
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-28, NO. 11, NOVEMBER 1979

G. A. Jullien (M'70) was born in Wolverhampton,
England on June 16, 1943. He received the
B.Tech. degree from Loughborough University
of Technology, Loughborough, in 1965, the M.Sc.
degree from the University of Birmingham,
Birmingham, in 1967 and the Ph.D. degree from
Aston University in 1969, all in electrical
engineering.
From 1961 until 1966, he worked for English

_ l El Electric Computers at Kidgrove, England, first as
a student apprentice and then as a data pro-

cessing engineer. From 1967 until 1969 he was employed as a Research
Assistant at Aston University in England. Since 1969 he has been in the
Department of Electrical Engineering at the University of Windsor,
Windsor, Ont., Canada and currently holds the rank of Professor. He is
currently engaged in research in the areas of one- and two-dimensional
digital signal processing, high-speed digital hardware and microprocessor
systems. He also teaches courses on electronic circuits, microcomputer
systems and digital signal processing. From 1975 until 1976 he was a

visiting senior research engineer at the Central Research Laboratories of
EMI Ltd., Hayes, Middlesex, England.

Dr. Jullien is a member of the Association of Professional Engineers
of Ontario, and the American Society for Engineering Education.

Dr. Miller is
of Ontario.

* William C. Miller was born in Toronto, Ont.,
* Canada on September 20, 1937. He received the
* B.S.E. degree from the University of Michigan,
* Ann Arbor, and the M.A.Sc. and Ph.D. degrees
* from the University of Waterloo, Waterloo, Ont.,

all in electrical engineering.
Since 1968 he has been with the Department

of Electrical Engineering at the University of
Windsor, Windsor, Ont., where he is currently a
Professor and member of the Signal Processing
Laboratory Staff.

a registered Professional Engineer in the Province

Detection of Faults in Programmable
Logic Arrays

JAMES E. SMITH, MEMBER, EEE

Abstract-A new fault model is proposed for the purpose oftesting
programmable logic arrays. It is shown that a test set for all
detectable modeled faults detects a wide variety ofother faults A test
generation method for single faults is then outlined. Included is a
bound on the size of test sets which indicates that test sets are much
smaller than would be required by exhaustive testing. Finally, it is
shown that many interesting classes of multiple faults are also
detected by the test sets

Index Terms-Programmable logic arrays, fault detection, fault
modeling, test generation.

I. INTRODUCTION

pROGRAMMABLE logic arrays (PLA's) provide the
Plogic designer with an economical way of realizing
combinational switching functions-[1]-[3]. The economy is
achieved by manufacturing standard "blank" arrays, and, as
a final step, "programming" the array to perform a particu-
lar set of functions. In some technologies programming is
performed by using a custom mask for the final metalization
step. Field programmable logic array (FPLA) technologies
allow the user to program the array by blowing fusible links
within the array.

Manuscript received August 9, 1977; revised September 1978.
The author is with the Department of Electrical and Computer Engin-

eering, University of Wisconsin, Madison, WI 53706.

As with any other logic circuit, PLA's must be tested to
insure that they operate correctly. Essentially, three different
testing schemes are possible. The first is to place special test
circuitry on the array [3]. This special circuitry is then
enabled by placing voltage levels on inputs and outputs
which are beyond normal levels. This method is used to
avoid the addition ofpins for testing and checks the presence
or absence of connections in the PLA. While this method
allows the PLA to be tested quickly, a PLA tested in this way
has not been tested under normal operating conditions.
Furthermore, after such a PLA is placed in a system it may
be difficult to apply the appropriate testing signals which
require abnormal signal levels.
A second test method is to exhaustively apply all possible

input vectors to the array and check to see if it responds
correctly. Exhaustive testing more adequately reflects
normal operating conditions, but it has the disadvantage of
requiring rather sophisticated high-speed test equipment.
While a manufacturer may have such equipment, a user in
the field, w-ho often needs to test a PLA, may not. In
addition, as PLA technology advances and the number of
inputs increases, exhaustive testing will become impractical
even with high-speed equipment. Exhaustive testing can also
be very difficult in a system environment where other logic
typically separates the PLA from the "outside world." Here.

0018-9340/79/1100-0843$00.75 (C 1979 IEEE

845

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 11, NOVEMBER 1979

setting up test patterns and observing them can be very time
consuming if testing has to be done exhaustively.
The third method is to select special test cases and to test

the array for these cases only. This third method is the one
considered in this paper. It overcomes most ofthe disadvan-
tages of the other two methods, provided the size of the test
set is relatively small. To be effective, however, a nonex-
haustive test set must detect a large proportion of failures
that are likely to occur, and it must be easy to select the set of
tests to be used.
The problem of generating small and effective test sets for

random (i.e., nonarray) logic has been studied for some time.
In most of this paper it is assumed that failures appear as
gate input or output lines stuck at logical values [4]. Using
this assumption input sequences are generated which detect
all (or most) such stuck-at faults [5].
The problem of generating test sets for PLA's differs from

the problem generally considered on two counts. First, the
circuit structure is different; PLA's essentially have only two
levels of gates. The second and more important difference is
that a more general fault model seems necessary because of
the way PLA's are fabricated. The usual test generation
techniques can be easily modified to take care of the first
difference; however, the second requires additional study.
A brief description of PLA structures is presented in

Section II, and the proposed fault model is discussed in
Section III. The generation of tests which detect modeled
faults is the topic of Section IV. Emphasis is placed on
generating small -test sets under a single fault assumption.
Classes of multiple faults also detected are presented in
Section V, and the paper concludes with Section VI.

