λ0
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The relationship between the reputation level and the λ0
b is plotted in Fig. 4.11. Three

FmDI events, each lasting 10 samples, are inserted into the PMU’s measurement data. Clearly,

the higher the λ0
b , the more adverse the consequence of penalty to the reputation level, which

means that the reputation level decreases significantly.

A similar relationship between the reputation level and the Sb is plotted in Fig. 4.12.

Also, three FmDI events but different lengths are inserted into the PMU’s measurement

data. Similar to Fig. 4.11, this figure shows that the larger the Sb, the more significance the

penalty has on the reputation level, as large Sb results in more times of λt
b adjustment, i.e.,

λt
b = λt−1

b ∗ eτ . For instance, with Dth = 0.6, the reputation level drops quickly below Dth

if Sb = 30.

4.5 Summary

In this paper, we proposed a novel DHCD method to identify and mitigate FmDI attacks

in smart grid CPS. Specifically, a rule specification based real-time collaborative detection

system was designed to identify the anomalies of measurement data. In addition, a new

reputation system with an ARU algorithm was presented to evaluate the overall running status

of the PMUs, which can be used to identify compromised PMUs. We then demonstrated the

utility of the proposed approach using simulations of the IEEE 39-bus power system.

As previously discussed, our method is designed to detect the malicious activities resulting

in the anomaly of measurement data. Future work would include extending the proposed

approach to capture power system faults (e.g., voltage disturbance, open circuit, and short

circuit).



Chapter 5

DDOA: A Dirichlet-Based Detection

Scheme for Opportunistic Attacks

In the hierarchical control paradigm of a smart grid cyber-physical system, decentralized

LAs (local agents) can potentially be compromised by opportunistic attackers to manipulate

electricity prices for illicit financial gains. In this chapter, to address such opportunistic

attacks, an example of FcDI attacks, we propose a Dirichlet-based detection scheme (DDOA),

where a Dirichlet-based probabilistic model is built to assess the reputation levels of LAs.

Initial reputation levels of the LAs are first trained using the proposed model, based on their

historical operating observations. An adaptive detection algorithm with reputation incentive

mechanism is then employed to detect opportunistic attackers. We demonstrate the utility

of our proposed scheme using data collected from the IEEE 39-bus power system with the

PowerWorld simulator.

5.1 Introduction

With the increasing connectivity of society and advancement of ICT, smart grid cyber-

physical system is increasingly a commonplace. Smart grid cyber-physical system is a

large-scale interconnected power infrastructure spanning across one or more jurisdictions.
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Fig. 5.1 Three-tier hierarchical flocking-based framework for future smart grids

To guarantee high reliability and robustness of the underlying critical infrastructure, real-

time monitoring, data analytics, and control are highly critical. Empirically, data analytics

is generally performed by the state estimator at the system control center [21, 106, 107].

However, with the increasing number of interconnections, nonlinearity, and dynamics, real-

time data analytics will inevitably impose significant computational burden and complexity

on control center [108]. If this is not well-managed, control center’s operating efficiency will

be adversely affected, resulting in cascading effects - e.g. affecting the reliability and the

robustness of the power grid and eventually crippling the power grid. One of the potential

solutions to address the exacting computational requirements on the control center identified

in the literature is the hierarchical control framework. In such a framework, decentralized

LAs perform real-time data analytics activities in their local region [109, 110].

While hierarchical framework can effectively reduce the computational burden of the

control center, it may result in unintended security consequences [108]. For example, in

the current centralized power system, it is easier to devote efforts and resources to secure a

central entity (i.e. control center); thus, control center is generally regarded as a fully trusted
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party. In a hierarchical framework, however, it is not realistic to expect that all decentralized

LAs can be secured to the same level as the control center.

The upward trend in Internet-of-Things and integration of power grids with ICT have also

resulted in an increased attack vector. For example, vulnerabilities in existing power system,

or connected devices and/or entry points can be exploited by cybercriminals. According

to the monitor newsletter of Industrial Control Systems Cyber Emergency Response Team

(ICS-CERT), in Fiscal Year 2015 (i.e. 1 October 2014 to 30 September 2015), ICS-CERT of

the U.S. Department of Homeland Security has reportedly responded to 295 cybersecurity

incidents involving critical infrastructures, and the energy sector is the second most targeted

critical infrastructure sector [111]. The dangers of threats to cyber-physical systems are

evidenced by recent attacks (e.g. on a German steel mill that destroyed a blast furnace [112])

and attempts (e.g. ISIS attempted to hack U.S. electric power utilities to steal confidential

grid information and launch terrorist attacks [54]). Successful attacks could potentially

overwhelm and paralyse the country’s interconnected critical infrastructure sectors and,

consequently, cause severe social unrest.

Unsurprisingly, security of smart electricity markets has attracted the attention of se-

curity researchers [113, 38, 114]. However, we observe existing efforts appear to focus

on mitigating data integrity attacks (i.e. attackers falsify measurement data to “blind” the

system in order to manipulate electricity prices [115]). Generally, it is assumed that attackers

have access to the system configuration, and are able to simultaneously falsify a set of

measurement data at several PMUs at will. Kosut investigated the various attack strategies

and their countermeasures for malicious data integrity attackers in smart grids [116]. Xie and

Esmalifalak et al. also examined FDI attacks in deregulated electricity markets, which could

be used to manipulate nodal electricity prices [38, 117, 37]. These studies focused on the

centralized power system model. With the increasing demands on interconnectivity between

systems in future smart grids, recent research focus have shifted to security in hierarchical

smart grids (see [108, 118, 103, 41]). For example, Li [41] proposed a distributed quick
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detection scheme for FDI attacks in smart grids. Vukovic [108] analyzed the security issues

in distributed power system and proposed a methodology to detect and mitigate data integrity

attacks.

Unfortunately, most existing efforts were directed to the insider data integrity attacks.

In addition to criminally-, politically-, and ideologically-motivated attacks, cybercriminals

may be interested in compromising smart grids by manipulating smart electricity markets for

illicit financial gains [117, 119, 115]. Opportunistic attacks [21, 120] are one such example,

which usually are also initiated by inside attackers. Specifically, rather than seeking to

falsify measurement data by compromising a set of PMUs, opportunistic attackers attempt to

manipulate electricity prices by only compromising the intelligent electronic device which is

responsible for determining the real-time electricity prices, say the LA. The compromised

LA can issue fake commands to the local generators, distributors, and transformers to shift

the normal demand-supply relations, which will further influence the electricity price at each

local bus. If colluded with other participants in smart electricity markets (e.g. power suppliers

and utilities), the attackers can make a great amount of illicit financial profits through the

wide fluctuations of the electricity prices [117]. This is the focus of this chapter.

Since opportunistic attacks are unlikely to result in any physical damages to the power

system, it is a challenging task for conventional IDS to identify. Moreover, opportunistic

attackers can flexibly adjust their attack strategies (e.g. probability to launch an attack when

there is a chance) based on system noise level to evade detection or scrutiny [21]. Hence, to

identify the abnormality of any possible compromised LA, an effective way is to observe

and assess their behaviors (i.e. operations and corresponding variable states) over a long

period of time. In this chapter, we seek to mitigate opportunistic attacks by presenting

a novel Dirichlet-based detection scheme (hereafter referred to as DDOA). The scheme

allows control center to effectively identify compromised LAs by observing their operating

behaviors. We regard the contributions of this work to be three-fold:
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• We first divide the smart grid infrastructure into a three-tier hierarchical framework,

which is designed to effectively reduce the computational burden on the control center.

This framework also makes it possible to guarantee high reliability and robustness of

future smart grids.

• We pioneer to study the opportunistic attacks in smart electricity market, and build up

a Dirichlet-based reputation model to monitor and assess the performance of the LAs

by observing their behaviors over a long period of time.

• Lastly, we propose and evaluate an adaptive detection scheme with reputation incentive

mechanism, which can effectively and accurately identify potential opportunistic

attackers hidden in the smart electricity market and prevent them from manipulating

electricity prices. In addition, two-level detection thresholds are also employed in our

DDOA scheme, which can effectively differentiate malicious activities from common

system faults in smart grids.

The remainder of this chapter is organized as follows. Section 5.2 presents the system

model, the threat model, and our design goals. In Section 5.3, we introduce the preliminaries

required in the understanding of this work. Our proposed Dirichlet-based reputation model

and detection scheme is detailed in Section 5.4, and the performance evaluation is presented

in Section 5.5. Section 5.6 concludes the chapter.

5.2 Models and Design Goals

In this section, we formalize both system and threat models, as well as describe the design

goals.
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5.2.1 System Model

As shown in Fig. 5.1, we consider a hierarchical flocking-based framework for future smart

grids as our system model. This model comprises three tiers, namely: the lowermost tier of

PMU, the intermediate tier of LA, and the uppermost tier of control center. Their roles and

responsibilities are illustrated as follows:

• PMUs, deployed at each bus and generator across the whole power system, are geo-

graphically flocked, forming several flockings. They collect real-time measurement

data of system status in each flocking area (e.g. power generations G, power loads L,

and line power flows F), and report collected data to the PDC located in the upper tier

LA area.

• The LA (formed by PDC, state estimator, and local controller) in the flocking area

analyzes the real-time system status of its monitored local area with the reported data,

and transforms the data to the uppermost tier of control center as required. Specifically,

the PDC collects reported measurement data from PMUs; the state estimator is utilized

to estimate actual system status in the flocking area; and the local controller then

analyzes the estimated data, determines the locational marginal price (LMP), and

issues feedback commands to local generators, distributers, transformers, etc.

• The control center stores and analyzes the measurement data for various applications

(e.g. state estimation, contingencies analysis, and event diagnostics). In addition, in our

model, control center is also responsible for monitoring and assessing the reputation

levels of the subordinate LAs to identify abnormal LA behavior.

In this work, we assume that both control center and LAs make use of state estimation

to analyze the system status of either the entire region or local regions. Particularly, control

center carries out state estimation with a low frequency to reduce computational requirements

(see Section 5.4.3).
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5.2.2 Threat Model

Unlike traditional power systems, future smart grids will delegate real-time monitoring, data

analytics, and control tasks from control center to its subordinate LAs. As aforementioned,

it is natural to assume that only control center is a fully trusted party, while LAs are more

likely to be compromised by malicious attackers. In our model, PMUs are assumed to be

honest (i.e. data reported by PMUs to PDC are assumed to be without falsification).

By successfully compromising an LA, attackers can launch FcDI attacks by issuing fake

control commands to local generators, distributers, and transformers to manipulate normal

demand-supply relations in a specific flocking area. Such actions could result in changes

of the LMP in the area. As this is a premeditated activity, attackers can exploit the price

fluctuations/changes for financial gains. For example, attackers can collude with other players

in the smart electricity markets and purchase a significant amount of electricity at a low price

prior to the attacks. Once the price has been artificially jacked up, attackers will seek to sell

the pre-purchased electricity to users in the grid.

Fig. 5.2 presents an example of the contouring map of the distribution of electricity prices

under normal conditions on the IEEE 39-bus power system. Areas covered by various colors

reflect different demand-supply relations. In case of occurrence of malicious attacks, these

normal relations and consequently, electricity prices will be intentionally altered. These

attacks can be broadly categorized into random attacks, reckless attacks, and opportunistic

attacks.

1. Random attacks are conducted with a definite attack probability Pa ∈ [0, 1]. Since

such attacks are carried out in a regular mode, it is easier to identify the attacks using

traditional IDS or intrusion prevention systems (IPS).

