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Abstract It has recently been shown that state estimation

(SE), which is the most important real-time function in

modern energy management systems (EMSs), is vulnerable

to false data injection attacks, due to the undetectability of

those attacks using standard bad data detection techniques,

which are typically based on normalized measurement

residuals. Therefore, it is of the utmost importance to

develop novel and efficient methods that are capable of

detecting such malicious attacks. In this paper, we propose

using the unscented Kalman filter (UKF) in conjunction

with a weighted least square (WLS) based SE algorithm in

real-time, to detect discrepancies between SV estimates

and, as a consequence, to identify false data attacks. After

an attack is detected and an appropriate alarm is raised, an

operator can take actions to prevent or minimize the

potential consequences. The proposed algorithm was suc-

cessfully tested on benchmark IEEE 14-bus and 300-bus

test systems, making it suitable for implementation in

commercial EMS software.

Keywords State estimation, False data injection attack,

Bad data detection, Unscented Kalman filter

1 Introduction

Due to the ever-increasing reliance on modern cyber

infrastructures in power systems, cyber security has

recently been considered to be among the most important

issues in modern power systems. Supervisory control and

data acquisition (SCADA) systems are vulnerable to

attacks that are directed not only at data communication

infrastructures but also to those directed at control centers

and even remote terminal units (RTUs). The SCADA

communication network is very diverse and consists of

fiber optics, microwave and satellite connections, while the

exchanged data is often unencrypted - leaving substantial

space for potential attacks. Even though phasor measure-

ment unit (PMU) based measurements are regarded as

generally more secure than SCADA measurements, they

are also susceptible to malicious attacks, as explained in

[1]. For example, it was stated in [2] that among 245

reported incidents - the energy sector led all others with 79

(32%) incidents. A large number of those threats targeted

SCADA devices with the intention of gaining unauthorized

access. Earlier, an experimental attack was conducted by

the researchers at the US Department of Energy’s Idaho

Lab, which resulted in the self-destruction of one gener-

ating unit, emphasizing the impact of cyber threats [3].

State estimation (SE), which is among the most important

real-time applications of commercial energy management

system (EMS) software, is thus indirectly vulnerable to

cyber-attacks, which may result in severe system instabil-

ity, suboptimal operation, financial losses, and even loss of

human life.

To identify and remove bad measurements—so they

cannot compromise the accuracy of estimated results, bad

data detection (BDD) algorithms have been devised as an

integral part of SE algorithms [4]. In the early BDD
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algorithms, after the existence of bad measurements was

confirmed, only the single measurement with the largest

normalized residual was removed in one iteration of the SE

algorithm. Multiple loops were needed until all bad mea-

surements were eliminated and the detection test was

passed. Later, a new approach was devised, in which

multiple bad measurements were identified and removed at

the same time, thus substantially reducing the SE execution

time [4]. Both of these algorithms, which are presented in

[4], rely on normalized residual techniques and show good

results only in cases of independent and non-interacting

bad measurements.

For correlated bad measurements, novel techniques have

been developed, including hypothesis testing identification

(HTI), which again relies on normalized residuals [5]. This

and similar techniques are still among the most commonly

used in commercial EMS software. However, the concept

of ‘‘false data injection (FDI)’’ attacks was recently intro-

duced in [6], proving that measurements can be manipu-

lated in a way that does not trigger SE BDD modules.

Given the knowledge of the system configuration and

element parameters, an attacker can create unde-

tectable malicious attacks. The development of techniques

for identification and mitigation of such attacks is essential

for the secure operation of large power grids.

The substantial amount of research carried out on FDI

attacks can be classified into three categories.

1) Vulnerability of SE. The weaknesses of BDD algo-

rithms have been explored from the perspective of an

attacker as well as ways to construct malicious attacks

with minimal resources and maximum impacts on

power grids [6–18]. Although network topology and

electric parameters are regarded as completely or

partially known by the attacker, in some research

[6, 10], they were not required, whereas others relied

only on the measurement matrix [13–18].

2) Consequences of an FDI attack. FDI attacks on SE

have been analyzed from the perspective of EMS

applications such as contingency analysis, optimal

power flow and automatic generation control [19–22].

3) Countermeasures development. These studies have

focused on the detection of stealthy attacks and

protection of the power system. New enhanced BDD

algorithms have been proposed, optimal PMU place-

ment strategies created, and discussions undertaken

regarding ways to improve the protection of commu-

nication systems [12, 23–34].

In [30], Kullback-Leibler distance was proposed for

tracking the dynamics of measurement variations to detect

FDI attacks. The statistical behavior of the state estimation

process, through cumulative sum based approach (CUSUM),

was used for FDI attacks detection in [31]. Method based on

the short-term state forecasting which considers temporal

correlations between nodal states was proposed in [32].

Detection scheme using two physical system parameters and

their behavior was proposed in [33]. In [34] to detect FDI

attacks, a cosine similarity matching technique was used and

tested in power systems for which estimated (expected)

measurement values were obtained using a Kalman filter, by

comparing them with actual measurements. The underlying

SE observation model was regarded as linear, as was the

state transition matrix (approximated by the identity matrix),

enabling a Kalman filter to be used for SE.