II. THE STRUCTURE OF PLA's

Currently available PLA's typically consist of an input
buffer and two arrays, the first of which effectively forms
implicants (AND'S) while the second forms logical sums
(OR'S) of the implicants. These are the AND array and OR
array, respectively. Fig. l(a) shows a two-level AND-OR
network to be implemented with a PLA. Fig. l(b) shows
such an implementation using a fusible-link FPLA. Here,
the AND array is implemented with diodes, and the OR array
is implemented with bipolar transistors. An optional output
inverter may be implemented in a PLA by using exclusive-
OR gates as shown in Fig. l(b). Other fabrication methods
are possible, for example, using a MOSFET technology
where the presence or absence ofgate connections determine
the function realized [1]. Typical PLA's and FPLA's cur-
rently available have 14-16 inputs, 48 or 96 product terms,
and 8 outputs.

III. MODELING OF FAILURES

In this section, a logical fault model is proposed for PLA's.
A logical fault model allows us to avoid considering physical
aspects of the circuits while generating tests and provides a
large body of knowledge upon which we can build, namely
the literature on stuck fault test generation.
The proposed fault model is similar to the one implicitly

used in the first testing scheme mentioned earlier; that is, we

z1 z2 Z3
(a)

xl1 X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1,
X2

V3

V ~- t k

-^tvw

I
4

±

I>

7 7 I -L
z2

z3

(b)
Fig. 1. (a) An AND-OR network. (b) An FPLA realization.

test for incorrect logical connections in the AND and OR
arrays. One justification for this is that a PLA is pro-
grammed by making or failing to make these connections.
Hence, any programming errors would show up as an
incorrect connection. Also, these "programming points"
might be susceptible to failure while in use. For example, a
fuse in an FPLA might blow under stressful use, or the metal
fragments from an improperly blown fusemay migrate back
together to form a connection [3].

Since AND gate inputs and OR gate inputs can be either

846

N7

I%

z1

-XOV\/\/

I

I I

SMITH: FAULTS IN PLA'S

improperly connected or disconnected, modeled faults can
be conveniently divided into four classes. First, if an input
literal is disconnected from an AND gate, this causes the
implicant to "grow" since the implicant becomes indepen-
dbent ofsome input variable. This growth ofan implicant can
be seen quite easily on a Karnaugh map [10]. These faults
will be called growthfaults. The set ofall single growth faults
will be denoted as G. If an AND gate becomes disconnected
from an OR gate, this causes an implicant to disappear from
the map ofthe function [10]. Hence, this set ofsingle faults is
the set of disappearancefaults D. Ifan input literal becomes
incorrectly connected to an AND gate, then the implicant
"shrinks." These faults will be the set of shrinkagefaults S.
Finally, if an AND gate becomes incorrectly connected to an
OR gate, then an implicant appears in themap ofthe affected
function. Hence, these will be called appearance faults A.
To make test generation simpler, we use an assumption

typically used for stuck-at faults in random logic-only one
failure is present at a time. In order to make this assumption
more palatable, it will later be shown that important classes
of multiple faults are detected by any single fault test set.

Since logical connections will be tested using normal
network paths, a test set designed for the proposed fault
model will also detect other potential faults. To demonstrate
this ability to "cover" other faults, we consider stuck type
faults since this is consistent with some known failure
mechanisms in semiconductor devices [6], [7], and because
they have been widely studied.

In terms of an AND-OR equivalent network with optional
output inverters, the faults are:

1) input inverters stuck-at-1 and 0,
2) AND gate inputs and outputs stuck-at-i and 0,
3) OR gate inputs and outputs stuck-at-1 and 0,
4) output inverters stuck-at-I and 0.

Using fundamental results concerning fault dominance
and equivalence from [8], [9], the following theorem can be
proved. A proof appears in Appendix I.

Theorem 1: A test set- that detects all detectable G, D, S,-
and A faults also detects all the detectable stuck-at faults
listed above except in PLA's where either of the following
conditions holds:

1) some AND gate(s) are redundant; i.e., they can be
deleted from the array without affecting the functions
realized;

2) if there exists an OR gate output which is normally 1
whenever any AND gate output in the array is 1.
From Theorem 1, we see that a test set for the assumed

faults in G, D, S, and A not only detects incorrect connec-
tions at programming points, but it also detects all the
stuck-at faults most of the time. In addition, improper
connections to optional inverters are trivially detected since
improperly inverted outputs can be detected by any input
vector.

If stuck-at faults are considered to have a significant
probability of occurrence, then one can check for the
unusual circumstances under which some stuck-at faults
may go undetected. Exception 1) in-Theorem 1 can be

L
C array

X1X2 X3

10 x

Ox 1
1 xO
I x 1

D array

Z1Z2 Z3

1 0 1
1 10
0 1 0
O 0 1

Fig. 2. Cubical specification of the network shown in Fig. 1.

checked by verifying that the disappearance of each impli-
cant from at least one function is detected. If a redundant
implicant is found, it can be removed by reprogramming the
array, or a test can be generated to detect the simultaneous
disappearance of all the redundant implicants that have an
input literal in common.