2. Reckless attacks are launched on an ad-hoc basis. Specifically, once an opportunity

appears, attackers will launch an attack without hesitation and planning. Consequently,

reckless attackers are usually the easiest to be identified.
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Fig. 5.2 The contouring map of electricity price distribution on IEEE 39-bus power system

3. Opportunistic attacks are carried out based on the system noise with an attack proba-

bility Pa = C · Pn
ε, where C is a constant coefficient, and ε denotes a scalar of the

system noise Pn. Particularly, ε > 1 indicates conservative opportunistic attackers,

while ε < 1 indicates aggressive ones. Therefore, the larger the system noise is, the

higher the attack probability will be.

It is widely believed that opportunistic attackers are the most cunning attackers, as they

adapt their attack probabilities according to the system noise. Therefore, it is significantly

challenging to identify such attackers using traditional detection schemes (e.g. IDS and IPS).

In this chapter, we aim to propose an effective scheme to identify and detect opportunistic

attackers.
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5.2.3 Design Goals

The key objective of the proposed DDOA scheme is to provide an effective approach to

accurately identify and detect opportunistic insider attacks in smart electricity markets. Our

design goals are as follows:

1. Future smart grids are expected to be a hierarchical system, due to their capabil-

ity to ensure efficiency, stability, and reliability of power system in situations with

ever-increasing electricity demands, integration of renewable energy resources, and

various data analytical applications. Thus, we employ a three-tier hierarchical control

framework for future smart grids to support these critical requirements.

2. LAs play a prominent role in distributed flocking areas, and it is important to ensure

their functionality. Since LAs cannot be fully trusted (unlike a control center), we need

to be able to efficiently and accurately monitor and assess their behaviors. Thus, we

present a Dirichlet-based reputation model to assess LA’s operating conditions.

3. To continuously monitor all LAs’ operating conditions, we propose an effective de-

tection scheme based on our Dirichlet-based reputation model to identify LA com-

promised by an opportunistic attacker. In addition, we use collected real-time data in

PowerWorld simulator to validate the effectiveness of our proposed DDOA scheme.

5.3 Preliminaries

In this section, we briefly introduce some preliminaries required in the understanding of the

remaining of this chapter.

5.3.1 State Estimation

Although the basic concepts of state estimation have been introduced in Section 2.1, we

provide additional details of what kinds of data are measured and estimated. As shown in
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Table 1.1, PMUs can measure the values of a myriad of state variables. The measurement

data can be classified into three main types, including power generations zG, power loads zL,

line power flows zF .

According to DC power flow model, the estimated system states are given by

x̂ =






x̂V

x̂θ




 = HΛ










zG

zL

zF










. (5.1)

Usually, the estimated system states only comprise voltage magnitudes x̂V and phase angles

x̂θ . While, it is easy to further calculate the estimated power generations x̂G, power loads

x̂L, line power flows x̂F by using x = [x̂V , x̂θ] [115], i.e.,










x̂G

x̂L

x̂F










= ̥̥̥






x̂V

x̂θ




 = ̥̥̥HΛ










zG

zL

zF










. (5.2)

where ̥̥̥ is a matrix relating the voltage magnitudes and phase angles to power generations,

power loads, and line power flows.

5.3.2 Real-Time LMP

In smart electricity markets, the real-time LMP within an LA area is determined based on the

estimated real-time system states. LMP is defined as the cost to serve the next unit increment

of power load (say 1MWh) at each bus by comprehensively taking into account actual power

generations, power loads, and line flows with respect to transmission line limits [121].

Such calculations can be formulated as an incremental linear optimization problem with

state estimates as described in Eq. (5.3). The objective is to minimize the cost function

subject to the power balance constraint, the generation megawatt bounds, the transaction

megawatt bounds and any transmission constraints that currently exist on the system. This
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optimization problem can be formulated as follows:

min J =
∑

Ci(∆Gi)−
∑

Cj(∆Lj)

s.t.
∑

∆Gi −
∑

∆Lj = 0

∆Gmin
i ≤ ∆Gi ≤ ∆Gmax

i

∆Lmin
i ≤ ∆Li ≤ ∆Lmax

i

Aik∆Gi +Djk∆Lj ≤ 0,

(5.3)

where Ci and Cj are calculated real-time offer for generator i and real-time bid for load j,

respectively [121]. Aik is a matrix of shift factors for generation bus i (with respect to the

reference bus) on the binding transmission constraints (k), and Djk is a matrix of shift factors

for load bus j (with respect to the reference bus) on the binding transmission constraints (k ).

The LMP values at each bus can be expressed as

LMPi = λ−
∑

Aik ∗ SPk, (5.4)

where λ is the marginal price of generation at the reference bus [122]. Aik is a shift factor

for bus i on binding constraint k, and SPk is the shadow price of constraint k.

5.3.3 Dirichlet Distribution

Dirichlet distribution [123] is a family of continuous multivariate probability distributions,

parameterized by a vector α of positive reals. Let X = ¶x1, x2, . . . , xk♦ be a discrete

random variable, where xi > 0 for i = 1, 2, . . . , k and
∑k

i=1 xi = 1. Suppose that α =

[α1, α2, . . . , αk] with αi > 0 for all i from 1 to k, and let α0 =
∑k

i=1 αi. Then, X is said to

be a Dirichlet distribution with parameters α, which is denoted by X ∼ Dir(α). Then, the
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probability density function is expressed as

f (X;α) =
1

B(α)

k∏

i=1

xαi−1
i =

Γ(α0)
∏k

i=1 Γ(αi)

k∏

i=1

xαi−1
i , (5.5)

where B(·) is a Beta function, and Γ(·) is a Gamma function.

The expectation and variance of X = xi are respectively given by

E[xi] =
αi

α0

,Var[xi] =
αi(α0 − αi)

α2
0(α0 + 1)

. (5.6)

5.4 Proposed DDOA Scheme

In this section, we elaborate our proposed DDOA scheme, which is composed of three parts:

behavior rule specifications, Dirichlet-based reputation model, and detailed description of

DDOA.

5.4.1 Behavior Rule Specifications

Smart grid is a large-scale interconnected cyber-physical system. The behaviors (i.e. opera-

tions and variable status) of the physical devices are an accurate reflection of their responses

to the feedback commands from the control unit. Thus, assessing the behaviors of physical

devices will be an efficient and reliable way to detect abnormalities in the control units. The

complex interconnections within a smart grid result in multiple inter-constraints between the

state variables, which can be utilized to specify a set of rule specifications for the control

units’ behaviors. Therefore, in this work, we define several behavior rule specifications that

LAs must follow under normal operating conditions (see Table 5.1). This will allow us to

identify any operating abnormality.

Let us take the first rule R1 as an example, Gt
i denotes the measurement value of power

generation at generator i at time instant t, while Ĝt
i denotes the corresponding expected

value. R1 describes that the absolute difference between the measured value and the expected
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Table 5.1 Rule specifications

Index Rule Description

R1 ♣Gt
i − Ĝt

i♣ ≤ τG The absolute difference of G between measured and

expected values should be below a safe threshold τG

R2 ♣Lt
i − L̂t

i♣ ≤ τL The absolute difference of L between measured and

expected values should be below a safe threshold τL

R3 ♣F t
i − F̂ t

i ♣ ≤ τF The absolute difference of F between measured and

expected values should be below a safe threshold τF

R4 τmin
P ≤ Gt

i ≤ τmax
G The value of G itself should be limited within a specified

safe range [τmin
G , τmax

G ]

R5 τmin
L ≤ Lt

i ≤ τmax
L The value of L itself should be limited within a specified

safe range [τmin
L , τmax

L ]

R6 τmin
F ≤ F t

i ≤ τmax
F The value of F itself should be limited within a specified

safe range [τmin
F , τmax

F ]

value should be limited to a specified safe threshold τG. In our scheme, the expected values

are defined by the values estimated by the control center (other than by LAs) using state

estimation, since control center is the fully trusted party. Apart from R1, in real-world

applications, the value of Gt
i should also be constrained within a safe range, say [τmin

G , τmax
G ]

as described in R4. Similarly, parallel rules can also be specified for power loads L, power

line flows F as described in other rules.

Measurement values of the state variables are revealing of the LA’s behavior. Thus, it

is logical to infer that deviation of these rule specifications imply abnormality. A single

deviation may not sufficiently indicate that an LA is compromised, as the deviation may be

due to system noise. Therefore, a conjunctive form of these rules and long-term observation

of these conjunctive rules are employed in this work to effectively and accurately assess LAs’

behaviors (and reduce false positive rate).

R = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 (5.7)
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The conjunctive rule R is the combination of all specified rules as shown in Eq. (5.7).

To simply represent whether a rule is compliant, we use “1” to denote non-compliance of a

rule, while “0” to denote compliance. As such,R can be represented as a binary sequence.

For example, “100010” indicates that R1 and R5 are non-compliant while the remaining

rules are compliant. Particularly, full compliance of the conjunctive six rules is expressed as

“000000”, which is our reference sequence, seqref .

We now define the compliance level of each binary sequence as follows:

ρ = 1− dist(seq, seqref ), (5.8)

where seqref is the binary sequence extracted from each piece of measurement data, and dist

function denotes the normalized distance between each binary sequence and the seqref . Many

distance-based algorithms can be utilized in our scheme, like Hamming distance, Euclidean

distance, etc. In this work, we use Euclidean distance to conduct our simulation experiments.

In real-word applications, multi-level systems (e.g. quanternary, octonary) can be em-

ployed instead of binary system, which will yield a more accurate compliance level of these

rules. In addition, different rules may have various significance levels to the power system.

Hence, distinguished weights can be assigned to each rule to enhance the accuracy of the

compliance levels. However, either multi-level systems or weighted rules can impose consid-

erable computational burden on control center and require a significant amount of storage

for real-time detection applications. Therefore, if multi-level systems and/or weighted rules

are to be integrated into our DDOA scheme, efficient optimization algorithms or balancing

mechanisms will be required prior to deploying this enhanced scheme.

5.4.2 Dirichlet-Based Reputation Model

In our system model, control center is responsible for monitoring and assessing the behaviors

of LAs, and determining whether any LA has been compromised based on a series of
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historical observations. As known to us, Bayesian statistics can be used to measure the

uncertainty of a decision and provide future knowledge of such decision based on a set of

historical observations. In this way, a Bayesian statistics methodology is employed in our

work to assist control center in making correct decisions of whether or not an LA has been

compromised, and provide control center with knowledge of LAs’ most possible behaviors

in the future. Specifically, of the statistical techniques, Beta distribution is a viable method to

determine whether a decision is correct, while a Dirichlet distribution can determine at what

level a decision is correct [123]. In this chapter, to obtain a more accurate assessment of LAs’

behaviors and hence, a more accurate decision, we consider a Dirichlet-based probabilistic

model.

Dirichlet distribution is grounded on initial beliefs regarding an unknown event repre-

sented by a prior distribution. The initial beliefs combined with a series of historical observa-

tions can be represented by a posterior distribution. The posterior distribution is best suited

for our reputation model, as the reputations are required to be updated based on historical

observations. LetX be a discrete random variable denoting the compliance level ρ of the mea-

surement data for an LA. X takes values in the set X = ¶x1, x2, . . . , xk♦, where xi ∈ [0, 1]

and xi+1 > xi (i = 1, . . . , k). Usually, we have x1 = 0, and xk = 1. Let p = [p1, p2, . . . , pk]

with
∑k

i=1 pi = 1 be the probability distribution of X , i.e. p¶X = xi♦ = pi. In addition, let

ζ = [ζ1, ζ2, . . . , ζk] denote the cumulative historical observations and initial beliefs of X .