However, in most commercial SE algorithms, the utilized

measurement observation model is highly nonlinear, espe-

cially regarding the line current and transformer tap position

measurements, implying the possible use of Kalman filter

extensions intended for nonlinear systems - extended or

unscented Kalman filters (EKF or UKF, respectively). Kal-

man filtering techniques were first proposed for use in

dynamic state estimation in [35], and significant efforts have

been subsequently undertaken to improve their performance

[36–41]. In an EKF, which is probably the most widely used

dynamic SE algorithm, the state distribution is approximated

by Gaussian random variables (GRVs), which are propa-

gated through a ‘‘first order’’ linearization of the nonlinear

system, and EKF can therefore be seen as ‘‘first order’’

approximation of the optimal filter [36]. Enhancements to

the EKF were proposed in [37, 38] to improve its perfor-

mance and robustness by incorporating the high nonlinearity

of measurement functions. Furthermore, an iterated EKF

based on the generalized maximum likelihood approach was

proposed in [39] to estimate dynamic states during distur-

bances. In [40], a UKF was introduced as a tool for dynamic

state estimation, through a combination an unscented

transformation and Kalman filter. In the UKF technique, the

minimal set of selected sample points, which capture the

true mean and covariance of the GRVs, is transferred

through the complete nonlinear system, obtaining the pos-

terior mean and covariance from the ‘‘third order’’ approx-

imation of the optimal filter [41].

In this paper, we investigated the detection of FDI attacks

by using a UKF to predict and update SVs starting from the

previously known state and compared them with the results

acquired from a typically used WLS-based SE algorithm. It

should be noted that the UKF used in the proposed algorithm

can be replaced by other nonlinear filters without any

structural changes. We show that the SVs under attack

significantly deviated between the UKF and WLS-based SE.

The measurements influencing the suspicious SVs are those

that may be under malicious attack.

The main contributions of the proposed method are as

follows: � a derivation of the time-variant transition

function (necessary for the UKF prediction step) by a

combination of power flow equations with load/generation
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very short-term forecasts and generator schedules; ` false

data detection using the normalized SV residuals obtained

from WLS-based SE and UKF estimates, as well as the

UKF state covariance matrix; ´ an analysis of the most

critical scenario, where the attacker may gain access to the

complete network model and set of measurements; ˆ the

efficient synergy of WLS-based SE and UKF algorithms

for the real-time (online) detection of FDI attacks.

The paper is organized as follows. In Section 2, we

formulate the problem of detecting FDI attacks, in which

the advisory agent has an unlimited number of resources at

its disposal. In Section 3, the proposed UKF based detec-

tion algorithm is explained, and the BDD process using

UKF and SE results is covered in Section 4. The results of

numerical simulations for benchmark power systems (with

14 and 300 buses), empowered with the data needed for

forecast analysis, are provided in Section 5, and conclud-

ing remarks are presented in Section 6. The algorithmic

details of the UKF are provided in Appendix A.

2 Problem formulation

We consider a scenario in which an attacker has gained

access to an unlimited number of measurements by

breaking into a SCADA system (Case 2 in Fig. 1), primary

domain controller (PDC) (Case 5) and control center, or by

directly tampering with the PMUs (Case 4), RTUs (Case 3)

and communications network (Case 1).

With the idea of analyzing the most critical scenario,

which may not be the most typical and frequent in practice,

we suppose that the attacker has sufficient knowledge of

the power system (topology and physics) as described by a

nonlinear SE measurements-SVs model

z ¼ hðxÞ þ e ð1Þ

or by a linear SE model (assumed only for analysis in this

section)

z ¼ Hxþ e ð2Þ

where z and x are the M-dimensional measurement

(zj 2 RM�1) and N-dimensional state vectors (xi 2 RN�1),

M and N are the total number of measurements and SVs;

hðxÞ is the vector of nonlinear functions of the system state

vector x – observation model function; e is the measure-

ment error vector (assumed to be zero mean multivariate

Gaussian noise with covariance R); H is the Jacobian

matrix and H ¼ ohðxÞ
ox

.

2.1 Analysis of compromised measurement cases

Typically, the goal of an attacker is to change either the

SV(s) (xi) to the desired value by dxi or to change some

particular measurement (probably power flow) to an arbi-

trary scalar value. To change specific measurements and

remain undetected by the conventional bad data detection

algorithms, the adversary would need to modify the cor-

responding SV (the one affecting the desired power flow

measurement, and a minimum number of other measure-

ments). Therefore, without loss of generality, we suppose

that SV will be changed as a goal of the attack.

When we assume a realistic scenario where an attacker

cannot obtain access to every measurement in the system

(some can be regarded as secure), the measurements can be

divided into two groups: �fully protected measurements

(1; 2; � � � ; m), denoted by ‘*’; ` unprotected measure-

ments (1; 2; � � � ; M � m).

The measurement vector z can then be written as:

z ¼

z�1

.

.

.

z�m
z1

.

.

.

zM�m

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

ð3Þ

Fig. 1 FDI attack detection by comparing WLS-based SE and UKF results
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Likewise, the state vector can be divided into the protected

SVs that correspond to at least one of the securemeasurements

(x�k) and the unprotected ones (xN�k is the total k SV which is

fully protected – subvector x�k in (4)), where all the

corresponding measurements may be compromised.

If the attacker plans to change the ith SV (xi) by dxi while

remaining undetected, then all the measurements corre-

sponding to the rows with non-zero elements (total ‘ mea-

surements) in the ith column of matrixH need to be changed

(z‘ þ dz‘). The attacker can change only the unprotected SVs

(xN�k) without detection because all the corresponding

measurements are those that can be tampered with zM�m (the

measurement error vector e in (2) is ignored).

z�1

.

.

.

z�m
z1

.

.

.

z‘ þ dz‘

.

.

.

zM�m

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

� � � H1i � � �

.

.

.

� � � Hii � � �

.

.

.

� � � HMi � � �

2

6

6

6

6

6

4

3

7

7

7

7

7

5

x�1

.

.

.

x�k
x1

.

.

.

xi þ dxi

.

.