Exception 2) can result in an undetectable stuck-at fault
only if it causes some primary output line to be a 1 for all
tests. This condition can be easily checked after a test set has
been generated, and a test which causes the output to be 0
can be added to the test set.

IV. AN OVERVIEW OF A TEST GENERATION ALGORITHM

We now consider the problem ofgenerating a test set T for
the fault set F= G u D u S u A as described in the
previous section. Much of the detail of the algorithm is
omitted because many of the techniques used (e.g., path
sensitization) have already been widely discussed in the
literature.

A. Notation

In order to facilitate the description and computer im-
plementation of an algorithm, cubical notation and opera-
tions are used [13]-[15]. The functions which a PLA realizes
can be represented as arrays of cubes. Fig. 2 shows this
representation for the function of Fig. 1. We use a vector E
and pair of arrays L = (C, D), where C and D have the same
number of rows. Rows in the C array correspond to product
terms and will be labeled cl, c2, * c". Columns correspond
to input variables and will be labeled c1, c2, , cm, and cJ
represents the entry in the ith row and jth column. If c, = 1
then x; appears uncomplemented in the ith product term; if
CJ = 0 then xj appears complemented, and if cJ = x then xi
does not appear in the product term.
The D array contains n rows corresponding to product

terms and l columns corresponding to outputs. If d', = 1 then
the ith product term is used to form outputj, and if d5 = 0 it
does not contribute to output j.
When optional inverters can be connected to outputs of

the OR array, the vector E indicates those outputs which are
to be complemented. Component e1 = 1 if output i is to be
complemented,- and is a 0 otherwise. Whether optional
output inversion is permitted will not affect the tests gen-
erated. It will only affect the output vectors the PLA
produces under given tests.

In the sequel we will use the cubical subsuming relation C
and the # and u operations. Their descriptions can be
found in Appendix II, as well as in [13], [15].

847

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 11, NOVEMBER 1979

We also define an operation which allows us to change
particular coordinates in theCandD arrays. C o c, -+ a is an
array which is identical to C except that CJ is a, ac {A, 1, X}.
D o d- ,Bis an array which is identical toD except that d'is
#j,. E tO, 1}.

B. An Algorithm
We are now ready to present a test generation algorithm.

At the top level, the algorithm consists of seven steps.
Informally, the steps are:

1) input a description of the PLA to be tested;
2) select a fault fe F which has not yet been detected;
3) generate a test t forfand add it to T; if no test exists,

outputf and indicate that it is undetectable;
4) determine which other faults in F are detected by t;
,5) if there are still faults which have not been considered,

go to 2;
6) using the E vector which indicates inverted outputs,

determine test results for the fault-free PLA;
7) output the test set T and the correct test results.

Optionally, if stuck-at faults are deemed significant, after
6) one might check for the exceptional conditions in
Theorem 1 and generate any necessary additional tests.
For ease of computer storage and manipulation, it is

reasonable to store the specification of a PLA as its L array
and its E vector (if applicable) in a format similar to the one
described earlier. Hence, 1) can be simplified if input is also
done using this format.

2) and 5) can be implemented by simply listing all possible
faults initially and "marking" them as they are detected or as
they are discovered to be undetectable. The order in which
the faults are considered can potentially affect the size ofthe
final test set. We have found that, in general, the closer a fault
site is to a primary output, the more tests it has. Hence, a
useful heuristic for reducing the number of tests is to first
consider faults with fewer tests, i.e., S and G faults, then to
consider faults with more tests, i.e., D and A faults. We have
found this to work well; after tests for G and S faults have
been generated, a very large number (if not all) of the D and
A faults are detected.
To generate a test for one of the faults in 3), path

sensitization [4] is used. To automate this process for the
two-level circuits being dealt with, the cubical notation and
operators are used.
A modeled fault in a PLA realizing array L = (C, D)

results in a PLA that can be described as an array L'. For
example, if input xi becomes disconnected from the ith
implicant, then L' = (C o cJ -+ x, D). Then, a test can be
generated by examining the arrays L and L'.

If a member of G is present, say f, then the array of the
faulty PLA is L' =(Co J-+x, D) as explained above.
Hence, we say C' = Co C xX. The first phase of path
sensitization dictates that inputs should be applied so that
the faulty implicant (AND gate) yields a different output
under fthan its normal value. The set of input vectors that
will do this is c" # c' u c' # c". We observe that c' E cti;
hence, c # c'i = 4, and only c" # c' is needed. This is just a

single cube which is the same as ci except that its jth
coordinate is complemented.

Next, the error must be propagated to an output. It can be
propagated to the kth output only if d' = 1. Hence, such a k
is chosen. Now let F' be an array consisting of all those cP
such that dP = 1, and p # i. These represent all the impli-
cants besides the faulty one which are used to form output k.
To propagate the error to output k, a test must cause all

these implicants to be 0. Hence, the set oftests for the fault in
question is defined by the array

(Ci# ci)# # rk, (1)
and one of the tests defined by the array should be chosen.

If this array is empty, however, another value ofk must be
chosen where d' = 1. When all such k have been exhausted,
it must be concluded that no test exists.

