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Detection of First Order Liquid-Liquid Phase Transitions in Yttrium 

Oxide – Aluminium Oxide Melts 

G.N. Greaves1, M.C. Wilding1, S. Fearn1, D. Langstaff1, F. Kargl1, S. Cox1,  

Q. Vu Van1, O. Majérus2, C.J. Benmore3, R. Weber4, C.M. Martin5, L. Hennet6 

 

Abstract 

We combine small angle x-ray scattering (SAXS) and wide angle x-ray scattering 

(WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the 

liquid state under contactless conditions. At very high temperatures yttria-alumina 

melts show a first order transition, previously inferred from phase separation in 

quenched glasses.  We show how the transition coincides with a narrow and reversible 

maximum in SAXS indicative of liquid unmixing on the nanoscale combined with an 

abrupt realignment in WAXS features related to reversible shifts in polyhedral packing 

on the atomic scale.  We also observed a rotary action in the suspended supercooled 

drop driven by repetitive transitions – a polyamorphic rotor – from which the reversible 

changes in molar volume (1.2+/-0.2cm
3
) and entropy (19+/-4 J/mol/K) can be estimated.   
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 Liquids represent some of the most familiar everyday materials.  Recognised 

by their ability to flow, liquids adopt whatever shape contains them and in 

suspension form spherical drops.  They are the intermediate state between 

solids and gases, and extend over temperature and pressure up to sharp 

phase boundaries along which the coexist with the adjacent states. Phase 

transitions across these boundaries are discontinuous and of first order, 

involving reversible changes in extensive thermodynamic parameters, such as 

molar volume ∆V and entropy ∆S.  Together these define the slope of the 

phase boundary dT/dP = ∆V/∆S, for instance the melting curve that separates 

the liquid from the crystalline state.  Phase boundaries themselves can 

terminate at critical points if the coexistent phases become indistinguishable, 

the most well known being the formation of fluids from their liquid and vapour 

states.  

 The physics of phase transitions and critical phenomena is extensive 

(1).  It also includes the wealth of crystalline phases within the solid state 

where periodic structures can abruptly transform under pressure and 

temperature into new crystalline states distinct in density and symmetry (2).  

One of the most exciting developments in liquid state science is the growing 

evidence for different phases of the same liquid and for phase transitions 

between them at characteristic temperatures and pressures (3-7).  At first 

glance such “polyamorphism” is counterintuitive, as diffusion processes in a 

liquid would appear to result in the same time-averaged aperiodic structure. 

However, liquids unlike crystals are characterised by temporal and spatial 

fluctuations in density (1).  These potentially could be the antecedents for 

different self-assembled phases distinguished by density and entropy (7), 
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particularly in the metastable supercooled state where liquid flow becomes 

increasingly viscous with falling temperature or increasing pressure. As the 

concept of polyamorphism has developed the so called  “two state model” (8, 

9) has proved influential, in defining the phase boundary between a low 

density liquid (LDL) phase and a high density liquid (HDL) phase straddled by 

spinodal limits.  This is illustrated in Fig. 1.  In particular, there is a critical 

point C on the phase boundary below which the LDL and HDL states coexist 

and beyond which the liquid is single phase. If C lies at negative pressures a 

liquid-liquid phase transition between HDL and LDL states is expected at 

ambient pressure and at a characteristic temperature TLL (Fig. 1). 

 Speculation about the existence of liquid polyamorphs has its origins in 

the effort to better explain negative melting curves i.e. dT/dP<0 (3, 5, 7-9), for 

which the fusion of ice is the most familiar (10).  Even though transitions 

between polyamorphic states in water have now been well-studied (3 , 11-15), 

controversy still exists as to whether these are truly of first order character 

(13, 14) analogous to phase transitions in the crystalline solid state (2), or 

whether they occur via numerous intermediate glassy states (12, 15).  