Then, we can model p with a posterior Dirichlet distribution as follows:

f(p♣ζ) = Dir(p♣ζ) =
1

B(ζ)

k∏

i=1

pζi−1
i =

Γ(ζ0)
∏k

i=1 Γ(ζi)

k∏

i=1

pζi−1
i , (5.9)

where B(·) is a Beta function, and Γ(·) is a Gamma function. ζ0 =
∑k

i=1 ζi. Given the

historical statistics ζ , the expected value of the probability of X to be xi is given by
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E(pi♣ζ) =
ζi

ζ0

. (5.10)

Let pj
i (t) denotes the probability that LAj behaves with an compliance level xi at time

instant t, where
∑k

i=1 p
j
i (t) = 1. We model pj

i (t) using a posterior Dirichlet distribution as

shown in Eq. (5.9). We define a random variable Y j(t) denoting the sum of the products

of the grade and probability of each compliance level in pj(t) = [pj
1(t), p

j
2(t), . . . , p

j
k(t)] for

LAj , which is given by

Y j(t) = ωpj(t) =
k∑

i=1

ωip
j
i (t), (5.11)

where ω = [ω1, ω2, . . . , ωk] is the grade assignment for each compliance level, measuring

the different impacts on LAj’s overall operating performance. This design will significantly

improve the accuracy of control center’s decisions.

To assess the overall status of an LA’s behaviors, we leverage the reputation level in

our scheme. Specifically, the LA’s behaviors can be described using various compliance

levels. Thus, the reputation level of an LA can be defined by the graded mean value of each

compliance level at time instant t as shown below:

Rj(t) = E[Y j(t)] =
k∑

i=1

ωiE[pj
i (t)] =

1

ζj
0(t)

k∑

i=1

ωiζ
j
i (t), (5.12)

where ζj
i (t) is the cumulative historical observations of LAj at time instant t with compliance

level xi. The variance of Y j(t) is then given by

σ2[Y j(t)] =
k∑

i=1

k∑

l=1

ωiωlcov[pj
i (t), p

j
l (t)]. (5.13)

Note that the covariance of pj
i (t) and pj

l (t) is given by

cov[pj
i (t), p

j
l (t)] =

−ζj
i (t)ζj

l (t)


ζj
0(t)

)2

ζj
0(t) + 1

) . (5.14)
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5.4.3 Description of DDOA

In DDOA, control center first trains the initial reputation levels of the LAs based on the

collected historical observations, as shown in Algorithm 5.1. Although this algorithm is

designed for the training phase and can be always finished offline, it is worth noting that the

time complexity of this algorithm is O(M ×N).

Algorithm 5.1 Reputation Level Training Algorithm

1: procedure DIRICHLET-BASED REPUTATION TRAINING

2: for j = 1 to M , control center do ◃ M is the number of LAs

3: 1). Extracts N pieces of reported data from LAj ;

4: 2). Computes the compliance level of each piece of data ρj(t),

5: t ∈ [1, N ] with Eq. (5.8);

6: for t = 1 to N do

7: for i = 1 to k do

8: if ρj(t) = xi then

9: ζj
i (t)← ζj

i (t− 1) + 1;

10: break;

11: else

12: ζj
i (t)← ζj

i (t− 1);

13: end if

14: end for

15: a). ζj
0(t) =

∑k
i=1 ζj

i (t);

16: b). Determines the reputation level of LAj by

17: Rj(t) = 1

ζj
0
(t)

∑k
i=1 ωiζ

j
i (t).

18: end for

19: end for

20: end procedure

After the training phase, control center obtains the initial reputation level of each LA.

While, these initial reputation levels only represent their historical performance. Recall that a

smart grid needs to provide near real-time monitoring and control of the whole power system.

As such, persistent observation and assessment of LAs’ behaviors is always required to detect

whether any LA may have been compromised. In the detection phase, we propose an adaptive

algorithm with a reputation incentive mechanism to update LAs’ reputation levels, whose

functionality is described in Algorithm 5.2.
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Algorithm 5.2 DDOA Algorithm

1: procedure REPUTATION UPDATING AND INTRUSION DETECTION

2: Initialization:

3: Tmax, Tmin, TS , TW , Hs > Hm, Ncount = 0,

4: µ1 > µ2 > · · · > µk, T1 = T2 = · · · = TM = Tmax,
5: ω1 = ω1, ω2 = ω2, . . . , ωk = ωk

6: for j = 1 to M , control center do with a frequency of 1/Tj

7: 1). Input: ρj(t), Rj(t− 1), ωj
1, ωj

2, . . . , ωj
k

8: 2). Classification:

9: LAj ∈







N, if Rj(t− 1) > Hs

S, if Hs ≥ Rj(t− 1) ≥ Hm

M, if Rj(t− 1) < Hm

10: 3). Judgement:

11: switch LAj do

12: case: LAj ∈ N

13: a). LAj is benign;

14: b). ωj
k ← min¶ωj

keµk , 1♦;
15: c). ωj

i ← ωi,∀ i = 1, 2, . . . , k − 1;

16: d). Tj ← Tmax;

17: case: LAj ∈ S

18: Tj ← max¶Tj/2, Tmin♦;
19: if ρj(t) = xk then ◃ xk = 1
20: ωj

k ← min¶ωj
keµk , 1♦;

21: Tcount ← Tcount + 1;
22: if Tcount > TS then

23: Tj ← min¶Tj ∗ 2, Tmax♦;
24: Tcount ← 0;
25: end if

26: else

27: ωj
k ← ωj

ke−µk ;

28: if ρj(t) = xi (i ̸= k) then

29: ωj
i ← ωj

i e−µi ;

30: end if

31: Tcount ← 0;
32: end if

33: case: LAj ∈M

34: LAj is compromised.

35: 4). Updates ζj
i for i = 1, 2, . . . , k with reference to Algorithm 5.1.

36: 5). Determines Rj(t) using Eq. (5.12) with observation window

37: TW .

38: end for

39: end procedure
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Based on historical experiences, control center first specifies two thresholds Hs and Hm

for the reputation level as the detection criteria, where Hs indicates suspicious threshold

while Hm indicates malicious threshold. In a real-world scenario, occasional occurrence of

system faults in smart grids is unavoidable and consequently, causes wide fluctuations of

state variables. Such incidents impact (and reduce) both compliance and reputation levels.

If a single detection threshold is utilized, we could possibly have a high false positive rate.

However, two levels of threshold can successfully tolerate these system faults; thus, it can

considerably reduce the false positive rate and further improve the detection rate.

By comparing the current reputation levels with the two specified thresholds, LAs can be

classified into one of the three distinct groups, namely: normal, suspicious, and malicious

group.

• normal group (N): for those who reside in the normal group, we consider them as

benign LAs. Thus, no further actions will be taken.

• suspicious group (S): for those who fall into the suspicious group, reputation incentive

mechanism will be triggered to adjust the monitor frequency and grades for different

compliance levels.

• malicious group (M): for those who belong to the malicious group, we consider them

as malicious LAs that have been compromised by opportunistic attackers.

From a social perspective, one needs to spend a considerable amount of time performing

good behaviors consistently in order to build up a good reputation, and only a few instances

of bad behaviors will cause doubt on the individual’s personality and result in a rapid fall in

social reputation [103]. Similarly, for LAs in the suspicious group, we employ a reputation

incentive mechanism to achieve adaptive assessment of their behaviors. In this mechanism,

we increase the grade ωk in response to an input of xj(t) = xk (the full compliance level),

and decrease both ωk and ωi responding to an input of xj(t) = xi, i ̸= k. In addition, when

LAj falls in the suspicious group S, control center will increase the monitor frequency of
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LAj twofold (i.e. Tj ← Tj/2) to pay closer attention to it. Under normal circumstances,

control center monitors LAj with a constant period Tmax. If control center observes that LAj

behaves perfectly with all full compliance levels within a safe observation time period TS ,

the monitor frequency will be reduced by half (say Tj ← Tj ∗ 2). Particularly, in the case

that any LA returns from group S to the normal group N, the monitor frequency and all the

grades, with the exception of ωk, will be recovered to the initial values. Note that the time

complexity of Algorithm 5.2 is O(M).

In this work, we observe LA’s behavior over a long period of time, rather than their entire

operating history, as the latter will reduce the response speed of the reputation levels and

consequently reduce the detection accuracy. Hence, we employ a relatively long observation

window TW as our reference observation period. In other words, control center only needs to

assess LA’s behavior within a time period of [t− TW , t].

This incentive mechanism is designed to encourage non-malicious LAs, who reside in

the normal group or may fall into suspicious group due to system noise, to keep up with

their good behaviors in order to increase their reputation levels, as well as rapidly decrease a

suspicious LA’s reputation level due to non-compliance behaviors.

5.5 Performance Evaluation

We conducted a set of experiments to evaluate the effectiveness of our proposed scheme.

First, we carried out Time Step Simulation experiments using the PowerWorld simulator

[105] to collect extensive real-time data from the IEEE 39-bus power testing system. Then, a

series of simulations were conducted in MATLAB 2014b to analyze the collected data.

5.5.1 Data Collection in PowerWorld

The IEEE 39-bus power system, used as our testing system (see Fig. 5.3), is geographically

partitioned into m areas (in our simulations, m = 6), which we referred to as LAs. In
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LA1

LA6
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LA5
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LA2

Fig. 5.3 IEEE 39-bus power system with example flocking areas

PowerWorld, we make use of Time Step Simulation to collect massive real-time data for

around 20,000 minutes, including power generations of each generator G, power loads of

each bus L, and line power flows of each transmission line F, etc. The first 1,500 minutes of

data is used for the training phase, and the remaining data is used for the detection phase.

We randomly inserted fictitious data into the collected data to simulate the behaviors of

LAs under different scalar ϵ and system noise Pn.

5.5.2 Data Analytics in MATLAB

With our proposed reputation level training algorithm, we analyze the reputation levels using

the collected data. In the training phase, the effects of different ϵ and system noise Pn are

first evaluated. Fig. 5.4 plots the reputation levels with respect to ϵ along the training period.
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It can be observed that the reputation level converges to a constant value as time progresses,

and the higher the ϵ, the higher the reputation. This is because, as explained in Section 5.2.2,

a higher ϵ indicates a lower attack probability, hence leading to a higher reputation level.

The reputation levels under different system noise Pn along the training period are plotted in

Fig. 5.5. Similar to the effect of ϵ, the reputation level asymptotically converges to a constant

value, while the lower the system noise, the higher reputation level (recall lower system noise

results in lower attack probability).

In addition, to demonstrate how opportunistic attackers can adapt their attack probabilities

according to the system noise, we profile the daily system noise level based on real-time daily

load pattern in Fig. 5.6. Chertkov et al. have demonstrated a significant correlation between

system noise and load pattern in [124]. Under such circumstances, the reputation level versus

system noise level under different ϵ is also presented. From this figure, we observe that the

reputation level fluctuates conversely with the system noise, due to the same reason (i.e.

system noise has inverse impacts on the reputation level).