If a member of S is to be detected, L' = (Co C. -+ 0, D) or
Li = (Co C-+ 1, D) depending on whether x;or xj,respec-
tively, is connected to c'. The complete set of tests through
output k is then

(ci # c'i) # # F;

due to a similar argument as before.
If a member of D is to be detected, say the ith implicant

disappears from the jth output, then

L= (C, Do d>-+O).

The set of possible tests is defined by

Ci# j.

If a member of A occurs, then

L' = (C,D dJ-, 1),

and the set of tests is defined as

Step 4) of the algorithm outlined above is essentially the
opposite of 3), but the concept of path sensitization is still
quite useful. An efficient method for determining the faults
detected by a test t is to first construct an array L = (C, D2
where C includes all those rows of C which cover t, and D
includes the rows ofD which cbrrespond to rows in C. After
forming L, the columns ofD can be examined to determine
which outputs are on sensitized paths. For example, a
column of all 0's indicates that some OR gate has all 0 inputs.
Hence, sensitized paths for A and G faults pass through it.

If the jth output column is all 0's, then the appearance of
any implicant in C as an input to thejth OR gate is detected.
Hence, all A faults involving implicants in C and thejth OR
gate are detected by the test t.
By comparing the test vector with implicants not in the C

list, G faults also detected can be determined. The test vector
t and implicant ck have a single 1-0 conflict (single 0-1
conflict) if t has a 1(0) in some position where ck has a 0(1)
and they have the same value in every other position except
where x appears in ck. For example t= 011101 and
ck OOxlxl have a single 1-0 conflict in the second
position. If t and ck have a single 1-0 (0-1) conflict then ck is

848

SMITH: FAULTS IN PLA'S

not in C, but if the input variable in the disagreeing position
is disconnected (i.e., there is a growth fault), then the output
of the AND gate realizing ck goes from 0 to 1. Hence, ifdk has a
1 in some column where D is all zeros then the fault is
sensitized to the corresponding output and is detected.
A column in D with only one 1 indicates that a path is

sensitized through the OR gate corresponding to that
column. S and D faults are potentially detected over this
path. The D fault involving the implicant that yields the
single 1 is detected because if this implicant should disap-
pear, the OR gate output would then change from 1 to 0.

To determine detectable S faults, let ck be an implicant
where dk contains the single 1 in an output column ofD. If a
position in ck contains an x and the same position in t is a
0(1), then when xj is the input variable for this position the S
fault corresponding to xj(xj), being erroneously connected,
is detected.

Step 6) of the algorithm, if it is required, can either be
performed as indicated, or it can be performed simultan-
eously with 3).

C. Discussion

The algorithm given here is not the only one, of course.

Many variations are possible; two of them will now be
briefly discussed.

In order to simplify the implementation of the algorithm,
it may be desirable to omit 4) and 5), and simply generate a
test for every fault. This will lead to larger test sets, but, as we

shall see, the resulting test set would still be relatively small.
The advantage is that it would eliminate much of the
bookkeeping required by the algorithm.
Some of the computation required by the sharp operation

involving the Fr can be eliminated [e.g., (1)]. This is because
a single test for a fault is needed rather than all of them.
Hence, in evaluating (1), one can sharp (c" # c') with the first
member ofF' and stop when one cube is produced. Then this
cube can be sharped with the next member of F', and again
only the first cube is taken. One continues through the
remainder of [k in this manner. If no cube is produced by
one of these sharps, it is necessary to backtrack and look for
a second cube formed by the previous sharp. If this ends in
failure, more backtracking may be necessary. In the worst
case, all of the work required by a complete sharping will be
necessary. In many cases, however, the partial sharping with
backtracking will be successful, thus lowering the average

case computational complexity. The disadvantage of this
method is that additional bookkeeping and programming
are required by the backtrack procedure.
D. Example

We will now generate a test set for a PLA whose L array

and E vector are shown below.

C D E

L: X1X2X3X4 Z1 Z2 Z3 Z1Z2Z3

I x 0 1 0 1 0 00 1
xlOl 1'01
I 0 Xx 0 1 1
OOx I 1 10

We will denote a fault by the effects it has on the L array.
For example, a G fault will simply be denoted as cJ -+ x when

L' resulting from the fault is L' = (C o cJ -+ x, D).
Following the heuristic of first generating tests for faults

close to the inputs, we begin by considering G faults. The first
such fault is 1c1 -+ x, and C = °1 c1 x. Then c'1 # c1

OXO1. By examining d', we see that an error can only be
propagated to Z2. Both c3 and c4 contribute to Z2, so a test
must be included in

O xOl# lO x x

#0 0 xI1

Hence, t1 = 0101 is the only test. Now, we must determine
other faults detected by t1. To do this we form L = (C, D):

C D
L =-~

x101xO 101.

The single 1 in column 1 of D indicates that some S or D
faults may be detected. This is the case since d2 -+0 is
detected (disappearance of implicant xlO1), and because t,
has a 0 in position and has an x, c2 -+ 1 is detected (an S

fault). The single 1 in column 3 ofD leads us to deduce that
d2 -+0 is detected.

All O's in column 2 indicates that some G and A faults may
be detected. The appearance of d2 is detected, i.e., d2 -, 1,
and c1 and c4 have a single 1-0 conflict in position 2, so the G
fault c4 _+ is detected.