 Pairs of polyamorphic phases have been identified in many other 

amorphous and glassy systems (7, 16) such as silica (17), Si (18) and Ge (19) 

and microporous zeolites (20).  With two exceptions, however, transitions 

have not been observed  in the liquid or supercooled state, other than through 

computer simulation (4, 7, 11, 21). The first of these is liquid phosphorous 

which exhibits a first order transition above its melting point Tm at positive 

pressure (22) between a low density molecular fluid and a high density 

network liquid - the fluid and liquid phases separated by a large density 
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difference ρρ /∆  close to 0.4 (23).  Secondly, polyamorphic 

macrosegregation but at ambient pressure has been reported in yttria-alumina 

melts (24).  In this case it occurs in the supercooled state and was explored 

for miniature specimens close to the glass transition temperature Tg.  High 

and low density states with a density difference ρρ /∆  of ~ 0.04 smaller than 

in liquid phosphorous were reported, the phase separation being consistent 

with a first order liquid-liquid transition process. Only ex situ studies were 

possible, however, rapidly quenched glasses being used to avoid 

crystallisation. The liquid-liquid transition temperature was estimated to rise 

above Tg with increasing alumina content (24). Subsequent studies on larger 

specimens (25, 26), have shown that liquid unmixing is sometimes overtaken 

by crystallisation, with the formation of glass ceramics (27, 28), and in other 

cases rapid quenching overshoots liquid coexistence, resulting in single phase 

glasses (26, 29) which become polyamorphic  on reheating to Tg (26).   

 Recent developments in contactless aerodynamic levitation furnaces 

offer the opportunity to study liquids in situ in the supercooled range (30).  

Suspended on a stream of gas, heterogeneous nucleation from contact with 

any solid container is avoided. Yttria-alumina has been adopted as the model 

system to study polyamorphism in the supercooled state. Compositions  

{(Al2O3)100-x (Y2O3)x or AYx} have been chosen to search for liquid-liquid 

transitions in situ at temperatures higher than has been possible in previous ex 

situ studies (24, 25, 27, 28, 29) and where full conversion to LDL might be 

expected (24). SAXS/WAXS methods enable structure to be followed at the 

nano and atomic levels (31, 32). The geometry of the aerodynamic levitator 

furnace adapted for combined x-ray experiments (SOM Text) is shown 
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schematically in Fig. 2A.  Data were recorded at temperatures from above the 

melting point Tm through many hundreds of degrees into the supercooled 

regime, up to the point of crystallisation Tc (Fig. 1). A selection of SAXS 

profiles at low and high T are plotted in Fig. 3A for three different supercooled 

liquids: AY15, AY20 and AY25.  Each exhibits a sharp minimum at a 

wavevector Qmin, separating the bottom of the interatomic structure factor 

S(Q>Qmin) from small angle scatter ISAXS(Q<Qmin) which caused by 

nanostructural inhomogeneities.   Both are underpinned by a Q-independent 

background related to thermal density fluctuations (1, 6).  The rise in ISAXS as 

Q→0 is indicative of liquid inhomogeneities with a narrower size distribution. 

Where S(Q) and ISAXS increase modestly with temperature across the whole 

wavevector range for all three liquids, the behaviour captured for AY20 

contains a new feature – a narrow and reversible peak just below 1800K  (Fig. 

3A) –  an additional transient source of inhomogeneity.   

 Precision liquid structure factors S(Q) for the same three liquids 

obtained at 2500K with high energy X-rays (Fig. 4A) show compositional 

trends which can be clearly seen in the difference patterns ∆S(Q) (Fig. 4A 

inset); namely, the progressive rise in the principal peak close to 2.2Å-1 with 

increased yttria and the developments in the subsequent broad feature 

between 3 and 5Å-1.  Temperature effects in the supercooled region were 

explored by combining SAXS (Fig. 3A) with WAXS (Fig. 4B). In particular 

WAXS from supercooled AY20 alters abruptly and reversibly in the vicinity of 

1800K, matching the sharp feature in the SAXS (Fig. 3A).   

 Whilst the liquid drops levitated extremely stably to a few microns 

mechanically and thermally to better than 5K over the whole supercooled 
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range (SOM Text), the temperature sometimes became variable close to 

where reversible nanostructural changes affect SAXS (Fig. 3A) and 

interatomic changes WAXS (Fig. 4B).  Depending on the precise laser 

alignment (Fig. 2A) highly regular oscillations in temperature were observed in 

separate experiments around 1800K as illustrated in Fig. 2B, pointing to a 

repetitive pattern of convection within the drop with a fixed frequency (Fig. 

