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ABSTRACT

Motivation: Identification of motifs is one of the critical stages in

studying the regulatory interactions of genes. Motifs can have

complicated patterns. In particular, spaced motifs, an important

class of motifs, consist of several short segments separated by

spacers of different lengths. Locating spaced motifs is not trivial.

Existing motif-finding algorithms are either designed for monad

motifs (short contiguous patterns with some mismatches) or have

assumptions on the spacer lengths or can only handle at most two

segments. An effective motif finder for generic spaced motifs is

highly desirable.

Results: This article proposes a novel approach for identifying

spaced motifs with any number of spacers of different lengths.

We introduce the notion of submotifs to capture the segments in the

spaced motif and formulate the motif-finding problem as a frequent

submotif mining problem. We provide an algorithm called SPACE

to solve the problem. Based on experiments on real biological

datasets, synthetic datasets and the motif assessment benchmarks

by Tompa et al., we show that our algorithm performs better

than existing tools for spaced motifs with improvements in both

sensitivity and specificity and for monads, SPACE performs as good

as other tools.

Availability: The source code is available upon request from the

authors.

Contact: ksung@comp.nus.edu.sg

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

One of the major challenges facing biologists today is under-
standing the regulatory mechanism of genes. This challenge
includes detection of transcription factor binding sites

involved in regulation and discovery of regulatory networks.
The problem of de novo identification of transcription factor
binding site motifs has been widely studied and a number

of motif-finding algorithms have been proposed under
categories such as profile-based methods e.g. Gibbs
sampler (Lawrence et al., 1993), MotifSampler (Thijs et al.,

2002), SeSiMCMC (Favorov et al., 2005), GAME

(Wei and Jensen, 2006), Improbizer (Ao et al., 2004),

consensus-based methods e.g. Weeder (Pavesi et al., 2001),

MITRA (Eskin and Pevzner 2002), Gemoda (Jensen et al.,

2006) and hybrid methods that use a combination of the above

two methods, e.g. (Hertz and Stormo, 1999).

However, motif-finding continues to be a difficult problem.

Recently Tompa (Tompa et al., 2005) conducted an assessment

of 13 popular motif discovery algorithms over 56 datasets

drawn from Homo sapiens, Mus musculus, Drasophila

melanogaster and Saccharomyces cerevisiae genomes, and

found that all the algorithms performed unimpressively overall

(barring yeast datasets).

One reason is that motifs can have complicated patterns.

As pointed out by Eisen in a recent survey (Eisen, 2005),

regulatory motifs could be highly complex in the biological

context. Many motifs are known to be composite patterns

which are groups of monad patterns (short contiguous patterns

with some mismatches) that occur relatively near each

other (Harbison et al., 2004). For example, the binding site

for ArcA-P, a transcription factor for regulating gene related to

the respiratory metabolism in Escherichia coli (Liu and

DeWulf, 2004), can be regarded as two conserved segments,

separated by a spacer of length approximately 6 (McGuire

et al., 1999). Another example is Mcm1 (Kato et al., 2004) or

often called as the early cell cycle box (ECB) (Tavazoie et al.,

1999) which has three segments and two spacers. Note that a

spacer does not necessarily mean that the characters in the

spacer are completely random and arbitrary, but these

characters are not very conserved in different instances.
In fact, in some regulatory mechanisms, a single transcription

factor may bind to two or more sites that are relatively close

to each other—as is frequently the case, for instance, of RNA

polymerase (Record et al., 1996). Identifying these sites is

similar to finding a spaced motif. Spaced motifs may also be

associated with co-regulated genes that share two or more

transcription factors and the binding sites are often recognized

by different macromolecular complexes that make contact

with one another (Owen and Zelent., 2000; Werner, 1999).

Our focus in this article is to find such complex motifs that

could contain spacers.*To whom correspondence should be addressed.
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Most of the existing algorithms are mainly designed for

monad motifs. Applying these algorithms to locate spaced

motifs may not be effective. By treating a spaced motif as

a single monad pattern, the motif instances may not be very

similar, i.e. the signal may not be strong to be detected, due

to the many random (non-conserved) characters in the spacers.

Or if we try to locate the individual segments of a spaced motif

using these algorithms, some of the segments may be too short

and may not be easily detected.
On the other hand, there are algorithms designed for spaced

motifs. The methods used by existing algorithms can be

classified into the following approaches. The first and the

most common approach is to assume that all the spacers

in the same motif are all of the same fixed length

[e.g. SesiMCMC (Favorov et al., 2005), OligoDyad

(van Helden et al., 2000)]. However, in real cases, this is not

the case. Another approach to handle spacers is to enumerate

all possible spacer lengths between two composite segments

(e.g. YMF developed in (Sinha and Tompa, 2000) and

BioProspector (Liu et al., 2001)). Although this approach can

find motifs with spacers of varying length, it is inherently

inefficient and is difficult to extend to more than two segments.