Using the same method, we generate t2 = 1111 for the
fault C 3 X. L is empty, so we consider all output columns to

be all O's, and some S faults are detected, in particular c2 -+ x

and C-+ x. For c4 -+ x, t3 1100 is a test; it also detects

C2 x. The next G fault to be considered is c2 _+ and

t4= 1001 is a test. t4 also detects dl -+ 1, d3 _+ 1, d3 _+0,

1 c4 -+0. t5 iS the test found for

C3 t5 also detects C4 -+ X.

The S faults are the next to be considered. c' -+0 yields the

test t6 = 1101; also detected are the faults C2 0 and d' -+ 0.

The fault -+ 0 is detected by t7 = 1010; c3 d2
are also detected. Finally, t8 =0001 and t9 = 0011 are

needed to detect C3 _+ and
C4

0. Both of these tests also

detect d4+0, d -+0, and d4 1. _+1 is found to be

undetectable.
Next, we turn to D and A faults, and find they have all been

detected except for d' -+ 1 which is undetectable.
The test set and correct outputs under the tests which are

determined using the E vector are:

Test Correct Output

X1x2X3X4 Z1Z2Z3
0 1 0 1 1 0 0
1 1 1 1 001
1 100 001
1 00 1 0 10
0000 001
1 101 110
1010 010
0001 1 1 1
001 1 111

849

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-28, NO. 11, NOVEMBER 1979

E. The Size of Test Sets

A bound on the size of a test set T generated for the
proposed fault model will now be derived. Let m be the
number ofPLA inputs, n the number ofproduct terms, and I
the number of outputs. The largest test set that can be
generated is only as large as the number of faults. The
maximum number of G faults max I G is m * n. The maxi-
mum number of S faults max|S| is 2m * n, max ID I = I - n,
and max IA = I * n. However, if an implicant can grow in
some coordinate it cannot shrink in the same coordinate,
and vice versa. Therefore, max G u SI = 2m * n. Further-
more, if an implicant can disappear, it cannot appear, and
vice versa. Hence, max ID u AI = l n. Therefore,
maxJFI < max IG u SI + max ID u A|= (2m + 1) n, and
the largest necessary test set T is such that

|TI <(2m+1)*n.
For a PLA with 16 inputs, 48 product terms, and 8 outputs
(Signetics 82S 100, for example), Tj < 1920. Exhaustive
testing, on the other hand, would require 216 65 000 tests.
The savings is substantial. Since most tests detect several
previously undetected faults, and some faults are undetec-
table, the size of a test set is frequently a small fraction of
(2m + 1) * n. In fact, for a realistic PLA, a test set that is less
than I of the bound is common. The savings of tests over an
exhaustive test set can be measured in orders of magnitude
for PLA's of a realistic size.

It should be pointed out, however, that in exchange for the
considerable savings in testing time, one gets less testing
coverage than with exhaustive testing. That is, some non-
modeled fault may-slip by undetected with the nonexhaust-
ive test set proposed here. For example, some stuck-at faults
may not be detected under certain unusual circumstances
(see Theorem 1). Nevertheless, the coverage provided by this
test set is good, and provides a practical alternative to
exhaustive testing.

V. DETECTION OF MULTIPLE FAULTS

Thus far, we have discussed the detection ofthe faults inF
(all single faults of the four types described earlier). In
practice, this single fault assumption might not be valid.
However, it does seem justifiable to assume that if multiple
failures occur, they will not be randomly distributed among
the four types of failures. For example, if several fuses in an
FPLA are not blown then only members of S and A are
present. Furthermore, under normal operation, indepen-
dent failures of some types may be more prevalent than
others, with the likelihood of a failure of a given type being
determined by the technology used. In this section we will
discuss some interesting classes of multiple faults that are
detected by a test set generated for F. We will let T denote
any such single fault test set.

First, we consider multiple faults that are combinations of
single faults that are all of the same type. Such faults are of
interest because some technologies may be much more likely
to have some fault type than the others; in such a situation a

multiple fault would be likely to have all its components of
the same type.

Theorem 2: T detects any detectable combination of A
faults.

Proof: A test for any A fault causes the output of the
affected OR gate to be a 0 normally, with the output of the
appearing implicant being a 1. Consequently, if the impli-
cant appears, the OR gate output changes from 0 to 1. If any
additional A faults should occur, they cannot possibly cause
the OR gate output to change back to a 0. Hence, any
combination of A faults including a single detectable A fault
must be detected by T.
Now consider a combination of A faults that are detec-

table, but which contains no detectable single A fault. A test t
for the combination must cause at least one OR gate output
to be a 0 normally and a 1 under fault. Let OR1 be such a gate,
and let A 1 be the subset ofA that appears as an implicant of
OR1 under the fault. T-hen the test t must also detect the
combination of faults A,. Now, let A'1 be the subset of A1
that have implicants that are 1 under the test t. The set of
faults A' must be nonempty, and is detected by T also. It
should also be clear that any subset of A' is also detected by
T, but this contradicts the assumption that no single
member of the original combination was detectable. Hence,
there cannot be such a detectable combination. D2

Theorem 3: T detects any detectable combination of S
faults.
The proof of Theorem 3 is similar to the one for Theorem

2 although slightly more complex, and has consequently
been omitted. O
Theorems for G and D faults similar to Theorems 2 and 3

do not hold. This is because two or more undetectable faults
of these types may be detectable in combination [11]. Any
combination of G or -D faults containing at least one
detectable single fault is detected by T, however.