S1).  Video imaging revealed the supercooled drop revolving through 180° 

about a horizontal axis (Movies S1, S2) at the start of each cycle (Fig. 2B), the 

movement coinciding with a temperature spike.  This unusual behaviour was 

observed for periods of up to an hour and could be resumed following re-

melting (Fig. S1).  

 The changes in the nanostructural order evident from the SAXS (Fig. 

3A) are distinguished in Fig. 3B where 2
QI SAXS  data integrated for Q<Qmin are 

plotted between 1500K and 2400K until interrupted by crystallisation.  The 

integrated SAXS is proportional to 2ρ∆ , the amplitude of thermal 

fluctuations, which rise slowly with temperature if the isothermal 

compressibility  βT is reasonably constant (6).  However, this behaviour is 

decorated with a sharp maximum for liquid AY20 which we interpret as direct 

evidence for the coexistence of LDL and HDL states with a density difference 

LLρ∆  at TLL.  The peak to background in Fig. 3B is proportional to 

22
/ ρρ ∆∆

LL
~2 and the maximum is separated in Fig. 3C and deconvoluted 

into two components. We attribute these to the decline of the HDL phase xHDL 

accompanied by the rise in the LDL phase xLDL as the temperature drops and 

vice versa. The peak in xHDL..xLDL is at 1788K. This is 250° higher than 
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previously reported from ex situ experiments (24) and indicates that the rise in 

TLL with increasing alumina is much steeper than can be estimated from the 

cooling rates of rapidly quenched yttria-alumina glasses (OLM Text).  The TLL 

maximum for AY20 (Fig. 3C) has a full width half maximum (FWHM) of 22K.  

Its narrowness and reversibility are the hallmarks of a first order phase 

transition (1) in the liquid state (8,9), in contrast to the gradual transformation 

through incremental metastable states proposed by some groups (12, 15) for 

HDA-LDA transitions in glassy water.   

 With the large Q range available from high energy X-rays, detailed real-

space distributions g(r) for the three yttria-alumina liquids at 2500K (Fig. 4C) 

provide signatures for the various nearest neighbour (Al-O,Y-O) and inter-

polyhedral (Al-Y,Y-Y) partial pair distribution functions.  In the difference 

distributions ∆g(r)s (insert Fig. 4C), compositional trends inferred from 

computer modelling of yttria-alumina glasses (7) can be seen far more easily.  

In particular increasing the yttria content naturally leads to an increase in Y-O 

and a decrease in Al-O correlations.  However, it is also accompanied by an 

increase in Y-Y correlations, signifying the microsegregation of “modifying” 

yttria polyhedra occurring within decreasing proportions of the network-like 

liquid alumina matrix.  This clustering of yttria polyhedra  is similar to the 

formation of “channels” that percolate through silicate networks (6).   

 Compositional changes affecting cation-cation correlations at high 

temperatures can also be seen in ∆S(Q) for the three liquids (Fig. 4A inset). 

The principal peak at 2.2 Å-1 is mainly due to Al-Y correlations whilst the broad 

feature centred around 4Å-1 is principally related to Y-Y and Al-Y correlations 

(7, 26, 33). On the other hand, ∆S(Q) in supercooled AY20 at high and low 
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temperatures is different, and with the above attributions indicates a shift to 

higher Q for Al-Y correlations, the opposite occurring for Y-Y correlations for 

the HDL-LDL transition. These changes point to a decrease in average Al-Y 

distances and an increase in Y-Y distances.  The latter is illustrated by the 

cartoon in Fig. 4B showing a switch from edge to corner-sharing yttria 

polyhedra for LDL.  Molten alumina is largely tetrahedral (6, 30, 33) with most 

oxygens present as triclusters (OAl3), in which case the shortening of Al-Y 

distances for AY20 between HDL and LDL (Fig. 4B) may be due to the break 

up of OAl3 groups. Overall the density is expected to decrease. The 

movement in the principal peak Qmax and its increase in intensity S(Qmax) 

through the HDL-LDL transition (Fig. 4A and B) coincides with the growth of 

the LDL phase xLDL analysed from the maximum in the integrated SAXS data 

(Fig. 3C).  The SAXS/WAXS results (Fig. 3C) therefore show how the switch 

in interatomic polyhedral packing at 1788K (Fig. 4B) matches the 

nanostructural changes that occur in density fluctuations (Fig. 3B).  The 

present results for AY20 contradict nanocrystalline models proposed for yttria-

alumina phase transformations (27, 28, 29) where much larger increases in 

ISAXS would be expected accompanied by diffraction features in S(Q). Both 

characteristics are clearly seen in SAXS/WAXS measurements when glass 

nanoceramics are formed close to the glass transition (31) but are absent in 

these experiments on supercooled yttria-alumina liquids at temperatures well 

above Tg (Figs. 2 and 3).  