In the detection phase, we study two scenarios to demonstrate the effectiveness of our

proposed scheme. In the first scenario (see Fig. 5.7), we assume that at time instant 10,000

minutes, LA2 is compromised by a malicious attacker. Since LA2 belongs to the normal

group in the beginning, we observe that after it is compromised, the reputation level decreases

slightly to the suspicious group threshold HS . With our reputation incentive mechanism,

once the reputation level drops below HS , it is regarded as suspicious and the reputation

level decreases rapidly to the malicious group threshold HM with respect to continuous

non-compliance behaviors. Thus, the compromised LA2 has been identified. By contrast,

LA5 and LA6 are designed to be compromised from the very beginning. A notable difference

is that LA6 suffers from a higher system noise than LA5, and the reputation level of LA6

decreases faster than LA5.

Modelling a different opportunistic attacker, we insert a temporal system fault to LA3 at

time instant 10,000 minutes in scenario two to highlight the different performance between
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attackers and system faults, and the corresponding reputation level variation is shown in

Fig. 5.8. We observe that due to the system fault, the reputation level of LA3 first decreases

from the normal group to the suspicious group with a low decrease rate in normal group and

a high decrease rate in suspicious group. This is because the proposed reputation incentive

mechanism adaptively changes the decrease rate accordingly. After that, the reputation level

gradually recovers and, finally, converges to a steady level. It is clear that the system fault

will not change the behavior of the LA, and although the reputation decreases within a short

period of time, our scheme is able to recover the reputation.

Finally, the detection rate versus the length of the observation window TW is presented

in Fig. 5.9. We observe that within a specific period (say [2000, 4000]), the detection rate

increases with the growth of the observation window length, as a longer observation window

can provide additional evidence to identify the hidden attackers. Compared with conservative

attackers (with ϵ > 1), it is quicker to identify the aggressive attackers (with ϵ < 1) using our

proposed scheme.

In summary, we have demonstrated that a potential class of opportunistic attackers in

smart grids can adapt their attack probabilities according to the dynamic system noise level

Pn, and our proposed DDOA scheme can effectively detect and identify these opportunistic

attackers (e.g. state-sponsored actors). In addition, our scheme has been shown to accommo-

date occasional system faults due to the two specified thresholds Hs and Hm. We have also

shown that our scheme achieves a high detection rate with long observation windows. There-

fore, our proposal is an effective and promising solution to detect opportunistic attackers in

smart grid cyber-physical systems.

5.6 Summary

In this chapter, we have presented a three-tier hierarchical framework for future smart grids,

and highlighted the importance of resilience against financially-motivated opportunistic
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attackers (seeking to manipulate smart electricity prices). To defend against opportunistic

attacks, we have proposed a Dirichlet-based detection scheme (DDOA) to identify and detect

potential attackers. Using simulations of extensive real-time data collected from the IEEE

39-bus power testing system, we demonstrated the practicality of DDOA simulations.





Chapter 6

PFDD: On Feasibility and Limitations of

Detecting FmDI Attacks Using D-FACTS

Recent studies have investigated the possibilities of proactively detecting the high-profile

FmDI attacks on smart grids by using the D-FACTS (distributed flexible AC transmission

system) devices - the PFDD approach. However, the feasibility and limitations of such an

approach have not been systematically studied in the existing literature. In this chapter, we

pioneer to explore the feasibility and limitations of adopting the PFDD approach to thwart

FmDI attacks on smart grids. Specifically, we thoroughly study the feasibility of using

PFDD to detect FmDI attacks by considering single-bus, uncoordinated multiple-bus, and

coordinated multiple-bus FmDI attacks, respectively. We prove that PFDD can detect all

these three types of FmDI attacks targeted on buses or super-buses with degrees larger than

1, as long as the deployment of D-FACTS devices covers branches at least containing a

spanning tree of the grid graph. The minimum efforts required for activating D-FACTS

devices to detect each type of FmDI attacks are respectively evaluated. In addition, we also

discuss the limitations of this approach, and it is strictly proved that PFDD is not able to

detect FmDI attacks targeted on buses or super-buses with degrees equalling 1.
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6.1 Introduction

Among the cyber threats on power grids, the high-profile FmDI attacks have drawn extensive

research attentions from both power and security communities [49, 51, 28, 125, 107, 126–

128]. The success of an FmDI attack is based upon attackers’ knowledge of power grid

connections and configurations. Unfortunately, from FmDI attackers’ perspective, knowl-

edge harvesting of power girds has been remarkably facilitated by the rapid integration of

information and communications technologies as well as global proliferation of powerful

hacking tools [129]. As mentioned earlier in Section 2.2, various channels can be exploited

by FmDI attackers to illegally obtain valuable information of power grids.

Armed with valuable information of power grids, the knowledgeable FmDI attackers

are capable of constructing attack vectors that can easily circumvent the conventional state

estimation based false data detection (FDD) defenses [125, 130, 131]. This may make

many of existing FDD defenses no longer feasible. We term such FDD defenses as passive

approaches. A few recent studies have demonstrated the possibilities of achieving proactive

FDD - termed as PFDD - in power grids by using distributed flexible AC transmission system

(D-FACTS) devices [132, 133, 22]. Morrow et al. are presumably the pioneers to develop

the idea of using D-FACTS devices to achieve topology perturbation for detecting either

fault-induced or maliciously-injected bad data in the power grid [132]. Following this work,

Rahman et al. investigated the moving target defense approaches to harden the security of

the power system state estimation, one of which is to perturb the power line admittance by

using D-FACTS devices [133]. More recently, Tian et al. proposed a hidden moving target

defense approach that can maintain the power flows after changing the line susceptance, to

avoid alerting the attackers who can compute the state estimation residuals [22].

Despite of these encouraging developments, some important issues of PFDD remains

largely open, such as how much D-FACTS devices and where to deploy them across the

power system can help with PFDD, especially when the FmDI attack strategies are evolving

rapidly and appearing in a more sophisticated and coordinated mode [130]. In this paper,
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we aim to systematically explore the feasibility and limitations of using PFDD to detect

FmDI attacks in smart grids. We consider three types of FmDI attacks, namely single-bus,

uncoordinated multiple-bus, and coordinated multiple-bus FmDI attacks, respectively. We

adopt an arguably more realistic assumption that the adversaries can falsify the measurement

data but cannot compute the state estimation residuals by themselves on real-time basis. It is

based on the consensus that attackers are usually equipped with limited capabilities, unable

to obtain the real-time global knowledge and measurement data of the entire power grid [28].

Despite of these encouraging developments, it remains largely an open issue how much

D-FACTS can help with PFDD when the FmDI attack strategies are evolving rapidly and

appearing in a more sophisticated and coordinated mode [130]. In this chapter, we aim to

systematically explore the feasibility and limitations of using PFDD to detect FmDI attacks

in smart grids. We consider three types of FmDI attacks, namely single-bus, uncoordinated

multiple-bus, and coordinated multiple-bus FmDI attacks, respectively. We adopt an arguably

more realistic assumption that the adversaries can falsify the measurement data but cannot

compute the state estimation residuals by themselves on real-time basis. It is based on the

consensus that attackers are usually equipped with limited capabilities, unable to obtain the

real-time global knowledge and measurement data of the entire power grid [28].

The main contributions of this chapter are four-fold:

• First, we design a framework to detect FmDI attacks on smart grids by using the PFDD

approach. The rationale behind this framework is also presented.

• Second, we explore the feasibility of using PFDD to detect the aforementioned three

types of FmDI attacks on smart grids. We prove that PFDD can detect the existence

of all these FmDI attacks targeted on buses or super-buses with degrees larger than 1

as long as the deployment of D-FACTS devices covers at least a spanning tree of the

power grid graph.
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• Third, we obtain the profiles of the minimum efforts required for D-FACTS devices to

identify FmDI attacks with respect to the FmDI injected offsets on the system states,

for all three types of FmDI attacks respectively. These profiles are valuable for system

defenders to make appropriate efforts to counter FmDI attacks.

• Last, the limitations of using PFDD are also discussed. It is strictly proved that PFDD

is unable to detect FmDI attacks targeted on buses or super-buses with degrees 1.

The remainder of this chapter is organized as follows. In Section 6.2, we present an

overview of the D-FACTS devices, and detail our system model as well as the adversary

model. The PFDD framework and its feasibility explorations are elaborated in Section 6.3,

followed by discussions on its limitations in Section 6.4. Section 6.5 closes this chapter with

the conclusion.

6.2 Overview and Models

6.2.1 Overview of D-FACTS Devices

In power grids, the flexible AC transmission system (FACTS) devices have been proven as a

feasible solution to control power flows in the transmission & distribution system by altering

the impedance of the power lines or changing the phase angle of the voltage applied across

the lines [134]. However, high costs and reliability concerns have limited the deployments of

FACTS devices. A distributed solution of FACTS, named D-FACTS, has therefore emerged

and got widely accepted because of its smaller scale, lower costs, and better performance

compared to FACTS devices [134]. It can be reasonably expected that D-FACTS devices

will be widely deployed across smart grids in the near future due to its increasing capabilities

and decreasing installation costs [22, 24].

Representatives of D-FACTS devices include distributed static series compensator (DSSC),

distributed series reactor (DSR), and synchronous voltage source (SVS) [135]. These D-
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FACTS devices can be used to support a myriad of applications such as contingency response,

loop flow control, phase balancing, transient stability response, renewable energy transfers,

etc. In this chapter, we employ D-FACTS devices with the expectation to achieve adaptable

power grid configurations, which ultimately allows proactive detection of FmDI attacks.

6.2.2 System Model

In our system model, we consider the DC power flow based state estimation involving bad

data detection procedure (see Fig. 6.1). Note that though we mainly focus on DC power flow

model for its suitability and simplicity, we also extend our analysis to AC power flow model

in Section 6.3.2 to show the unversality of our studies.

The basic concepts of state estimation is introduced in Section 2.1. In this chapter, we

provide more details of how the H matrix is constructed.

H Matrix Construction

Let A ∈ Rl×n denote the branch-bus connection matrix. l is the number of branches (power

lines), and n is the number of buses that is the same as the number of system states in DC

state estimation. The entries of A are given by

aki =







1, if branch k starts at bus i

−1, if branch k ends at bus i

0, otherwise,

(6.1)

where k ∈ L = ¶1, 2, · · · , l♦ and i ∈ N = ¶1, 2, · · · , n♦. In addition, let D ∈ Rl×l denote

a diagonal matrix whose diagonal entries are the admittance (negative susceptance in DC
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power flow model) values of branches. Then the Jacobian matrix H is constructed as [136]

H =










A⊺DA

DA

−DA










. (6.2)

6.2.3 Adversary Model

As mentioned in Section 2.2 that, to launch a successful FmDI attack, the knowledge of H

matrix is demanded for the attackers. This is also described in Lemma 1.

Lemma 1. [28] Suppose the original measurements z can pass the bad measurement detec-

tion. The malicious measurements za = z + a can pass the bad measurement detection if a

is a linear combination of the column vectors of H (i.e., a = Hc).

For attackers without the knowledge of H matrix, it is hard for them to select an attack

vector a that can, fortunately, happen to lead to a success in passing the BDD test. In contrast,

when it comes to knowledgeable attackers, they can choose any non-zero arbitrary vector c

and construct an attack vector by a = Hc if they have sufficient knowledge of the H matrix.