In order to guarantee the detection of multiple G and D
faults we need to make some assumptions about the detec-
tability of single faults in PLA's. When stuck-at faults are
considered in general combinational circuits, it is frequently
assumed that all stuck-at faults are detectable; that is, that
circuits are irredundant. An undetectable stuck-at fault
corresponds to a line (or lines) which can be removed from
the circuit without changing the function realized by the
circuit.
When considering the more general fault model we are

using, undetectable G and D faults can be eliminated by
removing redundant connections as before; conversely,
undetectable S and A faults can be eliminated by creating
connections. These two methods of removing undetectable
faults work against each other. That is, breaking a connec-
tion to eliminate an undetectable G or D fault creates an
undetectable S or A fault; creating a connection to eliminate
an undetectable S orA fault introduces an undetectable G or
D_ fault. Hence, it may be impossible to have a PLA where all
faults are detectable. Instead, we define two weaker types of
irredundancy.

Definition 1: A circuit is G-D irredundant if all G and D
faults are detectable.

850

SMITH: FAULTS IN PLA'S

Definition 2: A circuit is S-A irredundant if all S and A
faults are detectable.
Most PLA's are programmed by either making connec-

tions or by breaking connections. Hence a PLA can be made
G-D irredundant by making as few connections as are
necessary to realize the desired function or by breaking as
many as possible. Conversely, a PLA can be made S-A
irredundant by making as many connections as possible or
by breaking as few as are necessary.
When programming PLA's, common errors are the

making of too many connections or too few. For example,
several fuses might not be blown in an FPLA. Such pro-
gramming errors appear as multiple G and D faults or as
multiple S and A faults. Also, the failure mechanisms which
lead to G faults and D faults are very similar, while those that
lead to S faults and A faults are very similar. Hence, it follows
that multiple faults containing only G and D components or
faults containing only S and A faults should be more
common than other mixtures of faults, and we should be
interested in the detection ofmultiple G and D failures and of
multiple S and A failures by our single fault test set T.

Theorem 4: In a G-D irredundant -circuit, any detectable
combination of G and D faults is detected by T.

Theorem 5: In an S-A irredundant circuit, any detectable
combination of S and A faults is detected by T.
The proof to Theorem 4 follows immediately from the

well-known result due to Schertz and Metze [12] for stuck-at
faults in two-level circuits. That is, in an irredundant
two-level circuit, a single stuck-at test set is a multiple
stuck-at test set. The proof to Theorem 5 is very similar to
the proof of Theorem 4.
As a consequence ofTheorems 4 and 5 and the discussion

preceding them, we see that the test set we have derived also
has value as far as verifying the programming of a PLA.
Furthermore, if multiple G and D faults are possible due to
multiple programming errors, we should program the PLA
to be G-D irredundant to make it easier to verify program-
ming, i.e., the test set T can be used. And a similar statement
holds if S and A faults result from programming errors.

VI. SUMMARY AND CONCLUSIONS
In this paper a fault model is formulated to aid in the

detection of failures in PLA's. In some respects, it is a
generalization of the standard stuck-at model, and existing
test generation techniques are easily modified to include it.
We believe the fault model is realistic, and at the same time it
results in a relatively small number of tests. Test sets
generated for the assumed fault model are also shown to
detect large classes of multiple faults. This capability makes
the test set useful for verifying the programming of a PLA.

Another interesting area of research is the location of
faults in a PLA. While recent technological advances have
made fault location in random logic less important than it
once was, in FPLA's a fault may be "removed" by repro-
gramming the PLA, either by using unused portions of the
PLA, or by correcting programming errors. Therefore, if a
fault can be located, the PLA may still be useable.

After this paper was submitted for publication, two other '

papers that discuss the same topic [16], [17] have appeared.
These papers consider test generation for IBM PLA's [2],
which differ from the usual PLA structure in that they have a
more general input decoder structure. These papers propose
essentially the same fault model as the one here, and show
that this fault model yields tests that also detect a wide
variety of short circuit faults. This serves as further evidence
that the fault model proposed here yields tests that detect a
wide variety of possible faults.

APPENDIX I
ANALYSIS OF STOCK-AT FAULT COVERAGE

In this appendix we prove Theorem 1, which demon-
strates the stuck-at fault coverage of a test set generated for
G, D, S, and A faults.

Definition: Two logical faults in a PLA are equivalent ifthe
output pattern of the PLA is the same for both faults under
all possible input patterns.
Lemma 1: In a two-level AND/OR PLA with optional

output inverters:
1) for any AND gate, the input stuck-at-0 and the

output stuck-at-0 faults are equivalent.
2) For any OR gate, the input stuck-at-1 and the output

stuck-at-1 are equivalent.
3) For any inverter the output stuck-at-I (0) is equiva-

lent to the input stuck-at-0 (1).
4) If an optional inverter is attached to an OR gate

output, the input of the inverter stuck-at-1 (0) is equivalent
to the OR gate output stuck-at-I (0).