And it may not be practical for long motifs. The third approach

to locate spaced motifs is to find the monad segments first

(e.g. MITRA in (Eskin and Pevzner, 2002)), then based on the

locations of monad segments, locate a set of possible dyads

(spaced motifs with two segments). The algorithm of MITRA

relies on a specially designed data structure (mismatch tree data

structure) to quickly identify possible monad segments. There

are other methods [e.g. (Carvalho et al., 2005; Marsan and

Sagot, 2000)] that make use of data structures such as suffix

tree to store the regularly spaced motif before finally identifying

the motif pairs to speed up the process. Almost all existing

approaches only handle spaced motifs with two segments.
In this article we propose a new approach for finding spaced

motifs, and develop a novel motif-finding algorithm that offers

flexibility in handling spacers with different lengths, the number

of segments and variations in segment lengths. We formulate

the motif finding problem as a frequent itemset mining and

present an algorithm called SPACE for finding these motifs.

Experimental results show that the approach is promising.
Our approach is similar to TEIRESIAS (Rigoutsos and

Floratos, 1998) in building longer motif from shorter blocks.

Yet, TEIRESIAS is computationally expensive. It uses a

convolution strategy to stitch the shorter blocks exhaustively

to find maximal patterns. It also does not handle mismatches.

On the other hand, our novel approach provide further

advantages. We allow flexibilities in terms of allowing

mismatches and provide an efficient method to find the pattern.

2 SPACED MOTIFS AND THE SUBMOTIFS

In this section, we provide the formal definition of a generic

spaced motif and discuss the notion of submotif which is the

core concept of our approach. We generalize the string

representation of motifs as follows.

DEFINITION 1. For some pre-defined coverage ratio r � 1, a

spaced motif (or simply a motif) is a length-L string formed

by characters of {A, C, G, T, n} with at least br� Lc characters
in {A, C, G, T}. Each maximal substring of consecutive ‘n’
represents a spacer and each maximal substring of other

characters represents a segment.

Figure 1 shows an example of a spaced motif M which is of

length 20 and has three segments separated by two spacers.
Note that the segments, as well as the spacers, can be of
different lengths. The number of segments is also not fixed.

Let Z½i::j� be the substring of Z starting at position i and ending
at position j. Any length-‘ substring M½i::iþ ‘� 1� within any
segment of M is called its submotif. Below, using submotifs,

we define an instance of a spaced motif (see Fig 1 for an
example).

DEFINITION 2. Consider a length-L spaced motif M and any
length-L string I formed by characters of {A, C, G, T}. I is called
an instance of M if, for every submotif M½i::iþ ‘� 1� and

I½i::iþ ‘� 1� have at most d mutations, for some pre-defined
constant d.

Now, we define the spaced motif-finding problem. Let
S ¼ fs1, s2, . . . , stg be a given set of DNA sequences. Our task

is to identify spaced motifs with at least q instances in S, for
some predefined constant q (we call this the minimum support).
Figure 2 shows an example.

By formulating the motif-finding problem in this way,
we have the following advantages:

(1) The lengths of the segments in the motif need not be

known even if we pre-fix the length of the submotif. This
follows because union of an overlapping set of submotifs
can represent an arbitrary length segment. This property

implies that motifs with segments of arbitrary lengths
could be found. Note that this does not depend on
whether the motif has spacers or not.

(2) The spaced motif uses multiple segments to model the

functional parts, which are more conserved, and the
spacers to model the non-functional parts. However,
monad motif (or dyads) only has one segment (or two

M=CAGTTCAnACGTCnnGACGT

I1=TAGTTTAtATGTCcgGACAT

I2=CACTTTAtATGTCcgCACGT

Fig. 1. Consider L¼ 20, ‘¼ 5 and d¼ 1. M is an example of length-20

spaced motif with three segments separated by two spacers. Then, I1 is

an instance ofM since all length-5 submotifs in the three segments of M

have less than 1 mismatches when comparing with I1. On the other

hand, I2 is not an instance of M since M½2::6� and I2½2::6� have two

mismatches.

TTGATACCGAAGATACCGATTAGAAATCACTCA
ACTACAGAAAAGCAGTAGTAAAAACGTACAGTC
GAAGACCGTCATGAGAAATCGCATACACGAGCA
TTCACCCGATAAAAATAAGGCTGTCTGGACTAA
TCGGAACAATTACGAAGAAAAGCAGTAGAAAAA

Fig. 2. Consider L¼ 20, r¼ 0.5, ‘¼ 5, d¼ 1 and q¼ 4. GAAGAnnn

nnnnTAGAAAnn is a spaced motif of the above five sequences. All its

instances are underlined.

Detection of generic spaced motifs
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segments) for modeling both conserved and non-

conserved regions. Hence, spaced motif can fit the

conserved regions better. In other words, it yields

higher specificity. We confirm this in our experiments

on several datasets including the Motif Assessment

Benchmark and some real biological datasets.