.

xN�k

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4
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7

7

7

7

7

7

7

7

7

7

7

7

7

5

ð4Þ

The Jacobian matrix used by an adversary may be

represented as a sum of the actual Jacobian H and some

increment dH that is used to encapsulate all the

uncertainties the attacker may have. The measurement-

SVs model with multiple SVs under attack (xN�k) can now

be written as:

z�m

zM�m

� �

¼
Hm;k Hm;N�k 0

HM�m;k HM�m;N�k HM�m;N�k þ dHM�m;N�k

" #

�

x�k

xN�k

dxN�k

2

6

4

3

7

5

¼
Hm;k Hm;N�k

HM�m;k HM�m;N�k

" #

x�k

xN�k

� �

þ
0

ðHM�m;N�k þ dHM�m;N�kÞdxN�k

" #

¼
Hm;k Hm;N�k

HM�m;k HM�m;N�k

" #

x�k

xN�k

� �

þ
0 0

HM�m;N�k 1

" #

dxN�k

dHM�m;N�kdxN�k

� �

¼
Hm;k Hm;N�k 0 0

HM�m;k HM�m;N�k HM�m;N�k 1

" #

x�k

xN�k

dxN�k

dzM�m

2

6

6

6

4

3

7

7

7

5

ð5Þ

where d zM�m ¼ dHM�m;N�kdxN�k and 1 is an identity

matrix.

Note that in (5), the state vector has been expanded with

the additional sets of variables (dxN�k and dzM�m) that,

represent malicious SV changes and measurement changes

(resulting as a consequence of the attacker’s incomplete

knowledge of Jacobian matrix H), respectively.

Unfortunately, the resulting set of (5) is generally

undetermined and cannot be solved even for the simplest

scenario with the maximum measurement redundancy

(M[ 3N) and only one SV under attack (xi) – irrespective

of the size of x�k . Therefore, a WLS-based SE cannot by

itself be enhanced to detect FDI attacks but only in synergy

with some other method. In consequence, a new algorithm

that combines a WLS-based SE and forecast based UKF is

proposed in Section 3.

2.2 Nonlinear problem formulation

Based on the analysis provided in Section 2.1, a critical

case wherein all the measurements are susceptible to

attacks (m = 0 and k = 0 in (4)) is considered. Let dz be the

non-zero false data attack vector from (4) that is created by

the adversary, who has a complete knowledge of the non-

linear observation model function hðxÞ. The modified set of

measurements can then be written as:

z0 ¼ zþ dzþ e ¼ hðxþ dxÞ þ e ¼ hðx0Þ þ e ð6Þ

The typically used BDD techniques are based on a

normalized residual approach, where the ‘2-norm of the

measurement residual is compared against a threshold s.

z0 � hðx0Þk k ¼ hðxþ dxÞ þ e� hðxþ dxÞk k ¼ ek k\s

ð7Þ

Therefore, malicious attacks created in this manner

cannot be detected using standard BDD techniques [6].

3 Proposed algorithm

A flow-chart of the proposed algorithm for the detection

of FDI attacks is shown in Fig. 2, wherein the different

steps are described in sequence.

3.1 UKF-based states prediction and update

The prediction of the SVs from the (k – 1)th time instant

to the those at the k
th time instant

xkjk�1 ¼ f ðxk�1Þ þ wk ð8Þ

is performed by the UKF prediction step (described

briefly in Appendix A), where the linearized transition

850 Nemanja ŽIVKOVIĆ, Andrija T. SARIĆ
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model can be derived from increments to the power flow

equations:

DP

DQ

� �

¼
DPg � DPp

DQg � DQp

� �

¼
E T

K L

� �

Dh

DV

� �

¼ JDx ð9Þ

where E, T, K, L are corresponding submatrices of Jaco-

bian matrix J for the power flow equations, with elements

Eij ¼
oPi

ohj

�

�

�

h0;V0

, Tij ¼
oPi

oVj

�

�

�

h0;V0

, Kij ¼
oQi

ohj

�

�

�

h0;V0

and Lij ¼

oQi

oVj

�

�

�

h0;V0

. Note that the only equation for active and reactive

power in the Slack-bus is excluded (i, j = Slack), because

hSlack ¼ 0.

For the assumed constant power factor (cosu), we have:

DP

DQ

� �

¼
DP

tan uDP

� �

ð10Þ

where

DPi ¼ siPk�1;i ð11Þ

and Pk�1;i represents the per unit injection change (refer-

enced to the base case values (1 p.u.) at time instant tk�1)

taken from the active power generation/load curve,

whereas si represents the correlation coefficient between

DPi and Pk�1;i, which is also obtained from the generation/

load curve. These curves are acquired as a result of the

application of short-term forecasts and generator

schedules.

Finally, we obtain the following time-variant transition

model for UKF

xk ¼ xk�1 þ Dx ¼ xk�1 þ Jinvk�1

DP

tan uDP

� �

ð12Þ

or

xk ¼ Fk�1xk�1 ð13Þ

where Fk�1 ¼ 1þ ðJinvk�1Þ
0
is the linearized UKF transition

function. The elements of the ðJinvk�1Þ
0
matrix are defined as:

ðJinvk�1;ijÞ
0 ¼ Jinvk�1;ij

siPk�1;i

xk�1;i

ð14Þ

The derived transition function is generally a full matrix,

because changes in load and generation buses influence

multiple SVs. Being time-varying, it captures sudden

load/generation changes in power systems to a much

higher degree than constant transition functions.

The update step of the UKF is then performed using a

highly non-linear observation model hðxÞ acquired with the

WLS-based SE algorithm, as explained in Appendix A.