Proof: Immediate from results on fault equivalence in
[8], [9]. ^I
Now, using the equivalence above and the transitivity of

the equivalence relation, we see that each single stuck-at
fault is equivalent to at least one of the following:

1) AND gate inputs stuck-at-i;
2) OR gate inputs stuck-at-0;
3) AND gate outputs stuck-at-0;
4) OR gate outputs stuck-at-1;
5) AND gate outputs stuck-at-1;
6) OR gate outputs stuck-at-0;
7) input inverter outputs stuck-at-1;
8) input inverter outputs stuck-at-0.

Lemma 2:
1) Each G fault is equivalent to some AND gate input

stuck-at-i and vice versa.
2) Each D fault is equivalent to some OR gate input

stuck-at-0 and vice versa.
Proof: See [10], [18]. El

In the following Lemmas, recall that an implicant in a
PLA is redundant if it can be completely removed from the
PLA without changing any of the logic functions realized by
the PLA. Let T be any test set that detects all detectable G, D,
S, and A faults.
Lemma 3: T detects AND gate outputs stuck-at-0 when

there are no redundant implicants in the PLA.
Proof: Consider an AND gate output that contributes

851

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-28, NO. 11, NOVEMBER 1979

irredundantly to output function zi and let inputj ofthe OR
gate, whose output is zi, be connected to the affected AND
gate. Then a test for inputj stuck-at-0 must be in T, and the
AND gate output is normally 1 when the test is applied. Ifthe
AND gate output becomes stuck-at-0 then inputj goes from 1
to 0 as does the output zi, thus, indicating the presence ofthe
fault. [
Lemma 4: T detects all OR gate outputs stuck-at-1 unless

an OR gate output is 1 whenever any AND gate output is 1.
Proof: For some input t, let some OR gate output be 0

and some AND gate output be 1. Then t detects the appear-

ance of the implicant realized by the AND gate at the OR gate
inputs. Furthermore any test for this appearance fault must
place a 1 on the AND gate output and a 0 on the OR gate
output. Some such test must be in T, and must also detect the
OR gate output stuck-at-i. The lemma follows im-
mediately. tI
Lemma 5: T detects allAND gate outputs stuck-at-1 unless

an OR gate output is 1 whenever any AND gate output is 1.
Proof: Ifno OR gate output is 1 whenever any AND gate

output is 1 then all OR gate outputs stuck-at-1 are detected
according to Lemma 4. If an AND gate feeds OR gate i, then
the test for the output of gate i stuck-at-i also detects the
AND gate output stuck-at-1. i

Lemma 6: T detects all OR gate outputs stuck-at-0 if there
are no redundant implicants in the PLA.

Proof: If there are no redundant implicants then the
disappearance of each implicant from some output function
must be detectable. A test for a D fault must put a 1 on the
output of the implicant being tested, which places a 1 on all
the OR gate outputs fed by the implicant. Since each OR gate
is fed by at least one implicant, its output must be 1 for any
test involving a disappearance ofthe implicant (regardless of
the output function from which it disappears). Hence, each
OR gate output has a 1 for some test, leading to the detection
of its output stuck-at-0. C1
Lemma 7: T detects all detectable input inverter outputs

stuck-at-1.
Proof: Ifan input inverter stuck-at-I fault is detectable,

there must be some input pattern which sensitizes a path or

multiple paths (which may happen since there may be
reconvergent fanout) to some output. Consider an AND gate
on such a path (or on any one of the paths ifmultiple paths
are sensitized). Say input j of the AND gate is fed by the
inverter. Then the test for the inverter stuck-at-I detects the
AND gate input j stuck-at-1 as well, and input j stuck-at-I
must, therefore, be detectable. Now, consider any test for
input j stuck-at-I (equivalently, a growth fault, see Lemma
2). This test must also detect the inverter stuck-at-1 since it
implies a sensitized path from the inverter.
Lemma 8: T detects all detectable input inverter outputs

stuck-at-O if there are no redundant implicants in the PLA.
Proof: If there are no redundant implicants, each AND

gate output stuck-at-0 is detectable through some output
(Lemma 3). A test for an AND gate output stuck-at-0 also
sensitizes a path for an invrrter output stuck-at-0, and if the
inverter fault is detectable, it must feed at least one AND

gate. OI

Theorem 1: A test set that detects all detectable G, D, S,
and A faults also detects all the detectable stuck-at faults at
inverter, AND gate, and oR gate inputs and outputs except in
PLA's where either of the following conditions hold:

1) some implicant(s) are redundant; i.e., they can be
deleted from the array without affecting the -functions
realized;

2) ifsome OR gate output is normally a 1 whenever any
implicant in the array is 1.

Proof: Immediate from the preceding lemmas. El

APPENDIX II

CUBICAL RELATIONS AND OPERATIONS

The representation of logic functions in terms ofcubes is
discussed in Section IVA, and most textbooks in logic design
use a notation of this type. Several cubical operations and
relations are also used, but they are not as common and are

defined in this appendix.
Let a and b be two cubes or n-tuples ofelements a,, bi E {0,

1, x}. Then a subsumes b, a C b ifai E bi = s for all i where the
table below defines the coordinate subsuming relationship
(a, C bi).

bi
aC bi 0 1 x

0 E

ai 1 4)
x

Alternatively, b is said to cover a. Example:

Olx C xlx.