(3) It provides a natural extension for finding motifs with

multiple spacers, in which neither the spacer length nor

the number of spacers (and segments) is known.

However, there could be too many submotifs (many of them

are spurious) and the challenge is in how effectively the

submotif-compositing can be done to return ‘good’ motifs.

To tackle this situation, we formulate this task as a constrained

frequent submotif mining problem and propose a new

algorithm for solving it.

3 OUR SOLUTION

Let S ¼ fs1, s2, . . . , stg be the given set of t sequences. Our

solution for finding spaced motifs is called SPACE. It consists

of three main steps. Step 1 finds motif candidates, which is

defined below. Step 2 refines the motif candidates into spaced

motifs. Lastly, Step 3 computes the significance of the spaced

motifs based on our scoring function and reports the ranked list

of motifs.
We do not assume any knowledge about the number and the

locations of the spacers in the motif. To identify a possible

candidate for the motif, we look at each length-L substring u

in S, based on the definition of a spaced motif, we define an

occurrence of u as follows. Let hdðx, yÞ be the Hamming

distance of two equal-length strings x and y.

DEFINITION 3. Let u be a length-L substring in S. Consider

another substring w of the same length in S. For some pre-defined

constants d and r 2 ½0, 1�, for every i, the substring w½i::iþ ‘� 1�

is called a submotif occurrence of u ½i::iþ ‘� 1� if

hd ðu½i::iþ ‘� 1�,w ½i::iþ ‘� 1�Þ � d. The number of characters

spanned by all submotif occurrences is called the coverage of w

on u. The substring w is called an occurrence of u if the coverage

of w on u is at least br� Lc.

The length-L substring u is called a motif candidate if there

exist at least q occurrences of u in S. Figure 3 shows an example

of a motif candidate.

Step 1 tries to find all motif candidates. A straightforward

implementation is given in Section 3.1. Note that a spaced

motif is highly correlated with a motif candidate. For a motif

candidate that is a real spaced motif, the locations of submotif

occurrences in each occurrence of the motif candidate define

the locations of the segments for the candidate. A different

occurrence may define a different set of segments for the same

candidate. By finding the set of common segments defined

by the occurrences, we can generate a spaced motif. The

refinement process is done in Step 2 based on frequent itemset

mining, which is detailed in Section 3.2. Step 3 and our scoring

function is discussed in Section 3.3. The naive implementation

shown in Section 3.1 is a bit slow, Section 3.4 shows how to

speed up the process.

3.1 Generation of motif candidates

To find all motif candidates and their occurrences, a

straightforward implementation is as follows. Fix a constant

L for the motif length, for each sequence Si, for each substring u

of length L in Si, check the coverage of all other substrings in S

of length L on u. If there are q occurrences of u, report u and all

its occurrences. This naive procedure runs in OðLn2Þ time where

n is the length of a sequence. The actual running time is about

2min for a dataset of 5K bp with 10 sequences on a 3.6GHz

Xeon Linux workstation with 4 processors and 8GB RAM.
At the end of this step we have a set of motif candidates, each

associated with a set of occurrences. Recall that some of these

occurrences may be noise or some of the submotif occurrences

in them may be spurious. Our next step is to eliminate these

noise to identify the spaced motifs.

3.2 Refining motif candidate into spaced motif

Given a motif candidate u and its occurrences w1,w2, . . . ,wc,

this section discusses the way to refine u into a spaced motif.

Our idea is to transform the problem into frequent itemset

mining (Han and Kamber, 2000).
Before describing the transformation, recall that, by

Definition 3, u and wi share a set of submotif occurrences.

DEFINITION 4. Suppose that w is an occurrence of u. Then,

f j j 1 � j � L� ‘þ 1, hd ðw ½ j::jþ ‘� 1�, u ½ j::jþ ‘� 1�Þ � dg

is called the itemset of w with respect to u.

Figure 4 demonstrates the itemset concept. For an itemset J,

we can construct a spaced motif Mu,J of length L such that

Mu, J½i� ¼ u ½i� if 0 � i� j < ‘ for some j 2 J; otherwise,

TTGATACCGAAGATACCGATTAGAAATCACTCA
ACTACAGAAAAGCAGTAGTAAAAACGTACAGTC
GAAGACCGTCATGAGAAATCGCATACACGAGCA
TTCACCCGATAAAAATAAGGCTGTCTGGACTAA
TCGGAACAATTACGAAGAAAAGCAGTAGAAAAA

Fig. 3. Consider L¼ 20, r¼ 0.5, ‘¼ 5, d¼ 1 and q¼ 4. For the same

set S of 5 sequences in Figure 2, GAAGATACCGATTAGAAATC has

five occurrences. All its occurrences are underlined. Since the number

of occurrences is at least q, it is a motif candidate.