3.2 PMU measurement buffering

The state estimation calculation is usually triggered

either periodically at periods of 1-5 minutes or after a

topological or significant analogue measurement change.

Depending on the SCADA pooling time and measurement

dynamics, the expected SE triggering period is usually 30

seconds to 1 minute – which is much longer than the

refresh rates of PMU-based measurements. Due to these

differences, measurement buffering was proposed in [42]

For NPMU measurements that arrive in the time interval

between two WLS-based SE executions

(tk�1 � ti � tk�1 þ DtSE) the mean and variance respec-

tively, are

lz ¼
1

NPMU

X

NPMU

i¼1

zðtiÞ ð15Þ

varðlzÞ ¼
1

(NPMU)2

X

NPMU

i¼1

varfzðtiÞg ¼
r2

NPMU
ð16Þ

3.3 WLS-based SE

Because the SE model is nonlinear, the function hðxÞ is

linearized and the resulting linearized SE is formulated as a

WLS problem. The WLS estimator minimizes the objec-

tive function by satisfying the first-order optimality

conditions.

tk-1; xk-1

tk-1←tk

UKF transition function (Fk-1)

and SE Jacobian matrix (Hk-1)

Available PMU-based and 

SCADA-based measurements

tk=tk-1+∆t
SCADA

SE triggered?

WLS-based SE for tk (xk    )

(Section 3.3)

SE

UKF-based states prediction

and update (xk       )

(Section 3.1)

UKF

FDI attack detection 

(Section 4)

Attack detected?

PMU measurements 

buffering (Section 3.2)

Control room alarm 

generation

Next time instant

tk-1←tk

xk-1←xk

N Y

N

Y

Fig. 2 Proposed algorithm for detection of FDI attack
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ojðxÞ

ox
¼ 0 ð17Þ

where jðxÞ ¼ DzTR�1
Dz is the objective function; Dz ¼

z� hðxÞ is the vector of measurement residuals; R is the

covariance matrix of measurement error vector.

The minimization problem can be solved using an iter-

ative scheme, changing the point of linearization (for

simplicity, the iteration index is removed).

ðHTR�1HÞDx̂ ¼ HTR�1
Dz ð18Þ

x ¼ xþ Dx̂ ð19Þ

ẑ ¼ hðxþ Dx̂Þ ð20Þ

where the Jacobian matrix H is assumed to be constant

inside one SE cycle.

4 FDI attack detection using UKF

Knowing the initial network condition at time instant k-1

(vector of SVs xk�1) and assuming that the forecasted data

are available for all the power consumers and generators

for the following time instant k, a UKF can be used to

determine the network condition on the basis of the tran-

sition matrix and available telemetered measurements. A

transition matrix (Fk�1) can be created using forecasted

data, as part of load flow calculation for future time instant

k using (10)-(14).

In a commercial EMS environment, an SE calculation is

usually triggered in four ways: � periodically, on user

defined time intervals that are primarily in the range of 1–5

minutes; ` after significant analogue measure-

ment(s) change(s); ´ after every topological or change in

transformer tap position; ˆ on the request of a user.

Therefore, it can be expected that the period between time

instants k – 1 and k is no longer than 5 minutes. For such

short time periods, it can be assumed that the trust factor

for the forecasted injections (generations minus loads) is

high, resulting in small values of the process noise vector

wk in (A1).

When an FDI attack occurs, the maliciously changed

group of measurements would swing the estimates of the

SV(s) provided by the WLS-based SE algorithm in the

desired direction. On the other hand, the estimates acquired

from the UKF would only partially swing, due to the

binding effect of the transition matrix (Fk�1) and the small

process noise vector (wk).

For the purpose of detecting FDI attacks and identifying

false data, a normalized SV residuals based approach is

proposed. A normalized SV residual (ri) is calculated as the

absolute value of a difference between a SV value esti-

mated by the WLS-based SE (xSEi ) and that calculated by

the UKF (xUKFi ) divided by the standard deviation acquired

from the UKF covariance matrix C in (A4).

ri ¼
xSEi � xUKFi

�

�

�

�

ffiffiffiffiffiffiffi

Ci;i

p i ¼ 1; 2; � � � ;N ð21Þ

It should be noted that the traditional BDD algorithms,

which are typically based on the normalized measurement

residuals, are used to filter out bad measurements in both

the WLS-based SE and UKF in the proposed algorithm.

These filtered estimates are later used to calculate the

residuals (21).

To determine whether the regarded SVs are under

attack, the normalized SV residuals (ri in (21)) are com-

pared to a predefined threshold. When an FDI attack is

confirmed, the proposed algorithm generates an alarm in

the control room to warn a system operator.

Because the proposed method relies on forecast results,

false positive detections may occur. Note that false posi-

tives are the cases where the proposed algorithm detects an

attack although there is none, and false negatives are the

cases when the algorithm fails to detect an existing attack.

Detection depends on the specified threshold, which should

provide the minimum number of false positives and false

negatives. Threshold selection is very important because

higher threshold values would tolerate larger forecast

errors, while at the same time limiting the minimum attack

intensity that could be detected. Lower threshold values

would, on the other hand, increase the probability of false

positive detections. Being system oriented and forecast

quality dependent, the following steps are proposed for

threshold definition:

1) Generation of daily-based load curves obtained from

the application of very short-term load forecasts for

multiple day types (week day, weekend, and holiday)

and seasons (spring, summer, autumn, and winter).

2) Iterative adjustment (decrease/increase) of the thresh-

old value, starting from the initial one.

3) Application of FDI attacks of different intensities.

4) Attack detection using the proposed algorithm.