As aforementioned, the recent years have seen the growing knowledge of the attackers;

therefore, the existence of knowledgeable attackers are increasingly becoming a challenge

that we must carefully handle. In this chapter, we consider three types of FmDI attacks in

terms of the attackers’ capabilities and their knowledge levels of the H matrix, including

• Single-bus FmDI attacks: this type of FmDI attacks are only planned and carried out

on a specific single bus, e.g., ci = θa for i ∈ N and cj = 0 for ∀j ∈ N \ i, where

θa is a constant number of voltage phase angle. The attackers are with weak attack

capability and basic knowledge level of H matrix (i.e., the susceptance information of

one specific bus’s incident branches).

• Uncoordinated multiple-bus FmDI attacks: this type of FmDI attacks can be simultane-

ously but independently planned and constructed on multiple buses in an uncoordinated
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mode, e.g., c = (0, θa1, 0, 0, θa2, θa3, 0, · · ·
︸ ︷︷ ︸

n

)⊺, where θa1, θa2, and θa3 are distinct con-

stant numbers of voltage phase angle. The attackers are with intermediate attack

capability and advanced knowledge level of H matrix (i.e., the susceptance informa-

tion of several buses’ incident branches).

• Coordinated multiple-bus FmDI attacks (also called super-bus FmDI attacks [130]):

this type of FmDI attacks can be simultaneously carried out on multiple buses in

a coordinated mode, e.g., c = (θa, θa, 0, 0, θa, 0, θa, · · ·
︸ ︷︷ ︸

n

)⊺. The attackers are with

strong attack capability and expert knowledge level of H matrix, i.e., the susceptance

information of a super bus. Note that, a super-bus is defined as a union of multiple

inter-connected buses, where all the buses united can be considered as a merged one.

All the internal branches within a super-bus can be considered as omitted, and all the

external branches to other buses are considered as the branches of the super-bus [130].

6.3 The Feasibility of PFDD

In this section, we study the feasibility of using PFDD approach to detect FmDI attacks on

smart grids. Prior to delving into the detailed findings, we give the definition of the degree of

a bus in power grids.

Definition 2. Given the graph of a power grid topology, the degree of a bus is defined as the

number of connections (branches) it has to other buses. Similarly, the degree of a super-bus

is defined as the number of connections (branches) the super-bus has to other buses.

Note that there is usually no isolated buses with degrees 0 in real-world power grids. In

this chapter, we consider cases where the degree of any bus in a power grid is no less than

1. Our discussions contain two parts. In the first part, we show that the PFDD approach

can detect FmDI attacks targeted on those buses with degrees larger than 1, of which the

details will be presented later in this section. In the second part, we show that for buses with
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degrees 1, the PFDD approach cannot detect FmDI attacks targeted on them; the details will

be presented in Section 6.4. Note that hereafter in this section, all buses we are talking about

are with degrees strictly larger than 1.

Our discussions in the rest part of this section will be presented as follows: first, we

develop a framework for PFDD approach and show the rationale behind it. Then we evaluate

the minimum efforts required for D-FACTS devices to identify FmDI attacks with respect

to the values of injected offset on the system states. Last but most important, we formulate

and prove a theorem regarding the minimum number of branches deployed with D-FACTS

devices required to successfully detect FmDI attacks.

6.3.1 The Framework for PFDD Approach and Its Rationale

The PFDD approach fulfills FDD by 1) proactively activating the D-FACTS devices de-

ployed on the transmission lines (branches), 2) updating state estimation parameters, and

3) conducting BDD process. Activating D-FACTS devices proactively changes the system

configuration information, therefore affecting the state estimation; however, the attackers

are incapable of following such configuration changes in a very short time. This builds up

the premises for deploying the PFDD approach in smart grids to detect FmDI attacks. Note

that, unlike most of the existing FDD approaches, PFDD is applied proactively regardless of

whether anomaly is observed/sensed.

We design a framework for the PFDD approach in Algorithm 6.1. The rationale behind

is discussed below. Assume that when D-FACTS devices are activated, the values of line

admittance are altered by

D′ = D+∆D, (6.3)
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where ∆D is a matrix of the line admittance variations when D-FACTS devices are activated.

Accordingly, the Jacobian matrix is changed by

H′ =










A⊺D′A

D′A

−D′A










=










A⊺(D+∆D)A

(D+∆D)A

−(D+∆D)A










= H + ∆H, (6.4)

where

∆H =










A⊺∆DA

∆DA

−∆DA










. (6.5)

By conducting state estimation, the updated Frobenius norm of the normalized measurement

residuals with false data injected is given by

∥r′
a
∥ = ∥

√
W−1(z′

a
−H′x̂′

a
)∥

= ∥
√

W−1[z′ + a −H′(x̂′ + ∆x)]∥

= ∥
√

W−1(z′ −H′x̂′

︸ ︷︷ ︸

original

+ a −H′∆x
︸ ︷︷ ︸

injected

)∥,
(6.6)

where z′, x̂′, ∆x are the updated measurement vector, estimated system state vector, and

the injected offset on system state vector, respectively. Recall that the attackers are incapable

of immediately harvesting the full knowledge of the updated Jacobian matrix H′ right after

D-FACTS devices are activated. Hence, the attack vector is still constructed by a = Hc

with the original knowledge of H. In this case, the reported falsified measurement data

z′
a

= z′ + Hc can be easily identified as being abnormal. This is because that in most cases,

vector
√

W−1(a −H′∆x) =
√

W−1(Hc−H′∆x), the injected part of Eq. (6.6), no longer

equals 0. When the entry values of this vector are sufficiently large, it leads to ∥r′
a
∥ > τ and

triggers the false data alarm. Subsequent sections will provide more details on in what cases,

vector
√

W−1(a −H′∆x) shall be equal to 0 or not, respectively.
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Algorithm 6.1 Framework for PFDD Approach

1: procedure

2: 1). Activate the D-FACTS devices deployed on branches of interest;

3: 2). Update D matrix by Eq. (6.3);

4: 3). Update H matrix by Eq. (6.4);

5: 4). Conduct state estimation by Eq. (2.4) using updated D
′ and H

′;

6: 5). Execute BDD procedure by Eq. (2.8):

7: if ∥r′

a
∥ > τ then

8: output: FmDI attack is detected.

9: else

10: output: No FmDI attack is detected.

11: end if

12: end procedure

6.3.2 Evaluation of the Minimum Efforts Required for D-FACTS De-

vices to Detect Effective FmDI Attacks

We start our discussions by making the following definitions.

Definition 3. An effective FmDI attack is the FmDI attack that, if not detected and prevented,

is capable of injecting falsified measurement data and eventually lead to impacts/changes on

the power flows. In contrast, an ineffective FmDI attack is the FmDI attack that is capable

of injecting falsified measurement data but cannot eventually lead to impacts/changes on

the power flows. Note that an FmDI attack is defined as an ineffective FmDI attack, if

the entry values of the injected offsets c are within the tolerance threshold of system state

errors/faults. Such small-value false data cannot lead to impacts/changes on the power grid

more significant than those caused by measurement noises, and therefore can be tolerated.

Another representative example for an ineffective FmDI attack would be a coordinated

multiple-bus FmDI attack on all the buses, i.e., c = (θa, θa, · · · , θa)⊺. In this case, though

the attacker is capable of successfully injecting falsified measurement data za = z + Hc

and leading to xa = x + c, it cannot make any impact/change on the power flows. This is

because, according to Eq. (6.8), the power flow is proportional to the voltage phase difference

between buses. The attack injecting a same value of voltage phase angle to all buses with no
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phase difference being created between any two buses, therefore, cannot cause any impact on

the power flows.

Although PFDD is theoretically feasible, it is still not clear enough in the power com-

munity whether proactively activating D-FACTS devices will contribute to potential hidden

impacts or instability issues. To help provide necessary knowledge of making a consensus

on this question, it is valuable to figure out the minimum efforts needed for using D-FACTS

to detect effective FmDI attacks.

Optimization Problem Formulation under DC Model

We define the required efforts, resulting from activating D-FACTS devices to detect the

existence of effective FmDI attacks, as ∥∆D∥, the Frobenius norm of the line admittance

variations on all the branches. This optimization problem is to minimize the efforts subject

to constraints of D-FACTS capabilities and power flow balance requirements, which is

formulated by

min
∆D

∥diag(∆D)∥ (6.7a)

s.t. ∥r′
a
(∆D)∥ > τ (6.7b)

dmin
k < ∆dkk < dmax

k , k ∈ L (6.7c)

Pi,G − Pi,L =
∑

j∈Ni

P ′
ij,F , i, j ∈ N , (6.7d)

where diag(·) returns a vector containing the diagonal elements of a square matrix. Since

∆D is a diagonal matrix, ∥∆D∥ is equivalent to ∥diag(∆D)∥. ∆dkk is the k-th element of

vector diag(∆D). r′
a
(∆D) denotes the updated normalized estimation residuals with false

data injected, which is a function of ∆D. dmin
k and dmax

k serve as the lower and upper bounds

of ∆dkk, respectively, implying the range of admittance variations that D-FACTS devices

deployed on the k-th branch can achieve. Pi,G and Pi,L denote the power generations and

power loads at bus i, respectively. Further, we denote the neighbour buses of bus i by Ni,
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and P ′
ij,F the updated power flow between buses i and j, which in DC model is calculated by

P ′
ij,F = d′

kk(θ′
i − θ′

j) = −b′
ij(θ

′
i − θ′

j), (6.8)

where θ′
i and θ′

j are the updated voltage phase angles on buses i and j. b′
ij is the updated

susceptance of branch (i, j), which is also the k-th branch; hence b′
ij = −d′

kk.

With regards to the constraints of this optimization problem, formulas (6.7c) and (6.7d)

specify the capability constraints of D-FACTS devices and for the optimal power flow balance

requirements, respectively. More importantly, formula (6.7b) is specified for the successful

identification of FmDI attacks via the BDD procedure. The updated estimated system state

vector with false data x̂′
a

being injected is equivalent to the true updated system states added

by the injected offsets, which is given by

x̂′
a

= x̂′+∆x. (6.9)

Also, according to Eq. (2.4), we have

x̂′
a

= Λ′z′
a

= Λ′(z′ + a) = x̂′ + Λ′a. (6.10)

Thus, ∆x can be represented

∆x = Λ′a. (6.11)

As a result, constraint (6.7b) can be rewritten as

τ < ∥r′
a
(∆D)∥

= ∥
√

W−1(z′ −H′x̂′ + a −H′∆x)∥

= ∥
√

W−1(z′ −H′x̂′ + Hc−H
′
Λ′Hc)∥

= ∥
√

W−1[z′ −H′x̂′ + (I−H′Λ′)Hc]∥

= ∥
√

W−1¶z′ − (H+∆H)x̂′ + [I− (H+∆H)Λ′]Hc♦∥.

(6.12)
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Note that for clearance purpose, we will not substitute ∆H by ∆D, but recall that ∆D fully

represents the variations of ∆H with reference to Eq. (6.5).

The formulated optimization problem and inequality shown in Eq. (6.12) allow us to

evaluate the relationship between the minimum ∥diag(∆D)∥ and c, and obtain a general

profile given a specific measurement system with original designs of A,D,W and τ . At first

glance, it seems that this relationship depends on real-time measurements z and system states

x. However, with reference to Section 6.2.2, we notice that ∥
√

W−1(z′ − (H+∆H)x̂′)∥ < τ

holds all the time under normal circumstances. Therefore, it can be claimed that the entry

values of vector
√

W−1(z′ − (H+∆H)x̂′) should be sufficiently small, and thus can be

reasonably neglected. In this way, by Eq. (6.12), we only need to consider

τ < ∥
√

W−1([I− (H+∆H)Λ′]Hc)∥. (6.13)

Our numerical results demonstrate the validity of this claim by showing that, the entry val-

ues of vector
√

W−1(z′ −H′x̂′) are in the magnitude of 10−6 and
√

W−1¶[I− (H+∆H)Λ′]Hc♦
are usually in the magnitude 10−3 or higher when we randomly construct an effective FmDI

attack. This, therefore, enables the very existence of a general profile between the minimum

∥diag(∆D)∥ and c.