GAAGATACCGATTAGAAATC:
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

GAAAAGCAGTAGTAAAAACG:
{1, 13, 14}

GAAGACCGTCATGAGAAATC:
{1, 11, 12, 13, 14, 15, 16}

CCCGATAAAAATAAGGCTGT:
{3, 4, 12}

GAAGAAAAGCAGTAGAAAAA:
{1, 2, 13, 14}

Fig. 4. Consider L¼ 20, r¼ 0.5, ‘¼ 5, d¼ 1 and q¼ 4. With respect to

the sequence set S in Figure 3, this figure shows the five occurrences

of GAAGATACCGATTAGAAATC and their corresponding itemsets.

Note that f1, 13, 14g is the frequent itemset which appears four times.

Hence, GAAGAnnnnnnnTAGAAAnn is a spaced motif of the set S.

E.Wijaya et al.
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Mu, J½i� ¼ n. An itemset is called a frequent pattern if it has
at least q occurrences. The following lemma states the
relationship between frequent itemset and spaced motif.

Note that there is an assumption behind this transformation.
While we allow different gaps to have different lengths in the

same motif, for a gap in the motif, the length of this gap is the
same in all instances.

LEMMA 1. Let J be a frequent pattern of u with at least q
support. If Mu,J has coverage at least br� Lc, Mu,J is a spaced

motif.

PROOF. Since J is a frequent pattern with at least q support,

Mu, J has at least q instances. Also, Mu,J has coverage at least
br� Lc, so Mu,J is a spaced motif. g

Hence, given a motif candidate u and its occurrences, we can
refine u as a spaced motif as follows.

(1) Generate the itemsets for all occurrences of u.

(2) Find the frequent itemsets F which appear at least q
times.

(3) Report the spaced motif corresponding to F with

sufficient coverage.

Algorithm 1 shows the complete scheme of the algorithm.

Alogrithm 1 SPACE

Input: ls, d, e, q, r,S

Output: Ranked motifs

1: from S generate the set of motif candidates (D), each associated

with a set of occurrences

2: for each motif candidate u in D do

3: Let W be the set of occurrences of u

4: Find all frequent patterns that appear in W

5: for each frequent pattern do

6: construct the corresponding spaced motif M

7: If M has enough coverage, keep and score M

8: end for

9: end for

10: return ranked spaced motifs

3.3 Significance testing and scoring

We adapt the motif-scoring technique introduced in Weeder
(Pavesi et al., 2001) to compute the significance of spaced

motifs. Intuitively, a motif is significant if (1) the total number
of its occurrences in all input sequences is a lot more than

expected with respect to the background and (2) the pattern is
either very conserved or occurs in quite a number of the input

sequences. So, Weeder’s scoring mechanism computes two
values to capture these two properties.
Let M be the motif, E(M, e) be the expected frequency of M

with at most e mutations based on a set of background
sequences (we will show how to compute E later in this section).

Then, E ðM, eÞ �
P

len ðsiÞ, where len (s_i) denotes the length of
i-th sequence si, represents the expected frequency of M with at
most e mutations in all input sequences. To capture property

(1), we count the total number of observed occurrences of M

(with at most e mutations), OccsðM, eÞ, in all input sequences

and compute the occurrence score, � (M) as follows.

� ðMÞ ¼ log
OccsðM, eÞ

E ðM, eÞ �
P

len ðsiÞ
ð1Þ

To capture property (2), for a sequence s0i with an

occurrence of M, we consider the most conserved pattern

of M and let ei be the number of mutations of this best

pattern. The value of E ðM, eiÞ � len ðs
0
iÞ represents the

expected frequency of the occurrences of this motif in s0i.

This value is smaller if the motif is more conserved. Then, we

compute the sequence-specific score, �(M) as follows. If the

pattern is very conserved and/or occurs in many sequences,

�(M) is large.

�ðMÞ ¼
X
i

log
1

E ðM, eiÞ � len ðs
0
iÞ

ð2Þ

Finally the score of each motif, Motif Score(M), is

�ðMÞ þ �ðMÞ.
The value of E (M, e) is computed by summing the expected

frequency E ðM0Þ of M0 in the background sequences for all M0

with at most e mutations from M. When M0 contains no spacer

and is of length shorter than or equal to 8, the expected

frequency value E ðM0Þ is pre-computed from background

sequences obtained from Regulatory Sequence Analysis Tool

(RSAT) database site1 (van Helden, 2003). These background

sequences of the organisms are taken from 1000 bp upstream

regions of all their annotated genes.
When M0 contains spacers and is of length shorter than or

equal to 8, E ðM0Þ equals the sum of E ðM00Þ among all possible

M00 with the spacers n’s replacing by fA,C,G,Tg.