Only sudden changes in generation/load, that are not

captured in a very short-term forecast as well as unplanned

system events such as equipment outages (for example,

overhead line outages), could produce differences between

UKF and WLS-based SE estimates that are not the con-

sequence of a malicious attack and would therefore lead to

false positive detections. However, such detections could

easily be disregarded after the system operator becomes

aware of them. Orchestrating FDI attacks during such

unplanned events to evade detections is regarded as highly

unlikely. An attacker would need to have access to all the

measurements in the region over a long period and then
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attack one of the SVs affected by the outage during a short

time frame (inside a 5 minute’ interval, before the next

execution of a very short-term forecast).

5 Application

To evaluate the proposed algorithm, simulations were

conducted on the modified 14-bus test system [43] shown

on Fig. 3, and on an IEEE 300-bus test system [44]. The

SVs calculated using the WLS-based SE and UKF were

compared in cases with and without a malicious attack on

the smaller 14-bus test system. On the same system, the

sensitivity of the algorithm to different transition process

noise values was tested. The ability of the proposed method

to detect attacks of different intensities and its sensitivity to

forecast accuracy was demonstrated on the 300-bus test

case.

5.1 Modified 14-bus test system

A single-line diagram of the modified 14-bus test system

is shown in Fig. 3. Compared to the original model in [43],

generation was removed from buses 3 and 6 and added to

buses 5, 11 and 13. The types of all the generating units and

utilized daily load curves are specified in Fig. 3. The initial

voltage phasors and nodal active and reactive power

injections were also slightly changed from their original

values to compensate for the addition/removal of generat-

ing units shown in Table 1.

High measurement redundancy was assumed (with

active and reactive power flow measurements on all bran-

ches, shunt power injection measurements, and voltages at

every bus). PMU-based voltage measurements were placed

on the generator (generation, PV and slack) buses. Fore-

casted generation curves for solar and wind units, and

schedules for thermal and hydro units were used in Fig. 4

in conjunction with forecasted load curves in Fig. 5 to

estimate near-term network condition.

In Fig. 6, the WLS-based SE and UKF estimated volt-

age magnitudes at bus 12 (load, PQ bus) were plotted for

the analyzed 6-hour period when no attack was introduced.

Estimation calculations were conducted every 30 seconds,

which is an expected average SE sampling period for

utilities with modern EMSs. The maximum normalized

residuals for all the voltage magnitudes are shown on the

figure as well. It can be easily concluded that as the UKF

estimates followed the WLS-based SE estimates, the nor-

malized residuals were below the predefined threshold, and

no FDI attack was detected.

An FDI attack aimed at the voltage at bus 12 was started

after 1 hour, as shown in Fig. 7. The intensity of the

voltage magnitude change targeted by the attacker was

0.1 p.u. It can be observed that although the WLS-based

SE calculated voltage immediately reached the targeted

voltage, the voltage calculated by the UKF only reached

the targeted value after more than one hour, thus enabling

the FDI attack to be detected, which can be seen by ana-

lysing the maximum normalized residuals over time.

The influence of the process noise vector, wk in (A1),

was also analysed, and was determined to be critical to the

FDI detection process. In Fig. 8, the UKF estimated volt-

ages for three different process noise values were plotted;

Fig. 3 Single-line diagram of modified 14-bus test system

Table 1 Active and reactive power injections into system buses

Bus

number

Load Generation

Active

(MW)

Reactive

(Mvar)

Active

(MW)

Reactive

(Mvar)

1 0.0 0.0 232.4 1.2

2 21.7 12.7 40.0 29.5

3 94.2 19.0 0.0 0.0

4 47.8 - 3.9 0.0 0.0

5 7.6 1.6 30.0 3.9

6 11.2 7.5 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 40.0 38.8

9 29.6 16.6 0.0 0.0

10 9.0 5.8 0.0 0.0

11 3.5 1.8 35.0 4.4

12 6.1 1.6 0.0 0.0

13 13.5 5.8 20.0 25.9

14 14.9 5.0 0.0 0.0
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the smallest process noise was 10 times smaller than the

medium process noise and 100 times smaller than the lar-

gest process noise.

From the presented results, it was concluded that for

large process noise, the UKF results closely followed the

WLS-based SE estimates, thus reducing the time available

for FDI attack detection, whereas for lower process noise,

the differences between the WLS-based SE and UKF

results were much more significant and remained so for

longer periods of time. This conclusion emphasizes the

necessity for high-quality generation and load forecasts,

and for short SE execution periods.

5.2 IEEE 300-bus test system

Furthermore, FDI attacks of different intensities were

aimed at bus 4 (load, PQ type), which affected all the

necessary measurements to change the SE results without

being detected by the typically used BDD algorithms. The

voltages estimated using the WLS-based SE method in the

first execution after the attack commenced were compared

with those acquired from the UKF, as shown in Table 2. It

was concluded that for attacks of greater strength (targeted

malicious voltage magnitude changes in p.u.), the differ-

ences between the WLS-based SE and UKF estimates were

significant, as was the normalized residual, which over-

topped the defined threshold by almost 20 times. The

maximum normalized residuals decreased with decreasing

attack intensity - the 0.01 p.u. attack was the last to be

successfully detected (last row in Table 2). Depending on

the accuracy of measurement equipment in the power

system, voltage magnitudes may be estimated using the

WLS-based SE algorithm alone, with errors exceeding 1%

(even in the absence of a malicious attack). The conse-

quences of such errors are minor, which leads to the con-

clusion that the proposed method is instantly capable of

Fig. 4 Forecasted generation curves

Fig. 5 Forecasted daily load curves
Fig. 6 Obtained results for modified 14-bus test system without FDI

attack
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detecting any FDI attack that may create significant con-

sequences to the network operation.