 We turn now to the dynamic oscillations observed in molten AY20 in 

the vicinity of 1788K – Fig. 2B, Fig. S1 and Movies S1, S2. A model for this 

unique stop-go behaviour is outlined in Fig. 2B.  We propose that the rotation 
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of the supercooled drop is driven by the HDL-LDL transition occurring within 

the levitation nozzle adjacent to the upward flow of gas (Fig. 2A) – a 

polyamorphic rotor.  Whenever T<TLL the liquid within the nozzle (which is 

approximately one third of the drop – see Movies S1, S2) switches abruptly to 

LDL. As 0/ <∆ ρρ  the drop is destabilized resulting in the low density zone at 

the bottom flipping to the top, the high viscosity of the LDL phase (26) 

maintaining the rigidity of the drop.  The unmixing time is at least as short as 

the frame exposure time (30ms). Taking the flip time τ  from the full video 

sequence (Movies S1, S2) gives ρρ /∆ =0.031+/-0.004 (34), close to the  ex 

situ value determined from recovered rapidly quenched material (26).  From 

the peak to background in Fig. 3B, the size of thermal fluctuations in yttria-

alumina liquids away from the transition 02.0~/
2/1

2 ρρ∆ , which is  

comparable to measurements on supercooled silica (6).  

 The HDL-LDL increase in molar volume in supercooled AY20 in the 

nozzle ∆VLL is 1.2+/-0.2cm3.  This initiates the rotation (Movie S1), bringing 

the LDL cap into the laser beam where it switches back to HDL when T 

exceeds TLL (Fig. 2B).  In the meantime material at the bottom surrounded by 

the nozzle gradually cools and when T there drops below TLL the HDL-LDL 

transition repeats and a new cycle commences.  Because the HDL-LDL 

transition is ordering (26) this will be accompanied by an exotherm emanating 

within the material in the nozzle and spreading through to the rest of the drop. 

However,   as soon as the rotor spins the LDL zone under the laser spot (Fig. 

2B), the HDL-LDL exotherm should be interrupted by an LDL-HDL endotherm.  

This qualitatively explains the thermal spike at the start of each cycle where 

the initial exotherm is overtaken by a sharp dip followed by gradual warming 
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before the next cycle starts (Fig. 2B).  The pyrometer and video brightness 

fluctuations (OLM Text), however, can also be attributed in part to variations in 

emissivity over the surface adding some uncertainty to the temperatures 

recorded by the pyrometer.  Nevertheless, taking the measured temperature 

limits from Fig. 2B, a figure for the enthalpy change ∆HLL associated with the 

polyamorphic transition of 34+/-8kJ/mol is obtained (34), similar to the 

calorimetric value reported from reheating quenched glasses (26).   

 The critical temperature for the “two-state” model (8) which is defined 

by RH 2/∆ , where R is the gas constant, is 2030+/-480K.  Moreover the HDL-

LDL decrease in entropy LLLLLL THS /∆=∆  is 19+/-4J/mol/K, approximately 

half the entropy of fusion (35), which therefore excludes alternative 

explanations of liquid-liquid transitions in supercooled yttria-alumina based on 

crystallisation (27,28, 29).  ∆SLL and ∆VLL are the first order thermodynamic 

drivers for the polyamorphic transition and determine the gradient of the HDL-

LDL phase boundary in supercooled AY20, viz: LLLL SVdPdT ∆∆= //  = - 

62°/GPa.  This negative slope and the +/-σ limits (Fig. 3C) closely match 

predictions from the two-state model (Fig. 1) from which a more precise value 

for the critical point C (1804K, -0.31GPa) is obtained using the Ponyatovsky 

formalism (36). 

