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ABSTRACT

This paper examines whether machine learning and image analysis

tools can be used to assist art experts in the authentication of un-

known or disputed paintings. Recent work on this topic [1] has pre-

sented some promising initial results. Our reexamination of some of

these recently successful experiments shows that variations in image

clarity in the experimental datasets were correlated with authenticity,

and may have acted as a confounding factor, artificially improving

the results. To determine the extent of this factor’s influence on pre-

vious results, we provide a new “ground truth” data set in which

originals and copies are known and image acquisition conditions are

uniform. Multiple previously-successful methods are found ineffec-

tive on this new confounding-factor-free dataset, but we demonstrate

that supervised machine learning on features derived from Hidden-

Markov-Tree-modeling of the paintings’ wavelet coefficients has the

potential to distinguish copies from originals in the new dataset.

Index Terms— Forgery Detection, Image Classification, Digital

Painting Analysis, Blur Identification, Hidden Markov Trees.

1. INTRODUCTION

Determining a painting’s authenticity can be extremely challenging.

Typically, art experts reach decisions after thorough consideration of

many different types of evidence. Correspondence from the artist’s

lifetime and documents tracing the painting’s history of ownership

provide clues. Technical analyses of the pigments and other ma-

terials used and the method of their preparation, study of the cre-

ative process as documented in underlayers of the painting (observed

through Xray and infrared imaging), and visual aspects of appear-

ance and style of the work are compared against those of the artist’s

other works. Yet even these analyses combined may be inconclusive,

leaving art experts in search of yet more sources of usable evidence.

It has recently been proposed that computational tools from im-

age analysis and machine learning can provide an additional source

of analysis of questioned paintings [2]. This assumes that an artist’s

brushwork is characterized by signature features (caused, e.g., by the

artist’s habitual physical movements) which might be found by ma-

chine learning methods and used as an additional piece of evidence

to rule upon authenticity. Indeed, early attempts in this area have

already found considerable success [2, 3, 4, 5, 6].

2. PREVIOUS WORK

The First and Second International Workshops on Image Processing

for Artist Identification (IP4AI) invited research groups to compare

their methods on a common data set consisting of high-resolution

scans of paintings by Vincent van Gogh (VG) and his contemporaries

[1]. The method of each group was also successful in distinguishing

the one copy from five originals in a challenge set up by the NOVA

ScienceNOW television program [7].

Characterization of particular artists’ paintings via computerized

tools has thus far focused on the statistics of the wavelet coefficients

of paintings. For example, Lyu, Rockmore, and Farid found that real

Brueghel drawings can be distinguished from imitations via a variety

of statistics of the wavelet coefficients [3]. This approach was further

extended to the faces of a Perugino painting thought to be painted by

several hands; the three faces that clustered in this analysis agreed

with the three that art experts think were painted by the same hand.

Meanwhile, Berezhnoy and Postma [4, 5] found methods for color

and texture analysis by complementary colors of VG and specifying

the spatial distribution of brushstrokes at different directions by cir-

cular filtering. Li and Wang [6] have used texture features obtained

by training a 2D Hidden Markov Model on local wavelet coefficients

combined with features obtained from detecting and segmenting in-

dividual brushstrokes from the images, such as length and average

curvature of individual strokes.

In previous work, we performed two analyses [2]. We found

that parameters of an HMT, trained on the wavelet coefficient trees

of paintings, could be used in a successful classification of VG or

non-VG in most situations. The exceptions were either stylistically

atypical true VGs or non-VGs in the style of VG, so we interpreted

this as a stylistic analysis of the paintings. A second analysis fo-

cused on the overall quantity of high-frequency detail in a painting

and seemed to distinguish copies, forgeries, and other more hesi-

tant works regardless of artist (these had more fine scale detail) from

more fluid originals (which had less fine scale detail). We interpreted

this analysis as characterizing the artist’s fluency in each painting.

Here for convenience, we’ll summarize the results of this analysis in

a single “hesitancy index”: the average of the median wavelet coef-

ficient energies we previously calculated separately for each of the

two finest scales. In the first IP4AI dataset, this index is significantly

higher for copies than for originals (see Figure 1).

3. A CONFOUNDING FACTOR UNCOVERED: BLUR

For the second IP4AI-workshop, an expanded data set was provided

with a new VG copy and additional VG originals. Applying our

previous methods to the enlarged data set did not separate this copy

from the new originals, but clustered all the newly added paintings

separately in one cluster. Close examination eventually provided an

explanation: the newly acquired digital images were sharper than

earlier ones; the paintings had been digitized by a new scanner.