When M0 is of length longer than 8 and with or without

spacers, we are unable to precompute the frequency values

since it is long. Instead, the expected frequency of M0 is

modelled using seventh order Markov chain. Suppose

M0 ¼ p1p2 . . . pk with k greater than 8. E ðM0Þ can be computed

as follows:

E ðM0Þ ¼ Eðp1p2 . . . p8Þ
Yk
i¼9

P ðpijpi�7 . . . pi�1Þ

The conditional probability Pðpijpi�7 . . . pi�1Þ of having

nucleotide pi preceded by nucleotides pi�7 . . . pi�1, is computed

by using the expected frequency of 8-mers:

P ðpijpi�7, . . . , pi�1Þ ¼
E ðpi�7 . . . piÞ

E ðpi�7 . . . pi�1nÞ

3.4 Efficient generation of motif candidates

This section shows how to speed up Step 1, the motif

candidate generation step. The observations that lead to

the speed up are as follow. Recall that ‘ is the length of

a submotif.

1http://rsat.ulb.ac.be/rsat
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LEMMA 2. Let the coverage of Sa½b::bþ L� 1� on
Si½ j::jþ L� 1� be C. Then, the coverage C0 of Sa½bþ 1::bþ L�

on Si½ jþ 1::jþ L� can be computed as follows.

C0 ¼

C þ 1 if � = 0 and � = 1
C if � =� =0 or � =� =1
C � 1 if � =1 and � =0

8<
:

where � ¼ 1 if the prefix Si½ j::jþ ‘� 1� of Si½ j::jþ L� 1� is

a submotif occurrence, that is, hdðSi½ j::jþ ‘� 1�,
Sa½b::bþ ‘� 1�Þ � d, otherwise � ¼ 0. Similarly, � ¼ 1 if the

suffix Si½ jþ L� ‘þ 1::jþ L� of Si½ jþ 1::jþ L� is a submotif

occurrence, that is, hdðSi½ jþ L� ‘þ 1::jþ L�,

Sa½bþ L� ‘þ 1::bþ L�Þ � d, otherwise � ¼ 0.

PROOF. Note that when considering all length-‘ substrings of
Si½ jþ 1::jþ L� and Si½ j::jþ L� 1�, the only substrings that
they are different are Si½ j::jþ ‘� 1� which is in Si½ j::jþ L� 1�,

but not in Si½ jþ 1::jþ L�, and Si½ jþ L� ‘þ 1::jþ L� which is

in Si½ jþ 1::jþ L�, but not in Si½ j::jþ L� 1�.

If � ¼ 1, it means that Si½ j::jþ ‘� 1� is a submotif of

Si½ j::jþ L� 1� with respect to Sa½b::bþ L� 1�. This submotif

will not be in Si½ jþ 1::jþ L�. If � ¼ 1, then

Si½ jþ L� ‘þ 1::jþ L� is a submotif of Si½ jþ 1::jþ L� with
respect to Sa½bþ 1::bþ L� which is not in Si½ j::jþ L� 1�.

So, the result follows. g

Based on Lemma 1, once we have calculated the coverage of

Sa½b::bþ L� 1� on Si½ j::jþ L� 1�, to calculate the coverage

of Sa½bþ 1::bþ L� on Si½ jþ 1::jþ L�, it only takes O(1) time.

To calculate the coverage of all substrings on one sequence

against all potential motif candidates in another sequence,
the time complexity can then be reduced to Oðn2Þ.

Since we are only interested in the substrings that can have a

coverage at least br� Lc, we can further prune the computation
according to the following lemma.

LEMMA 3. Let the coverage of Sa½b::bþ L� 1� on

Si½ j::jþ L� 1� be C. Let y be the length of the longest

suffix of Si½ j::jþ L� 1� that is not covered by a submotif

occurrence. The coverage C0 of Sa½bþ p::bþ pþ L� 1�

on Si½ jþ p::jþ pþ L� 1� is upper bounded by
C þminfy, ‘� 1g þ p for any p>0.

PROOF. We try to upper bound the value of C0 as follows.

Comparing Si½ jþ p::jþ pþ L� 1� with Si½ j::jþ L� 1�, There

are p new characters. Assuming that all these characters are

covered by submotifs, the coverage can be increased at most by p.

For the suffix of Si½ j::jþ L� 1� that is not covered by any
submotif occurrence. If y < ‘� 1, then when considering

Si½ jþ p::jþ pþ L� 1�, these y characters may all be covered

by a submotif, so the coverage can be increased by at most y.

On the other hand, if y � ‘� 1, then at most the last ‘� 1

characters, which can form a submotif with one new character,

can be covered by a submotif occurrence when considering

Si½ jþ p::jþ pþ L� 1�, so the coverage can be increased by at

most ‘� 1. So, the result follows. g

By Lemma 2, after computing the coverage of

Sa½b::bþ L� 1� on Si½ j::jþ L� 1�, based on the upper bound

calculation, we can skip the computation of coverage for some

substrings and jump to the substrings Sa½bþ p::bþ pþ L� 1�

and Si½ jþ p::jþ pþ L� 1� with the smallest p such that

C þminfy, ‘� 1g þ p � br� Lc. From our experiments, we

found that the running time for generating the motif candidates

and their occurrences have been reduced from 2min to <1 s on

the same dataset of 5K bp with 10 sequences on a 3.6GHz Xeon

Linux workstation with 4 processors and 8GB RAM. So, it is

feasible for large datasets.