Optimization Problem Formulation Under AC Model

The objective to minimize the efforts subject to constraints of D-FACTS capabilities and

power flow balance requirements can also be formulated under AC power flow model, which



6.3 The Feasibility of PFDD 139

is given by

min
∆D

∥∆D∥ (6.14a)

s.t. ∥r′
a
(∆D)∥ > τ (6.14b)

dmin
k < ∆dk < dmax

k , k ∈ L (6.14c)

Pi = Pi,G − Pi,L =
∑

j∈Ni

P ′
ij, i, j ∈ N , (6.14d)

It seems the formulas are similar to Eqs. (6.7a)-(6.7d), but it should be noted that the

definitions of ∆D and r′
a

are different under AC power flow model. Specifically, D ∈ Rl×1

is defined as the admittance vector and, therefore, ∆D is the vector of admittance variations

when D-FACTS devices are activated, which is given by

∆D = (∆d1,∆d2, · · · ,∆dl)
⊺. (6.15)

With regard to r′
a

under AC power flow model, since the measurement data z′
a

= z′ + a and

system states xa
′ are related by

z′
a

= z′ + a = z′ + h(c) = h′(x′
a
) + η, (6.16)

when FmDI attacks are in presence and D-FACTS devices are activated, the normalized

measurement residual vector r′
a

is then given by

r′
a

=
√

W−1(z′
a
− ẑ′

a
) =
√

W−1[z′
a
− h′(x̂′

a
)]. (6.17)
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The current system states x̂′
a

vector is now estimated by

x̂′
a

= min
xa

′
[z′

a
− h′(x′

a
)]⊺W−1[z′

a
− h′(x′

a
)]

= min
xa

′
[z′ + a − h′(x′

a
)]⊺W−1[z′ + a − h′(x′

a
)]

=
m∑

i=1

(z′
i + hi(c)− h′

i(x
′
a
))2

σ2
i

.

(6.18)

Note that the matrix h′ involves the information of vector ∆D, the relationship of which

is highly nonlinear under AC power flow model and is hard to be clearly presented. As

we can see the optimization problem to find the minimum efforts by activating D-FACTS

devices to detect FmDI attacks can also be applicable to AC power flow model. Solving the

optimization problem under AC power flow model however is computationally expensive

because this problem is highly nonlinear.

Relationship Evaluation Between ∥diag(∆D)∥ and c

We evaluate the relationship by considering all the three types of FmDI attacks under DC

power flow model. Note that our numerical results are obtained upon a 7-bus power grid (see

Fig. 6.5), while the method we use to obtain the relationship, as aforementioned, applies to

all power grids. Here, we solve the optimization problem by considering only activating D-

FACTS devices deployed on one branch, which means only one element in ∆D is non-zero.

In addition, since the values of ∆dk are discrete, the searching space is rather limited within

the range of [dmin
k , dmax

k ]. It is, therefore, easy to enumerate all the possible values of ∆dk

and obtain the minimum efforts in a short time.

In the first case, we consider a single-bus FmDI attack targeted on bus 2 and D-FACTS

devices are deployed on branch (2, 5). Figure 6.2 shows the relationship between the

minimum ♣∆b25♣ and c2 under three measurement instants where P5,L = 130MW, 150MW,

170MW, respectively. ♣∆b25♣ is the absolute susceptance of branch (2, 5) and c2 is the second

entry of vector c. As we can see, the profiles are almost the same for different measurement
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Fig. 6.2 The relationship between the minimum ♣∆b25♣ and c2

instants. This justifies the aforementioned claim that the relationship between the minimum

∥diag(∆D)∥ and c are independent of the real-time measurements z and system states x. In

addition, we can also see from each profile that the larger the absolute c2, the lower minimum

efforts are required. This indicates that it is easier for system defenders to detect FmDI

attacks with reckless behaviors injecting large absolute c to expect extensive damages or

profits. On the other hand, when ♣c2♣ < cth, either enormous efforts are required or it is

impossible (beyond the adjustment capability of D-FACTS devices) to detect FmDI attacks

using PFDD. Let cth > 0 be the tolerance threshold of voltage phase angle variation, denoting

the maximum value of injected voltage phase angle or measurement noises that a power grid

can tolerate. The value of cth can be determined by Eq. (6.12) with a given τ , and the solutions

¶c1
th, c

2
th, · · · , cn

th♦ for different buses might be slightly different due to various configurations.

For such cases, cth may take the minimum solution, that is cth = min¶c1
th, c

2
th, · · · , cn

th♦.
Correspondingly, given cth, a threshold bth for the minimum efforts required for D-FACTS

devices to detect effective FmDI attacks can also be determined according to Eq. (6.12).
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Fig. 6.3 The relationship between the minimum ♣∆b25♣ and c2 under various values of c5

In the second case, we consider an uncoordinated multiple-bus FmDI attack targeted on

both buses 2 and 5, and branch (2, 5) is deployed with D-FACTS devices. In Fig. 6.3, we

evaluate the relationship between the minimum ♣∆b25♣ and c2 under various values of c5, the

5-th entry of c. As can be seen from this figure, although with different “central locations”,

profiles similar to each other and to that in Fig. 6.2 are obtained under various values of c5.

That is to say, the profile of the minimum efforts required for detecting an uncoordinated

multiple-bus FmDI attack is similar to that for a single-bus FmDI attack, but the exact value

is based on the injected phase difference (c2 − c5 here) between the two buses if D-FACTS

devices are deployed on the branch in between.

Additionally, Fig. 6.3 also shows some numerical results for cases of detecting a coordi-

nated multiple-bus FmDI attack by using PFDD. For those cases where the injected phase

difference between c2 and c5 is sufficiently small (less than a tolerance threshold), infinite

efforts are required; consequently, PFDD cannot identify such a coordinated multiple-bus

FmDI attack by only using the D-FACTS devices deployed on branch (2, 5). Fortunately,
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Fig. 6.4 The relationship between the minimum efforts and the injected voltage phase angle

we find that as long as any additional branch incident to the super-bus (formed by all the

targeted buses in an interconnected mode, as aforementioned) is deployed with D-FACTS

devices, the coordinated multiple-bus FmDI attacks can still be detected.

This finding is evidenced by the numerical results shown in Fig. 6.4. In this third case, a

coordinated multiple-bus FmDI attack on buses 1, 2, 3, 5, and 7 is simulated, and suppose

that D-FACTS devices are deployed on all branches incident to bus 2. As shown in Fig. 6.4,

anomalies (FmDI attacks) can only be observed by activating D-FACTS devices on branches

(2, 4) and (2, 6). This is because that the coordinated multiple-bus FmDI attack injects the

same values of voltage phase angle (e.g. ♣θa♣ > cth) onto all the targeted buses (buses

1, 2, 3, 5, and 7 here). Hence, no injected phase difference among these coordinated buses

can be observed. In contrast, sufficient difference can be observed between the un-targeted

and targeted buses (e.g., between 4 and 2 or 6 and 2 here). Note that in a special case where

all the buses are targeted by a coordinated multiple-bus FmDI attack, no anomaly will be
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detected by using PFDD due to nonexistence of any uncoordinated bus. However, recall that

such an FmDI attack is ineffective.

6.3.3 Minimum Deployment Requirements of D-FACTS Devices to De-

tect FmDI Attacks

The above discussions have shown that it is feasible to detect effective FmDI attacks using

PFDD approach. To facilitate later discussions, we summarize this finding into Theorem 2.

Theorem 2. In PFDD approach, D-FACTS devices deployed on a branch is able to detect

the existence of effective FmDI attacks targeted on either end bus(es) (with degrees both

larger than 1) of this branch, as long as the injected phase angle difference between the two

end buses is larger than a tolerance threshold cth.

Proof. According to the definition of the tolerance threshold cth, with a given τ for BDD

test, if

c = (0, 0, · · · , 0, cth, 0, · · · , 0
︸ ︷︷ ︸

n

)⊺, (6.19)

then

∥
√

W−1¶z′ − (H+∆H)x̂′ + [I− (H+∆H)Λ′]Hc♦∥ ≤ τ, (6.20)

according to Eq. (6.12); and for any arbitrarily small positive value ∆c, if

c = (0, 0, · · · , 0, cth + ∆c, 0, · · · , 0
︸ ︷︷ ︸

n

)⊺, (6.21)

then

∥
√

W−1¶z′ − (H+∆H)x̂′ + [I− (H+∆H)Λ′]Hc♦∥ > τ. (6.22)

In this way, let the injected phase angle difference between two ends buses ♣c0♣ > cth, and set

c = (0, 0, · · · , 0, c0, 0, · · · , 0
︸ ︷︷ ︸

n

)⊺. (6.23)
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Fig. 6.5 Detection of effective FmDI attacks by using PFDD approach under various D-

FACTS deployment strategies: (a) no effective FmDI attack when unknown branches contain

a spanning tree; (b) effective single-bus (on V2) or coordinated multiple-bus (on V1) FmDI

attacks when unknown branches fail to contain a spanning tree; and (c) effective single-bus

(on V1), uncoordinated multiple-bus (on V1), or coordinated multiple-bus (on V2) FmDI

attacks when unknown branches fail to contain a spanning tree - less unknown branches

compared to (b)
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It is easy to obtain the same result as that in Eq. (6.22), which means that in this case the

effective FmDI attacks can be detected.

In this section, we study on the minimum number of branches that need to be deployed

with D-FACTS devices to guarantee the detection of all three types of effective FmDI attacks.

A theorem shall be proposed showing that the branches installed with D-FACTS devices

needs to cover at least a spanning tree of the power grid graph to ensure detection of effective

FmDI attacks. Prior to our discussions, we make the following definitions.

Definition 4. A branch is termed as a known branch if its susceptance (or admittance) is

unalterable and can be known to the attackers; otherwise, it is termed as an unknown branch.

Typically, we regard a branch deployed with D-FACTS devices as an unknown branch

because its susceptance (or admittance) can be altered by activating D-FACTS devices; and a

branch without D-FACTS devices is termed as a known branch.

Definition 5. A bus is termed as a protected bus if it is connected to at least one unknown

branch; and an unprotected bus otherwise.

With these definitions, we can prove the theorem below.

Theorem 3. The PFDD approach is feasible to detect effective FmDI attacks targeted on

buses or super-buses with degrees larger than 1, if and only if the unknown branches cover

at least a spanning tree of the power grid graph.