This showed that variations in the quality of the digitization pro-

cess for different paintings had to be considered. The data set is ob-

tained by scanning the photographic record (8” × 10” Ektachrome

slide) of each painting from the museum archives. For logistical rea-

sons, these are the highest quality photographs we can access: since

the paintings are either on display for the public or securely locked

down at virtually all times, both a significant expense and a major

inconvenience to the museum and its patrons would be required to



gather new high-quality photographs of the 130+ paintings in our

dataset. Even under uniform scanning conditions, the level of (vi-

sually not very noticeable) photographic blur in the dataset varied,

presumably due to variations in age and quality of the museum’s

Ektachromes.

Surprisingly, this blur had been correlated with authenticity in

the first IP4AI dataset. We computed a “blur index” for each paint-

ing, a number that reflects the degree of (visually unnoticeable) blur-

riness of each image, based on the detection scheme described in [8].

This scheme is based on 3 levels of the Haar wavelet transform of

a square portion of the image, used to build edge maps of several

types. The blur index is computed as an ℓ2-norm of three blur co-

efficients, one for each of the R, G, and B channels, based on their

edge maps. To validate the use of this blur index on the VG data set,

we tested it on images artificially blurred with Gaussian or custom

motion filters, for several different levels for the extent of the blur,

in all cases unnoticeable by visual examination with the naked eye.

The blur index algorithm then recovered correctly the level of blur.
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Fig. 1. Hesitancy index vs. blur index for the extended VG dataset

Figure 1 plots hesitancy vs. blur index, for the full expanded

VG dataset. In both datasets that were previously available, i.e. the

IP4AI1 dataset (in red) and the NOVA dataset (in green), the copies

appear among those paintings with the very highest hesitancy in-

dexes. For example, the hesitancy index for F6871 allowed us to dis-

tinguish it from the rest of the NOVA set. However, the copies also

are, rather improbably, among the very sharpest paintings in both

datasets. For example, both the copies and another hesitant VG all

rank in the top 7 sharpest paintings in the 76 member IP4AI1 dataset.

Similarly, in the NOVA dataset, the blur index of F687 (the copy)

was .0973, much lower than for any of the other 5 (F458 (.9891),

F270a (.9846), F415 (.9250), F451 (.8989), F218 (.6543)), although

all were digitized with the same scanner. Finding that this potential

confounding factor existed in both datasets (and that moreover our

hesitancy index is strongly correlated with it) led us to suspect that

blur might have unfairly assisted our team, and others, in previous

copy detection challenges.

4. A NEW DATASET: UNIFORM ACQUISITION

CONDITIONS

To investigate more carefully whether these previously successful

analysis methods have the potential of distinguishing originals from

copies, we needed to gather a new dataset on which we would have

1The F-number labels for each VG painting were developed by art histo-
rian Jacob Baart de-la-Faille for his 1928 catalog of VG’s oeuvre. Today, art
experts commonly use these to refer to VG’s works.

ground truth (known originals vs. copies) and which we could digi-

tize under completely uniform acquisition conditions.

We asked Charlotte Caspers, an art conservation student from

Stichting Restauratie Atelier Limburg specializing in art reconstruc-

tion, to paint a series of small paintings. Caspers painted both “orig-

inals,” painted naturally and fluidly from life, and “copies,” in which

she attempted to copy her original as exactly as possible. She re-

ported that originals took her about 20 minutes each (on average) to

paint; copies took about two hours. Other than this, there was no

difference in the painting conditions, with each pair being painted in

sequence over a period of approximately two weeks. All paintings

were still lifes set up with objects at hand, painted in an indoor envi-

ronment. The paintings were allowed to dry for approximately two

weeks, then placed directly face-down on a Epson 1640XL flatbed

scanner and scanned at 800 dpi to acquire high-resolution digital im-

ages. The data set is available for public usage [9].

Original and copy within each pair were painted with the same

materials, but a different set of materials was used for each pair. See

Table 1 for details. Commercially prepared canvases were covered

in a thin layer of colored paint before painting. Soft brushes were

sable or synthetic; hard brushes were flat hog hair.

These copies are likely hard to distinguish from the originals,

since they were painted by the same artist, and shortly afterwards.

Being able to reliably classify patches of copies vs. originals under

these stringent circumstances would be a strong proof-of-concept for

our approach. Indeed, we found that our previous hesitancy indices

failed to show a consistent difference between these new originals

and copies. We were also unable to find a consistent difference using

the Gabor wavelet energy approach in [2].