4 EXPERIMENTAL RESULTS

We perform experiments on four classes of datasets namely,

(1) nine biological datasets that are known to contain spacers,

(2) four synthetic test cases consisting of different variations

of spaced motifs, (3) The datasets from four different species,

proposed by (Tompa et al., 2005) for the assessment of motif

discovery algorithms and (4) 10 real biological datasets

consisting monad motifs. The assessment results are reported

below.

For performance evaluation, we use the same four measures

proposed in (Tompa et al., 2005) namely, sensitivity (nSn),

positive predictive value (nPPV), performance coefficient

(nPC), and correlation coefficient (nCC). Index n is used to

denote that the assessment is done at the nucleotide level

instead of site level (please refer to Appendix B for the

definitions of these measures).2 All experiments have been

performed on a 3.6GHz Xeon Linux workstation with

4 processors and 8GB RAM.
For each dataset, we run SPACE using 12 parameter settings:

motif length L ¼ 8, 15, 20; submotif length ‘ ¼ 5; maximum

number of mismatches allowed in each submotif instance d ¼ 1;

the minimum support q ¼ t or 0.5t, where t is the number of

input sequences; the coverage ratio r is set to be 0.5 or 0.8.

Similar to what Weeder does, we collect the top 10 motifs from

each run. For each motif, we count the number of related

redundant motifs in the collection. Based on the observation

that a real motif should have more related redundant motifs,

we rank the motifs in decreasing order of the total number

of related redundant motifs in the collection. Please refer to

Appendix A for a more detailed description of this step.

4.1 Results on datasets with spaced motifs

We first evaluate the performance of SPACE for spaced motifs,

that is, motifs with at least one spacer.

4.1.1 Real biological datasets In the literature, we found
nine transcription factor binding sites whose motifs have gaps.

They are: GAL4P (Johnston and Carlson, 1992), ARCA-P

(Liu and DeWulf, 2004), MCM1 (Kato et al., 2004) or ECB

(Tavazoie et al., 1999) and six transcriptional regulators of C6

Zinc cluster family (Schjerling and Holmberg, 1996).

2There is no consensus on what measures are the most appropriate to
evaluate all different motif finders. The selected measures focus on the
accuracy of predicting the locations of actual binding sites. Note that
the consensus of the motifs reported may be the same for different
algorithms, but the predicted binding sites may be different, thus
yielding a difference in the performance measures.

E.Wijaya et al.

1480

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/12/1476/223103 by guest on 16 August 2022



Comparison is done with MITRA3 (Eskin and Pevzner,

2002) and BioProspector,4 both of which can handle motifs

with spacers. We let MITRA search for motifs up to 12 bp

(the maximum possible) and we require it to find the motif

on the given strands only. For BioProspector we allow the

algorithm to search for motifs with block size ranging from

4 to 10 and gap size ranging from 0 to 12. In the comparison,

instead of picking the first motif among the top 20 that can

give a better nSn and nPPV than the motif of rank 1. Table 1

summarizes the comparison results. From the table, we see that

the selected motifs of SPACE are usually of higher rank than

the other two and the averaged performance is better across

all measures.

4.1.2 Synthetic datasets We consider four synthetic test
cases for spaced motifs using randomly created sequences with

the base pairs uniformly distributed. For each case, we create

three datasets, each containing 10 sequences of length 300bp.

We run SPACE and report the averaged performance. For

each dataset the motifs are implanted in five of them at random

positions. And the motifs are as follow:

(1) A 7 bp length motif with no spacer and 1 mismatch.

(2) A 15 bp length motif containing two segments of length

5 and 7 with a spacer of length 3, with 1 mismatch for

each segment.

Table 1. Comparison of SPACE, MITRA and BioProspector on spaced motifs in real biological datasets (the first motif among the top 20 that

gives a better nSn and nPPV than motif of Rank 1 is used for comparison)