In addition, the sensitivity of the proposed method was

tested against different very short-term forecast accuracies.

The expected mean absolute percentage error (MAPE) for

very short-term forecast (5-minute in advance) in the

modern EMS systems is significantly lower than 1%.

Therefore, the maximum normalized SV residuals in the

absence of an FDI attack were obtained for forecast

accuracies ranging from 0% to 1% MAPE, as shown in

Table 3. The minimum strengths of the FDI attacks that

were successfully detected without triggering any false

positive detections (see in Table 3) expectedly increased

with the increase of forecast MAPE. However, even for the

higher forecast errors the proposed method proved capable

of detecting FDI attacks of significant strengths. The range

of the FDI attack strengths that could be detected would

further increase with the less strict selection of the detec-

tion threshold (allowing false positive detections).

One potential drawback of the proposed approach

occurs in cases when the malicious attack is comprised of

multiple low strength attacks aimed at the same SV, driv-

ing its value towards the targeted value in small increments

over a substantial period of time. For attacks constructed in

that manner, the differences between WLS-based SE and

Fig. 7 Obtained results for modified 14-bus test system with an FDI

attack starting after one hour

Fig. 8 UKF estimated voltages at bus 12 using three different

process noise values

Table 2 Detection of FDI attacks of different strengths

Attack

strength

WLS-

based SE

UKF Actual

voltage

Maximum

normalized residual

0.200 1.1831 1.0907 1.0254 957.32

0.150 1.1487 1.0722 1.0254 775.87

0.100 1.1129 1.0548 1.0254 577.26

0.050 1.0718 1.0389 1.0254 319.65

0.025 1.0495 1.0319 1.0254 169.32

0.010 1.0347 1.0278 1.0254 65.81

Table 3 Detection of FDI attacks for different forecast accuracies

MAPE (%) Maximum normalized

residual (p.u.)

Minimum attack

strength (p.u.)

0 17.4 0.010

0.2 22.7 0.010

0.4 36.1 0.010

0.6 68.4 0.020

0.8 140.3 0.025

1.0 234.8 0.040
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UKF calculated values could be below the threshold in the

time instant of the incremental attack. In addition, the UKF

estimation would reach the WLS-based SE after a limited

number of iterations but before the following incremental

attack - allowing the attack to be continuously undetected,

as shown in Fig. 9.

On the other hand, constructing this type of FDI attack is

much more difficult because a prolonged period of time is

needed for the attack to attain the desired strength neces-

sary to produce any significant consequences. Furthermore,

multiple meaningful changes to all the affected measure-

ments are needed. Such practical complications make this

type of an attack an unlikely scenario. Nevertheless, our

subsequent research will focus on these slow, incremental

FDI attacks.

6 Conclusion

In this paper, the synergy between a traditional WLS-

based SE and UKF was used for detection of FDI attacks in

power systems. An unlimited number of compromised

measurements was supposed, and a more realistic nonlinear

observation model was used. To implement the UKF pre-

diction step, a transition function was derived using a

power flow model in combination with load/generation

short-term forecasts and generator schedules.

The proposed method was tested on benchmark IEEE

14-bus and 300-bus test systems, and all FDI attacks of

significant strength were successfully identified for rea-

sonable forecast quality. The only possible failure cases

which have been identified are as follows: � detection of

lower strength FDI attacks in systems with bad forecast

quality; ` false positive detections in cases of sudden

changes in generation/load, that are not captured within a

very short-term forecast and unplanned system events

(such as equipment outages); ´ detection of attacks con-

sisting of multiple small intensity attacks executed over a

long time period. While the third case is highly unlikely

and impractical, the second one could easily be disregarded

by the system operator.

By relying on a more realistic and accurate nonlinear

measurement observation model, and a fast, easily imple-

mented and robust UKF, the proposed solution can be

successfully deployed as part of an SE package in com-

mercial EMS software.
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Appendix A

The transition of a system state vector from the (k-1)th to

kth time instant can be described as:

xk ¼ fðxk�1Þ þ wk ðA1Þ

where xk is the N-dimensional state estimation vector at kth

time instant; fð�Þ is the N-dimensional nonlinear set of state

transition functions; wk is the N-dimensional process noise

vector, assumed to be zero mean multivariate Gaussian
Fig. 9 Obtained results for IEEE 300 bus test system under an

incremental FDI attack over a 24-hour time period
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noise with covariance Qk, at kth time instant; N is the

number of unknown system SVs (the same as in (1)).

In this paper, a linearized form of the transition model

function f ð�Þ is proposed (F in (13)).

The observation model function (in our case, the SE

model) is represented by the following equation (which is

the same as (1) for the kth time instant).

zk ¼ hðxkÞ þ ek ðA2Þ

The UKF uses the unscented transformation sampling

technique to perform a nonlinear transformation. A

minimal set of sampling points (known as sigma points)

is selected and transformed using the nonlinear function,

whereas the new mean and covariance are formed out of

those transformed points. The basic underlying idea is that

it is easier to approximate a Gaussian distribution, than it is

to approximate an arbitrary nonlinear function.

The state estimation vector at the (k - 1)th time instant

(xk�1) and its covariance matrix (Ck�1) are augmented with

the mean (0) and covariance matrix Qk of the process noise

vector wk, respectively.

xak�1 ¼ xTk�1 0
� �T

ðA3Þ

Ca
k�1 ¼

Ck�1 0

0 Qk

� �

ðA4Þ

na ¼ 2N ðA5Þ

where na represents the dimension of the augmented state

vector (xak�1), and Ca
k�1 represents the augmented state

covariance matrix.