 We believe that the contactless in situ approach described here, which 

has enabled us to detect the variables that  define the liquid-liquid transition in 

supercooled yttria-alumina, can also be applied at lower temperatures to 

search for polyamorphic and non-equilibrium transitions more generally where 

ambient pressure is the norm –  for instance in other supercooled inorganic 

systems like liquid metals as well as in organic liquids, Indeed it may well be 
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possible with levitated drops and SAXS/WAXS to explore instabilities in 

supercooled water at temperatures which have so far proved inaccessible (3). 
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and agAQ /)/( ρρ∆= ,  a is the radius (1.15mm) and g is the 

acceleration due to gravity (9.8ms-2).  For the polyamorphic rotor model 
ρρ /∆ is the density contrast between HDL and LDL components of the 

sphere, A is a constant which governs the moment of inertia and is 
approximately equal to the fraction of the sphere converted to LDL 
(~1/3).  The time for the sphere to flip through 180° is 2/1

6
−≈ Qτ . From 

the video frames τ= 600+/-70ms, giving ρρ /∆ =0.031+/-0.004. If the 

enthalpy associated with the HDL-LDL transition is emitted radiatively, 

PC

TTS
dtdT

)(
/

4

0

4 −
=
εα

 where ε is the emissivity, σ is Stefan’s constant 

(5.67 10-8 Wm-2K-4) and S is the area of the sphere,T0  is the  
 equilibrium temperature, and the specific heat CP is set equal to the 

Dulong and Petit value of 24.96 J/mol. The radiant exotherm is 
parameterised from the measured temperature limits shown in Fig. 2B, 
the onset of the equivalent LDL-HDL endotherm being offset by 250ms 
from the rise of the initial HDL-LDL exotherm that starts the cycle. The 
resulting oscillating temperatures are shown by the dashed blue curve 
with the emitted/absorbed powers yielding a value for the enthalpy 
∆HLL of the polyamorphic transition of 34+/-8kJ/mol. 

35 If alumina or YAG nucleated instead of LDL, as has proposed by some 
researchers (27, 28, 29), the exotherm would be due to ∆Sfusion which 
equals 48kJ/mol/K and 30kJ/mol/K respectively, compared to the ∆SLL 
value of 19+/-4kJ/mol/K measured in these in situ experiments. Also 

ρρ /∆ >0 which would not destablise the rotor action (Fig. 2B and 

Movie S1 and S2).  
36 The measured temperature rise at the top of the rotor, which we 

attribute to the LDL-HDL transition initiated in the nozzle, indicates 
significant superheating.  We note that this is in excess of the upper 
spinodal limit shown in Fig. 2B defined by the two-state model (9), in 
which case internal superheating might trigger the reverse endothermic 
LDL-HDL transition rather than external laser heating.   

37 We are grateful for very useful discussions with Wim Bras, Paul 
McMillan and Peter Poole. The Science Technology Facility Council 
and staff at the Synchrotron Radiation Source are thanked for access 
to the SAXS/WAXS facilities on station 6.2 and the Advanced Photon 
Source for access to high energy x-ray scattering facilities on 11-ID-C. 
We also acknowledge the support of the Higher Education Funding 
Council in Wales through the Centre for Advanced Functional Materials 
and Devices.   
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Figure Captions 

 

Figure 1. T-P phase boundary separating HDL and LDL phases surrounded 

by spinodal limits.  Dashed curves: calculations from the two state model (8, 

9).  Solid curves: LLLL SVdPdT ∆∆= // is determined from the changes in 

entropy ∆SLL and molar volume ∆VLL for supercooled AY20, with +/-σ limits 

taken Fig. 3C. This places the critical point C at 1804K, and -0.31GPa.  The 

melting point Tm and the HDA glass transition temperature Tg for AY20 are 

also included (26, 31), together with the crystallisation temperature Tc taken 

from Fig. 3B and from rapid quenching (29).   

 

Figure 2. A Schematic of the aerodynamic furnace for SAXS/WAXS 

experiments at the Synchrotron Radiation Source station 6.2 (32).  Laser and 

pyrometer are directed downwards on the drop which is supported by 

aerodynamic drag forces from a vertical stream of argon. ∆T ~50K (25, 29). 