Given a list of cubes C, we absorb Cifwe remove all cubes
that subsume one or more other cubes in C. If B = {b', b2,
* } and C = {c1, c2, * - } are sets of cubes ofthe same number
of variables, the union of these arrays B u C is the absorbed
set B u C. Example:

lxO 110 ixO
xOl xOx xOx

The sharp operator # is used to find the vertices in one
cube (or list of cubes), but not in a second cube (or list of
cubes). Given two cubes a and b:

a if a, # bi =e for some i

k if a' # bi = e for all i

a # b = u (aja2, , bi, aj) otherwise

where the union is over all i where

ai# bi= oti, e{0, 1}.

Using the coordinate sharp table:

bi

ai # bi 0 1 x

0

x ItOe

852

SMITH: FAULTS IN PLA'S

Examples:

xlO# xOl =xlO, xlO# xxO=4,

xlx#111=Olx, xlO.

The sharp operator can be extended to an array # a cube,
a cube # an. array, and an array # an array:

C#b={{c1#b} {c2#b} ...}

ACKNOWLEDGMENT

The author would like to thank Prof. C. R. Kime and Prof.
D. L. Dietmeyer for their careful reading ofthe manuscript
and their many helpful suggestions. The author would also
like to thank N. Godiwala for several interesting discussions
during the early stages of this research.

REFERENCES
[1] W. N. Carr and J. P. Mize, MOSILSI Design and Applications, Texas

Instruments Electronics Series. New York: McGraw-Hill, 1972, pp.
229-258.

[2] H. Fleisher and L. I. Maissel, "An introduction to array logic," IBM
J. Res. Develop., vol. 19, pp. 98-109, Mar. 1975.

[3] Signetics Field Programmable Logic Arrays. Sunnyvale, CA: Sig-
netics, Mar. 1976.

[4] M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of
Digital Systems. Woodland Hills, CA: Comput. Sci., 1976.

[5] J. P. Roth et. al., "Programmed algorithms to compute tests to detect
and distinguish between failures in logic circuits," IEEE Trans. Elec-
tron. Comp., vol. EC-16, pp. 567-580, Oct. 1967.

[6] J. Hlavicka and E. Kottels, "Fault model for TTL circuits," Digital
Processes, vol. 2, pp. 169 180, Autumn 1976.

[7] G. R. Case, "Analysis of actual fault mechanisms in CMOS logic
gates," in 13th Design Auto. Conf. Proc., 1976, pp. 265-270.

[8] D. R. Schertz and G. Metze, "A new representation for faults in
combinational digital circuits," IEEE Trans: Comput., vol. C-21, pp.
858-866, Aug. 1972.

[9] F. W. Clegg and E. J. McCluskey, "Fault equivalence in combina-
tional logic networks," IEEE Trans. Comp., vol. C-20, pp. 1286-1293,
Nov. 1971.

[10] M. R. Paige, "Generation ofdiagnostic tests using prime implicants,"
Coord. Sci. Lab., Univ. Illinois, Urbana, IL, Rep. R-414, May 1969.

[11] A. D. Friedman, "Fault detection in redundant circuits," IEEE
Trans. Electron. Comp., vol. EC-16, pp. 99-100, Feb. 1967.

[12] D. R. Schertz and G. Metze, "On the design of multiple fault diagnos-
able networks," IEEE Trans. Comput., vol. C-20, pp. 1361-1364, Nov.
1971.

[13] J. P. Roth, "Algebraic topological methods for the synthesis of swit-
ching systems I," Trans. Amer. Math. Soc., vol. 88, July 1958.

[14] D. L. Dietmeyer, Logic Design ofDigital Systems. Boston, MA: Allyn
and Bacon, 1971.

[15] M. A. Breuer, "Logic synthesis," in Design Automation of Digital
Systems, vol. 1, M. A. Breuer, Ed. Englewood Cliffs, NJ: Prentice-
Hall, 1972, ch. 2.

[16] D. L. Ostapko and S. J. Hong, "Fault analysis and test generation for
programmable logic arrays," in 8th Fault Tolerant Comput. Symp.
Proc., 1978, pp. 83-89.

[17] C. W. Cha, "A Testing Strategy for PLA's," in 15th Design Auto. Conf
Proc., 1978, pp. 326-331.

[18] I. Kohavi and Z. Kohavi, "Detection of multiple faults in combina-
tional logic networks," IEEE Trans. Comput., vol. C-21, pp. 556-568,
June 1972.

James E Snith (S'74-M'76) received the B.S.
degree in electrical engineering and computer
science and the M.S. and Ph.D. degrees in
computer science from the University of Illinois,
Urbana-Champaign, in 1972, 1974, and 1976,
respectively.
From 1972 to 1976 he was a Research Assistant

at the Coordinated Science Laboratory, Uni-
versity of Illinois, working in computer arith-
metic and fault-tolerant computing. In 1976 he
joined the faculty of the Department of Electrical

and Computer Engineering, University of Wisconsin, Madison, where he
is an Assistant Professor. He spent the summer of 1978 at the IBM
T. J. Watson Research Center, Yorktown Heights, NY. His current
research interests are in fault-tolerant computing and parallel computation.

Dr. Smith is a member of the Association for Computing and Sigma Xi.

853