TF Motif RANK nSn nPPV nCC nPC

GAL4P Actual CGGRnnRCYnYnCnCCG

(Johnston and Carlson, 1992) SPACE CGGAnGACTnnnnTCCG 1 0.80 0.55 0.48 0.65

MITRA AGCGGnnGACTC 1 0.68 0.40 0.34 0.51

BioProspector TCCGGnnnnnnnnnnnCCGT 1 0.63 0.26 0.23 0.39

ARCA-P Actual GTTAAnnnnnnGTTAA

(Liu and DeWulf, 2004) SPACE GTTAnnnnnATGTTA 1 0.80 0.59 0.52 0.68

MITRA GTTAACT 15 0.60 0.32 0.26 0.42

BioProspector GTTATnnnnnnnTAAA 4 0.66 0.25 0.22 0.38

ECB Actual TACCnAATTnGGTAA

(Kato et al., 2004) SPACE TTACnnAATTnGGAA 1 0.70 0.58 0.46 0.61

(Tavazoie et al., 1999) MITRA CCAAnTTGnGAA 2 0.61 0.48 0.36 0.51

BioProspector TCCTAnnnnGGAAA 2 0.72 0.33 0.30 0.47

CAT8 Actual CGGnnnnnnGGA

(van Helden et al., 2000) SPACE CGGAnnnnnGGAAT 1 0.74 0.52 0.44 0.62

MITRA CCGTnGTTCGGA 5 0.57 0.31 0.25 0.40

BioProspector CGGAnnnnCGGG 1 0.64 0.40 0.33 0.50

HAP1 Actual CGGnnnTAnCGGnnnTA

(Schjerling and Holmberg, 1996) SPACE CCGGnVTTTnCGGH 2 0.67 0.67 0.50 0.66

(Svetlov and Cooper, 1995) MITRA CGGATnTnCCGG 1 0.67 0.18 0.17 0.33

BioProspector GCGGnnnnnnCGGA 5 0.85 0.15 0.14 0.34

LEU3 Actual RCCGGnnCCGGY

(Svetlov and Cooper, 1995) SPACE CCGGnnCCGGCT 1 0.85 0.28 0.27 0.48

MITRA CGGnACCGAnGC 2 0.46 0.13 0.11 0.22

BioProspector CCGGnnCCGG 1 0.71 0.19 0.17 0.35

LYS Actual WWWTCCRnYGGAWWW

(Becker et al., 1998) SPACE AATTCCGnnGGAA 4 0.62 0.59 0.43 0.60

MITRA TCCACnGGAA 4 0.75 0.33 0.30 0.48

BioProspector ATTTCnAGCGG 3 0.56 0.27 0.22 0.37

PPR Actual WYCGGnnWWYKCCGAW

(Schjerling and Holmberg, 1996) SPACE TCGGnnnnnGCCGAAG 1 0.88 0.75 0.68 0.81

MITRA CGGGnTTCTnCG 9 0.67 0.36 0.30 0.47

BioProspector TCGGCnnTCTCCGA 1 0.78 0.52 0.45 0.63

PUT3 Actual YCGGnAnGCGnAnnnCCGA

(Schjerling and Holmberg, 1996) SPACE TCGGGAnnnnnnnTCCG 1 0.89 0.76 0.69 0.81

MITRA TCGGnAnCCGAA 2 0.75 0.62 0.52 0.66

BioProspector TCGGAnnnnnnnnnCCGGA 2 0.64 0.64 0.47 0.62

AVERAGE SPACE 0.77 0.59 0.50 0.66

MITRA 0.64 0.35 0.29 0.44

BioProspector 0.69 0.33 0.28 0.45

3http://fluff.cs.columbia.edu:8080/domain/
mitra.html
4http://ai.stanford.edu/~xsliu/BioProspector/
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(3) A 21bp length motif containing two segments of length
5 with spacers of length 3, with 1 mismatch for each

segment.

(4) A 15bp length motif containing two segments of length

4 and 5 bp with a spacer of length 6, with 1 mismatch for

each segment.

Figure 5 shows the averaged performance of SPACE,

MITRA and BioProspector on the synthetic datasets with

Table 3 giving the detailed statistics on one particular dataset

of each test case. It also shows that SPACE performs better
than the other tools over all four measures. The result is

consistent with the one for real biological datasets. More

information about the comparison results can be obtained in

Appendix L of the Supplementary Material.

4.2 Results on datasets with monad motifs

We are also interested in the performance of SPACE for motifs
without spacers. We have performed two sets of experiments,

one on Tompa’s benchmark datasets and the other on 10 real

biological datasets.

4.2.1 Tompa’s benchmark data Tompa’s benchmark dataset
has been constructed based on real transcription factor binding

sites drawn from four different organisms (Tompa et al., 2005).
It consists of 56 datasets in total. The number of sequences

ranges from 1–35 and the sequence lengths are up to 3000 bp.

In this assessment, following Tompa’s approach, the motif

ranked number 1 by the algorithm is used for comparison.

The detailed experimental results can be found in Appendix C

of Supplementary Material.
The performance of SPACE averaged over all datasets is

shown in Figure 6. SPACE performs better than other tools
based on the comparison measures.5 As an example, we

show the binding sites (see Fig. 7) identified (in green) by our

algorithm and Weeder on the dataset hm17g together with

the actual binding sites (in blue). Weeder is reported to
perform the best among other tools in this dataset (Tompa

et al., 2005). Similar to Weeder, SPACE is able to identify

almost all actual binding sites.
We also analysed the performance of SPACE across the four

organisms. Figure 8 shows the average performance of SPACE

for each organism, compared with the best algorithm among

the other tools for the respective organism. The figure shows

that the performance of SPACE is similar to that of the best
performing algorithm for each organism. On the other hand,

the averaged performance of SPACE for all four organisms

is better than other tools (Fig. 6), indicating that SPACE is

more robust and organism independent.