The 2na þ 1 sigma points (v
k�1jk�1

) and weight are,

respectively, defined as:

vik�1jk�1 ¼
xak�1 i ¼ 0

xak�1 þ Bi i ¼ 1; 2; . . .; na

xak�1 � Bi�na i ¼ na þ 1; na þ 2; . . .; 2na

8

<

:

ðA6Þ

W s
i ¼

j

na þ j
i ¼ 0

1

2 na þ jð Þ
i ¼ 1; 2; . . .; 2na

8

>

<

>

:

ðA7Þ

Wc
i ¼

j

na þ j
þ ð1� a2 þ bÞ i ¼ 0

1

2ðna þ jÞ
i ¼ 1; 2; . . .; 2na

8

>

<

>

:

ðA8Þ

where Bi is the ith column of the matrix and

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

na þ jð ÞCa
k�1

p

; a is the constant that determines the

spread of the sigma points around the xak�1 (usually set to a

small number, e.g., 0.001); b is the constant used to

incorporate the prior knowledge of the distribution of state

vector (b ¼ 2 for Gaussian distributions); j is the scaling

parameter, usually calculated as j ¼ naða2 � 1Þ; W s
i ðW

c
i Þ

is the weight associated with the ith sigma point and used

to calculate the predicted state vector (covariance

matrix).

The predicted sigma points (vi
kjk�1

) are acquired by

propagating the previously calculated sigma points using

the state transition function f ð�Þ, to obtain the predicted

state vector with mean (xkjk�1) and covariance (Ckjk�1),

respectively

vikjk�1 ¼ f ðvik�1jk�1Þ ðA9Þ

xkjk�1 ¼
X

2na

i¼0

W s
i v

i
kjk�1 ðA10Þ

Ckjk�1 ¼
X

2na

i¼0

Wc
i vikjk�1 � xkjk�1

� 	

vikjk�1 � xkjk�1

� 	T

ðA11Þ

Afterwards, the obtained predicted state vector and state

covariance matrix should be augmented with the mean (0)

and covariance matrix (Rk) of the observation noise vector,

respectively.

xakjk�1 ¼ xTkjk�1 0
h iT

ðA12Þ

Ca
kjk�1 ¼

Ckjk�1 0

0 Rk

� �

ðA13Þ

na ¼ 2N þ N ¼ 3N ðA14Þ

After a new set of sigma points (vi
kjk�1

) are defined using

(A6)–(A8), they are propagated through the observation

model (h) to determine the predicted measurement vector

and the predicted measurement covariance matrix,

respectively.

ẑk ¼
X

2na

i¼0

W s
i �z

i
k ðA15Þ

Czk ;zk ¼
X

2na

i¼0

Wc
i �zik � ẑk

 �

�zik � ẑk

 �T

ðA16Þ

where

�zik ¼ h(vikjk�1) ðA17Þ

The state-measurement cross-covariance matrix is

determined as:

Cxk ;zk ¼
X

2na

i¼0

Wc
i v

i
kjk�1 � xkjk�1

� 	

�zik � ẑk

 �T

ðA18Þ

and is used to calculate the Kalman gain
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Kk ¼ Cxk ;zkC
�1
xk ;zk

ðA19Þ

The state vector is updated by adding the innovation

(zk � ẑk) weighted by the Kalman gain to the predicted

state

xkjk ¼ xkjk�1 þ Kkðzk � ẑkÞ ðA20Þ

The updated covariance matrix is determined using

Ckjk ¼ Ckjk�1 � KkCzkzkK
T
k ðA21Þ

References

[1] Zhang Z, Gong S, Dimitrovski AD et al (2013) Time synchro-

nization attack in smart grid: impact and analysis. IEEE Trans

Smart Grid 4(1):87–98

[2] Incident response activity (2015) In: NCCIC/ICS-CERT moni-

tor September 2014–February 2015. https://ics-cert.us-cert.gov/

monitors/ICS-MM201502. Accessed 2 April 2017

[3] Meserve J (2007) Sources: staged cyber attack reveals vulner-

ability in power grid. http://edition.cnn.com/2007/US/09/26/

power.at.risk/. Accessed 2 April 2017

[4] Abur A, Exposito A (2004) Power system state estimation:

theory and implementation. CRC Press, New York

[5] Mili L, Cutsem TV, Ribbens-Pavella M (1984) Hypothesis

testing identification: a new method for bad data analysis in

power system state estimation. IEEE Trans Power Appar Syst

103(11):3239–3252

[6] Liu Y, Ning P, Reiter M (2009) False data injection attacks

against state estimation in electric power grids. In: Proceedings

of 16th ACM conference on computer and communications

security, Chicago, USA, 9–13 November 2009, 12 pp

[7] Dan G, Sandberg H (2010) Stealth attacks and protection

schemes for state estimators in power systems. In: Proceedings

of 1st IEEE international conference on smart grid communi-

cations, Gaithersburg, USA, 4–6 October 2010, 6 pp

[8] Teixeira A, Amin S, Sandberg H et al (2010) Cyber security

analysis of state estimators in electric power systems. In: Pro-

ceedings of 49th IEEE conference on decision control (CDC),

Atlanta, USA, 15–17 December 2010, 8 pp

[9] Sandberg H, Teixeira A, Johansson KH (2010) On security

indices for state estimators in power networks. In: Proceedings

of 1st workshop on secure control systems, Stockholm, Sweden,

12 April 2010, 6 pp

[10] Hug G, Giampapa JA (2012) Vulnerability assessment of AC

state estimation with respect to false data injection cyber-at-

tacks. IEEE Trans Smart Grid 3(3):1362–1370

[11] Anwar A, Mahmood AN, Tari Z (2015) Identification of vul-

nerable node clusters against false data injection attack in an

AMI based smart grid. Inf Syst 53(C):201–212

[12] Kosut O, Jia L, Thomas R et al (2010) Malicious data attacks on

smart grid state estimation: attack strategies and countermea-

sures. In: Proceedings of 1st IEEE international conference on

smart grid communications, Gaithersburg, USA, 4–6 October

2010, 6 pp

[13] Kim J, Tong L, Thomas R (2014) Data framing attack on state

estimation. IEEE Jr Sel Areas Commun 32(7):1460–1470

[14] Ozay M, Esnaola I, Vural F et al (2013) Sparse attack con-

struction and state estimation in the smart grid: centralized and

distributed models. IEEE Jr Sel Areas Commun

31(7):1306–1318

[15] Esmalifalak M, Nguyen H, Zheng R et al (2011) Stealth false

data injection using independent component analysis in smart

grid. In: Proceedings of 2nd IEEE international conference on

smart grid communications, Brussels, Belgium, 17–20 October

2011, 5 pp

[16] Kim J, Tong L, Thomas R (2015) Subspace methods for data

attack on state estimation: a data driven approach. IEEE Trans

Signal Process 63(5):1102–1114

[17] Yu ZH, Chin WL (2015) Blind false data injection attack using

PCA approximation method in smart grid. IEEE Trans Smart

Grid 6(3):1219–1226

[18] Anwar A, Mahmood AN (2016) Stealthy and blind false

injection attacks on SCADA EMS in the presence of gross

errors. In: Proceedings of power energy society general meeting,

Boston, USA, 17–21 July 2016, 5 pp

[19] Esfahani PM, Vrakopoulou M, Margellos K et al (2010) Cyber

attack in a two-area power system: impact identification using

reachability. In: Proceedings of American control conference,

Baltimore, USA, 30 June–2 July 2010, 6 pp

[20] Esfahani PM, Vrakopoulou M, Margellos K et al (2010) A

robust policy for automatic generation control cyber attack in

two area power network. In: Proceedings of 49th IEEE con-

ference on decision control, Atlanta, USA, 15–17 December

2010, 6 pp

[21] Sridhar S, Manimaran G (2010) Data integrity attacks and their

impacts on SCADA control system. In: Proceedings of power

energy society general meeting, Minneapolis, USA, 25–29 July

2010, 6 pp

[22] Xie L, Mo Y, Sinopoli B (2010) False data injection attacks in

electricity markets. In: Proceedings of 1st IEEE International

conference on smart grid communications, Gaithersburg, USA,

4–6 October 2010, 6 pp

[23] Bobba RB, Rogers KM, Wang Q et al (2010) Detecting false

data injection attacks on DC state estimation. In: Proceedings of

1st workshop on secure control systems, Stockholm, Sweden, 12

April 2010, 9 pp

[24] Kim TT, Poor HV (2011) Strategic protection against data

injection attacks on power grids. IEEE Trans Smart Grid

2(2):326–333

[25] Vukovic O, Sou KC, Dan G et al (2012) Network – aware

mitigation of data integrity attacks power system state estima-

tion. IEEE Jr Selected Areas Comm 30(6):1108–1118

[26] Bi S, Zhang YJ (2014) Graphical methods for defense against

false-data injection attacks on power system state estimation.

IEEE Trans Smart Grid 5(3):1216–1227

[27] Anwar A, Mahmood A (2014) Vulnerabilities of smart grid state

estimation against false data injection attack. In: Johangir H,

Apel M (eds) Renewable energy integration. Springer,

Singapore

[28] Jokar P, Arianpoo N, Leung V (2013) Intrusion detection in

advanced metering infrastructure based on consumption pattern.

In: Proceedings of IEEE international conference on commu-

nications, Budapest, Hungary, 9–13 June 2013, 5 pp

[29] Rana M, Li L, Su SW (2016) Cyber attack protection and

control in microgrids using channel code and semidefinite pro-

gramming. In: Proceedings of power energy society general

meeting, Boston, USA, 17–21 July 2016, 5 pp

[30] Chaojun G, Jirutitijaroen P, Motani M (2015) Detecting false

data injection attacks in AC state estimation. IEEE Trans Smart

Grid 6(5):2476–2483

[31] Huang Y, Tang J, Cheng Y et al (2016) Real-time detection of

false data injection in smart grid networks: an adaptive CUSUM

method and analysis. IEEE Systems Journal 10(2):532–543

[32] Zhao J, Zhang G, La Scala M et al (2017) Short-term state

forecasting-aided method for detection of smart grid general
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Andrija T. SARIĆ received the B.Sc., M.Sc., and Ph.D. degrees in

electrical engineering from the University of Belgrade, Serbia, in

1988, 1992, and 1997, respectively. He is a Full Professor of electrical

engineering at the University of Novi Sad, Faculty of Technical

Sciences, Serbia. His main areas of interest are power system

analysis, optimization and planning, as well as application of artificial

intelligence methods in these areas.

Detection of false data injection attacks using unscented Kalman filter 859

123

http://www2.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm
http://www2.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm
http://www2.ee.washington.edu/research/pstca/pf300/pg_tca300bus.htm
http://www2.ee.washington.edu/research/pstca/pf300/pg_tca300bus.htm

	Detection of false data injection attacks using unscented Kalman filter
	Abstract
	Introduction
	Problem formulation
	Analysis of compromised measurement cases
	Nonlinear problem formulation

	Proposed algorithm
	UKF-based states prediction and update
	PMU measurement buffering
	WLS-based SE

	FDI attack detection using UKF
	Application
	Modified 14-bus test system
	IEEE 300-bus test system

	Conclusion
	Acknowledgements
	Appendix A
	References