Fig. 2. Portions of 3 Caspers paintings in our dataset.

5. NEW FEATURES FOR COPY/FORGERY DETECTION

5.1. Color Representation

We use a coordinate representation of colors in which Euclidean dis-

tance mirrors human perceptual distance well, but computation from

the original RGB remains simple. HSL [10] represents each color

by (1) its Lightness L (grayscale luminance value), ranging from 0

(black) to 1 (white), (2) its Hue H , expressed as an angle, and (3)

its Saturation S, again from 0 to 1. All are easily computed from

RGB. These 3 coordinates are polar coordinates for a cylindrical

color space; the cylinder’s entire bottom represents black, the entire

top, white. To match coordinate distances to perceptual ones, this

cylindrical color description is converted to a double cone (black at

the bottom tip, widening as L increases, to a disk with fully saturated

colors on the rim and middle gray at the center for L = .5, and ta-

pering back again to white at the top). We use cartesian coordinates

(XYZ) for the resulting double cone, computed from HSL by:

X = L

Y = S cos(H)min{2L, 2(1 − L)}

Z = S sin(H)min{2L, 2(1 − L)}



5.2. Features: Hidden Markov Trees (HMT)

Paintings are divided into 1024 x 1024 patches and feature are ex-

tracted independently from each. We use a Hidden Markov Tree

(HMT) multiresolution model [11] that captures statistical structure

of the image. For each subband, the wavelet coefficients form a

quad-tree with structural local dependencies at different levels. Fig-

ure 3 sketches this structure for one subband. At each scale the

wavelet coefficient distribution is modeled as a mixture of two Gaus-

sian distributions: one with small variance, controlling the (small)

coefficients corresponding to smooth regions, and one with large

variance, controlling (potentially large) coefficients corresponding

to edges.

For the implementation, we use dual-tree complex wavelet co-

efficients, able to represent more directions than tensor-product or-

thonormal bases of wavelets. The hidden nodes of the HMT control

the magnitude of the wavelet coefficients. At each level, we have

several HMT parameters:

• αT : A 2 × 2 transition probability matrix Pr[child|parent].

• σS : Variance of the narrow Gaussian distribution.

• σL: Variance of the wide Gaussian distribution.

The HMT parameters for all scale levels are estimated from the

data using the expectation maximization algorithm and then form

the set of features for our classification task. Each patch’s result-

ing feature vector is 132-dimensional: for each subband, we have 2

variances for each of the 6 finest scales and 2 (non-redundant) tran-

sition probabilities for each of the 5 finest scale transitions, giving a

total of 6 × (2 × 6 + 2 × 5) = 132. Such a model “simulates” the

practice of art scholars, in the sense that each style has some hidden

parameters, and scholars try to estimate them (in a less mathemati-

cally explicit way) based on their observations and a model based on

their knowledge background.
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Fig. 3. Quad-tree HMT model

of one subband of complex

wavelet coefficients. Blue

nodes represent hidden layer

variables (Small or Large),

and Green nodes represent the

wavelet coefficients. Each

layer is a mixture of two Gaus-

sians with controlling parame-

ter αT .

6. RESULTS ON NEW DATASET USING NEW FEATURES

Finally, we formulate copy/forgery detection as a machine learning

problem. Let X and Y be the sets of features and labels, respectively.

We have Y = {−1, 1}, where −1 labels a patch from a copy and

+1 a patch from an original image. The feature vector for patch i is

xi ∈ R
132, where 132 is the total number of HMT features. Then

let (x1, y1), ......, (xm, ym) be a sequence of training examples from

X × Y ; our goal is to find the function of xi (the hypothesis h)

that corresponds best to the labels yi, without overfitting. This is a

supervised learning task. We use the WEKA (Java-)software for data

mining [12] to solve this classification problem by means of Support

Vector Machines (SVM) with polynomial kernel.

We designed three different tests, differing in the choice of the

training set; results for all the tests are given in Table 1. For Test

1, illustrated in Figure 4, the training set, used to classify the two

paintings in one pair, incorporates all the patches of all the other

    all patches in 
original and copy

TEST SETTRAINING SET

all patches from both copies and originals

6 other pairs: copies + originals pair being tested

Fig. 4. Test 1: For each pair to be tested, all the training set patches

are taken from the other 6 pairs.

pairs, but no patches of the pair in contention; the patches of the

original and copy of the latter pair are all in the test set. For our

dataset, this means that the training set does not contain any patches

painted with the same medium/materials combination as the test set.