Proof. Sufficiency: Suppose that a set of n − 1 branches building a spanning tree T of

the power grid graph G = ¶V , E♦ are deployed with D-FACTS devices. According to

Definitions 4 and 5, these n− 1 branches are unknown branches, and all buses are protected

buses as each of them is connected to at least one of these unknown branches. In this case,

for any form of effective single-bus or uncoordinated multiple-bus FmDI attacks, there must

be at least one unknown branch connecting to the targeted bus(es). According to Theorem 2,
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it is feasible for system defenders to detect these FmDI attacks by using PFDD with given

unknown branches. When it comes to effective coordinated multiple-bus FmDI attacks, at

most n− 1 buses are targeted in such an attack, leaving at least one bus un-targeted. Thus,

there must be a cut C = ¶V t,Vu♦ that divides the buses in a grid graph into two sets - targeted

buses set V t and un-targeted buses set Vu, where V t⋃Vu = V . The cut-set of C contains

edges that have one endpoint in V t and the other in Vu. Given the unknown branches contain

a spanning tree (as an example shown in Fig. 6.5a), the cut-set must involve at least one

unknown branch for any form of effective coordinated multiple-bus FmDI attacks. With these

unknown branches, it is feasible to detect effective coordinated multiple-bus FmDI attacks by

using PFDD (see Theorem 2).

Necessity: If unknown branches in a power grid do not contain a spanning tree, there

must be a cut C = ¶V1,V2♦ that divides the buses in a grid graph into two sets V1 and V2,

and the cut-set of C involves no unknown branch. Then a coordinated multiple-bus FmDI

attack on all buses in V1 but none in V2, or on all buses in V2 but none in V1 will not be

detected by the PFDD approach.

Figures 6.5b and 6.5c show examples of FmDI attacks when unknown branches fail to

contain a spanning tree. In the case as shown in Fig. 6.5b where unknown branches fail

to contain a spanning tree, buses in partition V1 can be targeted by effective coordinated

multiple-bus FmDI attacks and buses in partition V2 can be targeted by effective single-bus

FmDI attacks. Both attacks will not be detected. In an even worse case as shown in Fig. 6.5c

where fewer unknown branches are deployed compared to that in Fig. 6.5b, buses in partition

V2 can be targeted by effective coordinated multiple-bus FmDI attacks and buses in partition

V1 can be targeted by either effective single-bus or effective uncoordinated multiple-bus

FmDI attacks. Again, none of these attacks will be detected. It can, therefore, be concluded

that unknown branches failing to contain a spanning tree in a grid graph leave opportunities

for effective FmDI attacks to be successful.
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6.4 Discussions on PFDD Limitations

In this section, we shall discuss on the limitations of using PFDD to detect effective FmDI

attacks targeting on buses or super-buses with degrees 1.

6.4.1 Limitations of Detecting Effective FmDI Attacks Using PFDD

In this subsection, we show our findings regarding the limitations of using PFDD to detect ef-

fective FmDI attacks targeting on buses or super-buses with degrees 1, which are summarized

in Theorem 4 and Corollary 1.

Theorem 4. The PFDD approach is not able to detect effective FmDI attacks targeting on

buses or super-buses with degrees 1.

Proof. Let ϵk ∈ ¶0, 1♦l×1 denote a unit column vector whose k-th entry equals 1, and

δi ∈ ¶0, 1♦n×1 a unit column vector whose i-th entry equals 1. Define µij , δi − δj . In this

way, matrices A and D in Section 6.2 can be written as

A =
∑

k∈L, k∼¶i,j♦

ϵkµ
⊺
ij, D =

∑

k∈L, k∼¶i,j♦

−bijϵkϵ
⊺
k, (6.24)

where k ∼ ¶i, j♦ denotes branch k that connects buses i and j. Then DA and A⊺DA are

respectively given by

DA =
∑

k∈L, k∼¶i,j♦

−bijϵkµ
⊺
ij, (6.25)

and

A⊺DA =
∑

k∈L, k∼¶i,j♦

−bijµijµ
⊺
ij. (6.26)
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Let ρi ∈ ¶0, 1♦(n+2l)×1 denote a unit column vector whose i-th entry equals 1. Based on

Eq. (6.2), the H matrix can be written as

H =










A⊺DA

DA

−DA










=










∑

k∈L, k∼¶i,j♦−bijµijµ
⊺
ij

∑

k∈L, k∼¶i,j♦−bijϵkµ
⊺
ij

∑

k∈L, k∼¶i,j♦ bijϵkµ
⊺
ij










=
∑

k∈L, k∼¶i,j♦

−bij(ρi − ρj + ρn+k − ρn+l+k)µ⊺
ij.

(6.27)

For a single bus with degree 1: Suppose that an effective single-bus FmDI attack is

targeted at bus ζ ∈ N with degree 1, and bus γ ∈ N is the only neighbour of bus ζ connected

by branch ℓ ∈ L. The attacker aims to inject θa to bus ζ by designing

c = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θa , 0, · · · , 0
︸ ︷︷ ︸

n

)⊺, (6.28)

which can be rewritten as c = θaδζ . In this case, the attack vector a is written as

a = Hc = −bζγ(ρζ − ργ + ρn+ℓ − ρn+l+ℓ)µ
⊺
ζγθaδζ

= −bζγθa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ)(δ
⊺
ζ − δ⊺

γ)δζ

= −bζγθa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ).

(6.29)

If D-FACTS devices deployed on branch ℓ are activated, the susceptance of this branch is

updated to b′
ζγ and the H matrix is updated to H′. Then, we have the following major finding:

a = Hc = H′c′ = −b′
ζγθ

′
a(ρζ − ργ + ρn+ℓ − ρn+l+ℓ), (6.30)

where

c′ = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θ′
a , 0, · · · , 0

︸ ︷︷ ︸

n

)⊺, and θ′
a =

bζγθa

b′
ζγ

. (6.31)
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Based on Eqs. (6.6) and (6.11), ∥r′
a
(∆D)∥ can be rewritten as

∥r′
a
(∆D)∥ = ∥

√
W−1(z′ −H′x̂′ + a −H′∆x)∥

= ∥
√

W−1(z′ −H′x̂′ + H′c′ −H′Λ′H′c′)∥
Λ′H′=I

===== ∥
√

W−1(z′ −H′x̂′ + H′c′ −H′c′)∥

= ∥
√

W−1(z′ −H′x̂′)∥ < τ.

(6.32)

It means that no FmDI alarm will be triggered if using PFDD to detect effective FmDI attacks

targeting on single buses with degrees 1.

For a super-bus with degree 1: Suppose that an effective coordinated multiple-bus FmDI

attack is targeted at buses S = ¶ζ, ζ + 1, · · · , ζ + t♦, where t is a positive integer. These

buses form into a super-bus with degree 1, and branch ℓ is the only external branch of this

super-bus connecting buses from ζ to γ. The attacker aims to inject θa to this super-bus by

designing

c = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θa ,

(ζ+1)-th
︷︸︸︷

θa , · · · ,
(ζ+t)-th
︷︸︸︷

θa , 0, · · · , 0
︸ ︷︷ ︸

n

)⊺, (6.33)

which can be rewritten as c = θa
∑t

ı=0 δζ+ı. In this case, the attack vector a is written as

a = Hc =


∑

k∈LS , k∼¶i,j♦

−bij(ρi − ρj + ρn+k − ρn+l+k)µ⊺
ij



×


θa

t∑

ı=0

δζ+ı



=


∑

k∈LS , k∼¶i,j♦

−bijθa(ρi − ρj + ρn+k − ρn+l+k)(δ⊺
i − δ

⊺
j )



×


t∑

ı=0

δζ+ı



,

(6.34)

where LS denotes the branches incident to any of the buses in set S. It is worth noting that

∀i, j satisfying k ∼ ¶i, j♦ and k ∈ LS , there must have i, j ∈ S except for one case where
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i = ζ and j = γ. In this way, Eq. (6.34) can be rewritten as

a =


∑

k∈LS , k∼¶i,j♦

−bijθa(ρi − ρj + ρn+k − ρn+l+k)× (δ⊺
i − δ

⊺
j )


t∑

ı=0

δζ+ı



=


∑

k∈¶LS\ℓ♦, k∼¶i,j♦

−bijθa(ρi − ρj + ρn+k − ρn+l+k)× (δ⊺
i − δ

⊺
j )(δi + δj)



+


∑

k=ℓ, ℓ∼¶ζ,γ♦

−bζγθa × (ρζ − ργ + ρn+ℓ − ρn+l+ℓ)× (δ⊺
ζ − δ⊺

γ)δζ



=


∑

k∈¶LS\ℓ♦, k∼¶i,j♦

−bijθa(ρi − ρj + ρn+k − ρn+l+k)× 0



+



−bζγθa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ)× 1



= −bζγθa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ).

(6.35)

We have the same conclusion as that shown in Eq. (6.29). Hence, we see that for an

effective coordinated multiple-bus FmDI attack targeted on a super-bus with degree 1, we also

have Hc = H′c′, leading to failure of detecting such an FmDI attack using PFDD approach.

Note that although this FmDI attack remains undetected, it is equivalent to another FmDI

attack with

c′ = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θ′
a ,

(ζ+1)-th
︷︸︸︷

θ′
a , · · · ,

(ζ+t)-th
︷︸︸︷

θ′
a , 0, · · · , 0

︸ ︷︷ ︸

n

)⊺, (6.36)

where θ′
a = bζγθa/b

′
ζγ when the susceptance of branch ℓ ∼ ¶ζ, γ♦ is b′

ζγ .

Corollary 1. Given a single bus or a super-bus ζ with degree 1 (as for a super-bus ζ

represents the bus having the external branch), the external incident bus is denoted by γ, and

the branch connecting these two buses is denoted by ℓ. Without knowing the susceptance

of branch ℓ, as long as FmDI attackers can inject Pa to Pζ , −Pa to Pγ , and Pa to Pζγ , this

FmDI attack cannot be detected by using PFDD, where Pζ , Pγ, Pζγ , and Pa denote the nodal

power injections of bus ζ , nodal power injections of bus γ, power flow of branch ℓ ∼ ¶ζ, γ♦,
and a constant power value, respectively.
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Proof. Recall that z is an m× 1 = (n+ 2l)× 1 column vector comprising n nodal power

injections PI = ¶P1, P2, · · · , Pn♦ and 2l power flows PF = ¶Pij♣i, j ∈ N , k ∼ ¶i, j♦, k ∈
L♦ and −PF = ¶−Pij♣i, j ∈ N , k ∼ ¶i, j♦, k ∈ L♦. Then, z can be represented by

z = (PI,PF,−PF)⊺ =
n∑

i=1

Piρi +
∑

k∈L, k∼¶i,j♦

Pijρn+k +
∑

k∈L, k∼¶i,j♦

−Pijρn+l+k. (6.37)

If FmDI attackers can inject Pa to Pζ , −Pa to Pγ , and Pa to Pζγ , this means that the attacker

can construct an attack vector

a = Pa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ). (6.38)

Based on Eq. (6.30), we can rewrite a as

a = Hc = H′c′ = Pa(ρζ − ργ + ρn+ℓ − ρn+l+ℓ). (6.39)

If D-FACTS devices are activated by using PFDD and bζγ is updated to b′
ζγ ,

c′ = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θ′
a , 0, · · · , 0

︸ ︷︷ ︸

n

)⊺, and θ′
a =

Pa

b′
ζγ

(6.40)

for a single bus ζ with degree 1, and

c′ = (0, 0, · · · , 0,
ζ-th
︷︸︸︷

θ′
a ,

(ζ+1)-th
︷︸︸︷

θ′
a , · · · ,

(ζ+t)-th
︷︸︸︷

θ′
a , 0, · · · , 0

︸ ︷︷ ︸

n

)⊺, (6.41)

for a super bus ζ with degree 1, comprising buses ζ, ζ + 1, · · · , and ζ + t. According to

Eq. (6.32), we see that such an FmDI attack targeted on either a single bus or a super-bus

with degree 1 cannot be detected by using PFDD. It is worth noting that though such FmDI

attacks would be successful even without the knowledge of bζγ , the attackers under such

cases however shall have no idea of the real injected phase angle offset θ′
a, because they
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Fig. 6.6 An illustrative 8-bus power system with D-FACTS deployment covering a spanning

tree.

cannot immediately obtain the value of b′
ζγ after D-FACTS devices are activated. In other

words, they do not know how much impact they can cause or how many profits they can

obtain through a successful FmDI attack.