SAXS and WAXS detected as shown using multi-wire proportional counters 

(32). The levitator was adjusted vertically for constant transmission (IT/I0) 

through the drop.  B Top: 0.25Hz stop-go rotation in vicinity or TLL (see also 

Fig. S1). Left: Video images A-F illustrating horizontal rotation (Movies S1, 

S2). Centre: Fluctuating image brightness for pixel area shown in frame A 

compared to pyrometer output for one 4s cycle. 180° rotation takes 600ms 

after which the bead is virtually stationary.  Dashed lines are +/-σ limits from 

Fig. 3C. Right: Polyamorphic rotor model. HDL-LDL transition occurs 

repeatedly at the bottom of the sphere whenever T<TLL, the mechanical 

instability causing the LDL zone to rotate to the top where it transforms back 
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to HDL in the laser beam.  Dotted lines follow polyamorphic model (34) also 

shown above for extended sequence.  

 

Figure 3.  Small angle X-ray scattering (SAXS) data for supercooled AY15, 

AY20 and AY25 liquids revealing the intensity of random fluctuations 

measured at the Synchrotron Radiation Source station 6.2 (SOM). A  Log 

ISAXS v LogQ plots with a sharp minimum at Qmin<0.05Å-1 between the rise for 

Q <Qmin and the increase in the structure factor for Q>Qmin. Note the rise and 

fall in ISAXS for AY20 in the vicinity of 1788K. B SAXS integrated for Q <Qmin 

dQQI
Q

SAXS

2

03.0

min

∫ , showing the linear temperature rise for the three supercooled 

liquids.  SAXS was followed as far as crystallisation Tc in each case (SOM). 

The sharp peak for AY20 at 1788K identifies a liquid-liquid transition AY20 

and AY25 are offset vertically by 1 and 2 respectively. C   Top: Integrated 

SAXS  dQQI
Q

SAXS

2

03.0

min

∫  for supercooled AY20 from Fig. 3B with the thermal 

background removed (____) and deconvoluted into two back-to-back Avrami-

like sigmoids, LDLx (-.-.-.) HDLx (- - - -) where HDL

T

TT

LDL xex LL −== ∆
−

−

1
4)

2
( 0

 and 

T0=1752K, from which TLL=1788+-9K.  Bottom: Discontinuities in the position 

Qmax ■  and intensity S(Qmax) ○ of the principal peak occurring at 1788K (inset 

to Fig. 4B) which follow xLDL ( -
.-.-.-.). 

 

Figure 4. Structure factors S(Q) and distribution functions g(r) for supercooled 

AY15, AY20 and AY25 liquids. A S(Q)s measured on 11-1D-C at the 

Advanced Photon Source with high energy X-rays (SOM). Inset:  - - - - ∆S(Q) 

for pairs of liquids displaying two features annotated with Q values for cation-
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cation correlations obtained from computer simulation (7).   ______ ∆S(Q): the 

difference between high and low temperature S(Q)s for AY20 taken from B, 

arrows identifying the inter-polyhedral changes ABQ∆  accompanying the HDL-

LDL transition. B S(Q)s fro AY20 at 2392K (■) and 1515K (○) measured on at 

the Synchrotron Radiation Source station 6.2 (SOM) and compared to 

HEXRD taken from A (_______). Inset: Changes to the principal peak with 

temperature, below 1786K in blue and above 1800K in red, showing the shift 

in position Qmax and intensity S(Qmax) highlighted in the inset to A and in Fig. 

3C identifying the liquid-liquid transition. Cartoon: proposed reversible 

changes in polyhedral packing between HDL and LDL phases. The LDL inter-

cation distances rAl-Y and rY-Y are estimated using ABABABAB QQrr /~ ∆∆ where 

ABQ∆  is the HDL-LDL shift in S(Q) AY20 features from B with the HDL ABQ  

and ABr  taken from A and C respectively. C g(r)s obtained by Fourier 

transforming S(Q)s from A. Inset: ∆g(r) for each of the pairs of liquids 

identifying nearest neighbour Al-O, Y-O and O-O separations as well as inter-

polyhedral Al-Al, Al-Y and Y-Y correlations, arrows centred on the average 

distances ABr  obtained from simulations (7).   
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