Table 1 indicates the percentage of patches classified correctly in the

total test set, as well as for the original and copy separately. This is

the hardest test, and it worked (not convincingly) for only 2 pairs of

the 7. In the 5 other pairs, a majority of patches in the copy or the

original was misclassified. The results seem to show that at present

generalizing from one medium to another is not possible.

6 other pairs: copies + originals

pair being tested original and copy

TRAINING SET

other patches in original
    and copy

TEST SET

all patches from both copies and originals

some patches in

pair being tested

Fig. 5. Test 2: The training set contains all the patches from the other

6 pairs and some of the investigated pair.

In Test 2 (Figure 5), the training set of Test 1 is augmented with

some pairs of corresponding patches for the original/copy pair under

contention. Given the restrictions of our dataset [9], in which we

never had two different paintings with the same materials, we used

patches of the same painting (but different patches) as a simulation of

having several paintings at our disposal in the same materials. In this,

we make the assumption that different regions of the same painting

can be used as independent examples for the machine learning, much

as patches from two different paintings would be. Having training

examples done in the same materials helps: the results for the top 3

pairs (but not for the bottom 4 pairs) improve significantly.

Test 3 (Figure 6), studies the accuracy of predicting after train-

ing on a set that uses exclusively the same materials and medium

as the test set. Again, given the restrictions of our dataset, we had

to use different patches of the same painting as a “simulation” of

having several paintings at our disposal in the same materials. To

avoid having training and testing patches depict the same piece of

the scene, which could unfairly assist the classifier, patches of the

image were divided into 4 disjoint sets A, B, C and D. We then used

only A-patches from the original and B-patches from the copy for

training, and only C-patches from the original and D-patches from



Table 1. Results for Caspers Data Set: Accuracy for each Test. (Abbreviations: CP = Commercially Prepared, S = Soft, H = Hard, Sm =

Smooth, Bl = Blended, TI = Thick Impasto, Tot.= Total, Cp. = Copy, Or.= Original)

Test1 Test2 Test3

Pair Ground Paint Brushes Style Tot. Cp. Or. Tot. Cp. Or. Tot. Cp. Or.

1 Smooth CP Board Oils S& H 48% 22% 75% 58% 44% 72% 78% 78% 78%

2 CP Canvas Oils S& H 58% 58% 58% 75% 67% 83% 78% 67% 89%

3 CP Canvas Acrylics S& H 50% 33% 67% 75% 72% 78% 72% 55% 89%

4 Bare linen canvas Oils S TI 50% 89% 11% 50% 44% 56% 75% 50% 100%

5 Chalk and Glue Oils S TI 63% 43% 83% 58% 50% 66% 50% 0% 100%

6 CP Canvas Acrylics S TI 50% 100% 0% 50% 71% 29% 38% 75% 0%

7 Smooth CP Board Oils S Sm,Bl 67% 83% 50% 72% 72% 72% 55% 22% 88%

TEST SET

original

TRAINING SET

4 sets of patches without any overlap

copy

Fig. 6. Test 3:Training patches taken from only the investigated pair.

the copy for the test (see Figure 6). This simulates the situation in

which authentication of a painting has to be carried out by comparing

only with other paintings (of the same materials and medium), with-

out having original/copy pairs to assist in learning. Again, this test

was promising for the first 3 pairs (the only ones in which, maybe

not coincidentally, hard as well as soft brushes were used), not so

for the others. In the 3rd pair, where acrylic rather than oil paint

was used, we have a clear majority of correctly classified patches for

both the original and the copy, but the accuracy with which ”copy”

patches were labeled went down from Test 2 to Test 3. Further work

is needed to understand these results better.

7. CONCLUSIONS

Authentication of paintings can be difficult, even for experienced art

scholars. Quantitative features obtained through digital image anal-

ysis could potentially be helpful in identifying copies or forgeries.

We reexamined features found useful in recent work and identified

a possible confounding factor in their experimental success: images

of copies were sharper than those of originals in the datasets stud-

ied. We introduced a new data set of copies and originals that is

free of this confounding factor. We then used HMTs to model the

wavelet coefficients of paintings and supervised machine learning,

with the trained HMT model’s parameters as input features, to try to

distinguish copies from originals. We offer our well-above chance

results on many test cases as a proof-of-concept that quantitative fea-

tures capable of distinguishing copies from originals can in fact be

obtained through digital signal processing on the works in question.

However, more work must be done to see if the methods are also ca-

pable of succeeding in situations where accurate training examples,

as we had here, are not available.
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