6.4.2 Case Study

In this subsection, we take 8-bus and 39-bus power systems (see Figs. 6.6 and 6.7 ) as

examples to illustrate effective FmDI attacks targeting on a single bus and a super-bus with

degree 1, respectively.

Case 1: An Effective FmDI Attack Targeted on Bus 1 in An 8-Bus System

Suppose that an FmDI attacker aims to inject θa to bus 1 phase angle θ1, he/she constructs c

by

c = θaδ1 = (θa, 0, 0, 0, 0, 0, 0, 0)⊺, (6.42)

and an attack vector a by

a = Hc = −b12θa(ρ1 − ρ2 + ρn+1 − ρn+l+1). (6.43)

Then, the measurement data z is falsified by ẑ = z + a. In this case, data falsifications

are equivalent to adding −b12θa to P1, b12θa to P2, −b12θa to P12, and b12θa to P21 via
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compromised meters. When system defenders activating D-FACTS devices deployed on

branch B1, b12 is changed to b′
12. According to Eqs. (6.30) and (6.32), this FmDI attack

cannot be detected by PFDD, but an offset of θ′
a = b12θa/b

′
12 other than θa is injected to θ1.

This is equivalent to an FmDI attack with

c = (θ′
a, 0, 0, 0, 0, 0, 0, 0)⊺, (6.44)

when the susceptance of branch B1 is b′
12.

Case 2: An Effective FmDI Attack Targeted on A Super-Bus Composed of Buses 5, 6,

7, and 8 in An 8-Bus System

Suppose that an FmDI attacker aims to inject θa to the phase angles of a super-bus composed

of buses 5, 6, 7, and 8, he/she constructs c by

c = θa(δ5 + δ6 + δ7 + δ8) = (0, 0, 0, 0, θa, θa, θa, θa)⊺, (6.45)

and an attack vector a by

a = Hc = −b45θa(ρ5 − ρ4 + ρn+5 − ρn+l+5). (6.46)

Then, the measurement data z is falsified by ẑ = z + a. In this case, data falsifications

are equivalent to adding −b45θa to P5, b45θa to P4, −b45θa to P54, and b45θa to P45 via

compromised meters. When system defenders activate the D-FACTS devices deployed on

branch B5, b45 is changed to b′
45. According to Eqs. (6.35) and (6.32), this FmDI attack

cannot be detected by PFDD and an offset of θ′
a = b45θa/b

′
45 is injected to θ5, θ6, θ7, and θ8,

respectively. This is equivalent to an FmDI attack with

c = (0, 0, 0, 0, θ′
a, θ

′
a, θ

′
a, θ

′
a)⊺, (6.47)
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Fig. 6.7 An illustrative 39-bus power system with D-FACTS deployment covering a spanning

tree.

when the susceptance of branch B5 is b′
45.

Case 3: An Effective FmDI Attack Targeted on A Super-Bus Composed of Buses 19,

20, 33, and 34 in IEEE 39-Bus System

Suppose that an FmDI attacker aims to inject θa to the phase angles of a super-bus composed

of buses 19, 20, 33, and 34, he/she constructs c by

c = θa(δ19 + δ20 + δ33 + δ34) = (0, 0, · · · , 0,
19-th
︷︸︸︷

θa ,

20-th
︷︸︸︷

θa , 0, · · · , 0,
33-th
︷︸︸︷

θa ,

34-th
︷︸︸︷

θa
︸ ︷︷ ︸

39

)⊺, (6.48)

and an attack vector a by

a = Hc = −b16,19θa(ρ19 − ρ16 + ρn+25 − ρn+l+25), (6.49)
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where 25 is the index of branch B25 that connects buses 16 and 19. Then, the measurement

data z is falsified by ẑ = z + a. In this case, data falsifications are equivalent to adding

−b16,19θa to P19, b16,19θa to P16, −b16,19θa to P19,16, and b16,19θa to P19,16 via compromised

meters. When system defenders activate the D-FACTS devices deployed on branch B25,

b16,19 is changed to b′
16,19. According to Eqs. (6.35) and (6.32), this FmDI attack cannot be

detected by PFDD and an offset of θ′
a = b16,19θa/b

′
16,19 is injected to θ19, θ20, θ33, and θ34,

respectively. This is equivalent to an FmDI attack with

c = (0, 0, · · · , 0,
19-th
︷︸︸︷

θ′
a ,

20-th
︷︸︸︷

θ′
a , 0, · · · , 0,

33-th
︷︸︸︷

θ′
a ,

34-th
︷︸︸︷

θ′
a

︸ ︷︷ ︸

39

)⊺, (6.50)

when the susceptance of branch B25 is b′
16,19.

6.5 Conclusions

In this paper, we systemically investigated the feasibility and limitations of using PFDD

approach to detect FmDI attacks on smart grids. Taking into account three types of FmDI

attacks namely single-bus, uncoordinated multiple-bus, and coordinated multiple-bus FmDI

attacks respectively, we obtained the profiles of the minimum efforts required for using the

D-FACTS devices in PFDD to detect FmDI attacks. We also proved that PFDD can guarantee

detecting the existence of all these three types of FmDI attacks if and only if the deployment

of D-FACTS devices covers branches containing at least a spanning tree of the grid graph.

Last, the limitations of PFDD were investigated with findings that the PFDD approach is

not able to detect effective FmDI attacks targeting on buses or super-buses with degrees 1.

Further studies are needed to investigate whether PFDD by activating D-FACTS devices can

cause potential instability or other hidden problems in power grids, and how often to activate

D-FACTS devices would be an optimal solution to detect FmDI attacks in smart grids.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize our contributions in this thesis, and propose some potential

research directions for future work.

7.1 Summary of Contributions

The research focuses in this thesis lie in main topics relating to FDI attacks in smart grid

CPSs including modelling and impacts evaluation of FDI attacks, novel detection approaches

for FDI attacks - both FmDI and FcDI attacks. Specifically, our main research contributions

are summarized as follows:

• In Chapter 3, we have developed a stochastic Petri net based analytical model to

evaluate and analyze the system reliability of smart grid CPSs, specifically against

topology attacks under system countermeasures (i.e., intrusion detection systems and

malfunction recovery techniques). Topology attacks are evolved from FDI attacks,

where attackers initialize FDI attacks by tempering with both measurement data

and grid topology information. This analytical model is featured by bolstering both

transient and steady-state analyses of system reliability.
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• In Chapter 4, we have proposed a distributed host-based collaborative detection scheme

to detect FmDI attacks in smart grid CPSs. It is considered in this work that the PMUs,

deployed to measure the operating states of power grids, can be compromised by FmDI

attackers, and the trusted HMs assigned to each PMU are employed to monitor and

assess PMUs’ behaviors. Neighboring HMs make use of the majority voting algorithm

based on a set of predefined normal behavior rules to identify the existence of abnormal

measurement data collected by PMUs. In addition, an innovative reputation system

with an adaptive reputation updating algorithm is also designed to evaluate the overall

operating status of PMUs, by which FmDI attacks as well as the attackers can be

distinctly observed.

• In Chapter 5, we have proposed a Dirichlet-based detection scheme for FcDI attacks

in hierarchical smart grid CPSs. In the future hierarchical paradigm of a smart grid

CPS, it is considered that the decentralized LAs responsible for local management and

control can be compromised by FcDI attackers. By issuing fake or biased commands,

the attackers anticipate to manipulate the regional electricity prices with the purpose

of illicit financial gains. The proposed scheme builds a Dirichlet-based probabilistic

model to assess the reputation levels of LAs. This probabilistic model, used in con-

junction with a designed adaptive reputation incentive mechanism, enables quick and

efficient detection of FcDI attacks as well as the attackers.

• In Chapter 6, we have systematically explored the feasibility and limitations of de-

tecting FmDI attacks in smart grid CPSs using D-FACTS devices. Recent studies

have investigated the possibilities of proactively detecting FmDI attacks on smart grid

CPSs by using D-FACTS devices - the PFDD approach. In this work, the feasibility

of using PFDD to detect FmDI attacks are investigated by considering single-bus,

uncoordinated multiple-bus, and coordinated multiple-bus FmDI attacks, respectively.

It is proved that PFDD can detect all these three types of FmDI attacks targeted on

buses or super-buses with degrees larger than 1, as long as the deployment of D-FACTS
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devices covers branches at least containing a spanning tree of the grid graph. The

minimum efforts required for activating D-FACTS devices to detect each type of FmDI

attacks are respectively evaluated. In addition, the limitations of this approach are

also discussed, and it is strictly proved that PFDD is not able to detect FmDI attacks

targeted on buses or super-buses with degrees equalling 1.

7.2 Future Work

Our studies have made significant progress in enhancing smart grid security and reliability,

especially in detection and mitigation of FDI attacks. There are still plenty of work that can

be done along the same direction. The following research topics will be investigated in the

future as a continuation of my Ph.D. thesis.

• Secure state estimation and proactive mitigation of FDI attacks: Liu et al. mentioned

that if the attackers can intrude into the control systems and obtain the knowledge of

H matrix, the state estimation can be bypassed leading to a success of FDI attacks.

As we see, there is still a need to ensure secure state estimation even through the

attackers are strong enough to get access to the control systems. As we introduced in

Section 2.1, the control center needs to calculate the H matrix and use it to conduct

state estimation. With a closer look at Eqs. (2.4) and (2.7), we notice that to achieve

state estimation and bad data detection, the control center can choose to use matrices

Λ and Ω , I−HΛ, respectively, instead of H matrix itself. This makes it possible to

hide H matrix behind Λ and Ω. Since H matrix is the critical information for attackers

to construct FmDI attacks, it may therefore be a useful way to mitigate FmDI attacks

by hiding H matrix when conducting state estimation and bad data detection. We

are motivated to conduct future research studies to achieve secure estimation and bad

data detection without explicit content of H matrix, e.g., using applied cryptography.

Unlike traditional approaches for passively detecting FmDI attacks, this approach can
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be considered as a proactive way to mitigate FDI attacks in smart grid CPS, which

would be a breakthrough for solving such a problem and shed lights for upcoming

studies.

• Investigation of side effects by using D-FACTS devices: In Chapter 6, we have discussed

the feasibility and limitations of using PFDD to detect FmDI attacks in smart grid.

However, there may be concerns about the potential negative impacts on power systems

caused by using D-FACTS devices. For example, activating D-FACTS devices may,

to some extent, compromise the optimal power flows and, therefore, lead to a certain

power losses. If it is true, is there any suboptimal status for power flows that we

may transfer to when activating D-FACTS devices. It may also be a concern that

whether activating D-FACTS devices can cause transient instabilities or any other

hidden problem to the electric grid. If yes, how to contain such problems remains open,

which deserves extensive investigations in the future.

• Prototyping and real-world implementation of proposed solutions: In order to promote

security and reliability of real smart grid infrastructures, we are planning to deploy the

solutions presented in this thesis over a test bed, and evaluate and refine the prototypes

in a real-world implementation. We expect to cooperate with those teams who have a

test bed for smart grid CPS, and test all our proposed solutions.
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