4.2.2 Real biological datasets We also performed experi-

ments on 10 real biological datasets whose binding sites are

known to be monads from literature. Comparison is done with
Weeder (Pavesi et al., 2001) and MEME (Bailey and Elkan,

1995), both of which are well-known monad motif-finding

algorithms. We set MEME to use two-component mixture

mode and find motifs of length ranging from 8 to 20 bp.

And for Weeder we use the large mode. Table 3 summarizes the
comparison results. From the table, for sensitivity, MEME

shows a better performance than Weeder while SPACE is better

than MEME. The reason for SPACE to have a higher

sensitivity is due to the submotif modelling. Since the measure

nSn focuses on predicting the binding sites, if there is a region

in the motif that is not strongly conserved over all binding sites,
the use of submotifs may still be able to identify most of these

binding sites based on the regions that are strongly conserved,

thus predicting more true binding sites. However, it does not

mean that missing these binding sites, the software will predict

a wrong motif pattern.
Unlike the case for spaced motifs, SPACE is not a clear

winner for all the measures except sensitivity. But, the

experiments indicate that for monads, SPACE is as good as

other tools. This shows that SPACE can be used as a standard
tool for finding monads as well as spaced motifs.

The real biological datasets of the spaced and monad motifs
are constructed from �1000 to �1 upstream region of all the

genes co-regulated by respective transcription factor, truncating

the region if it overlaps with an upstream open reading frame

(ORF). They are obtained from RSAT (van Helden et al., 2000)

and ABS (Blanco et al., 2006) database respectively. More

details on the results can be found in Appendices E and F.

5 CONCLUSIONS

In this article, we have proposed a new approach for finding

spaced motifs based on the notion called submotifs. We

developed a novel motif-finding algorithm SPACE that detects

the target motif by first finding submotifs and then strategically

compositing them using an efficient frequent submotif pattern-

mining approach. In finding motif with generic spacers, this
framework provides the following novelties: the spacers could

appear in more than two parts of the motif and their lengths

need not be fixed. In experiments on real biological datasets,

synthetic datasets and Tompa’s motif assessment benchmarks,

we observed that our algorithm performs better than existing
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Fig. 5. Comparison of MITRA, BioProspector (denoted BP) and

SPACE averaged performance on four motif-finding problems. Colour

version of this figure is available as Supplementary material online.

5In our comparison, we did not include the new motif finder,
MotifSeeker (Peng et al., 2006). The experiments in their paper are
based on a different subset of Tompa’s datasets, so a direct comparison
is not appropriate.
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Table 3. Comparison of SPACE, MITRA and Weeder on monads in real biological datasets (the first motif among the top 20 that gives a better nSn

and nPPV than motif of Rank 1 is used for comparison)

TF Motif RANK nSn nPPV nCC nPC

AP2A Actual GCCGGGGKSG

(Lenhard et al., 2003) SPACE CCAGGGAG 1 0.75 0.50 0.43 0.60

(Dermitzakis and Clark, 2002) MEME GCCCCCCC 5 0.38 0.56 0.29 0.45

Weeder CCCCACCC 3 0.38 0.33 0.21 0.34

CAAT Actual AAGCCAATTAGGCCC

(Wasserman and Fickett, 1998) SPACE GAAGCCAATTAG 1 0.51 0.60 0.38 0.54

MEME CGAAGCAA 2 0.08 0.67 0.08 0.20

Weeder GCCAAT 1 0.63 0.78 0.54 0.70

CJUN Actual ATTATTCACHTCATC

(Han et al., 1992) SPACE CATTWCCTCA 1 0.64 0.73 0.52 0.68

MEME CATTACCTCA 2 0.62 0.81 0.55 0.71

Weeder CATTACCTCA 3 0.62 0.81 0.55 0.71

CMYC Actual CACGTG

(Hermeking et al., 2000) SPACE CACGTGCC 1 1.00 0.60 0.60 0.77

MEME GGTCACGTGGGATAGCAACA 1 1.00 0.27 0.27 0.71

Weeder TCACGT 1 0.71 0.71 0.56 0.71

E2F Actual TTTCGCGC

(Yagi et al., 1995) SPACE TTTCGCGCC 1 0.91 0.81 0.80 0.88

MEME TTGTCGCGCC 4 1.00 0.82 0.82 0.90

Weeder TTTCGCGC 2 0.64 0.91 0.60 0.75

ETS1 Actual KAGGAAGT

(Dermitzakis and Clark, 2002) SPACE AGGAAGTA 1 0.76 0.65 0.54 0.70

MEME GGTATTCA 3 0.62 0.56 0.42 0.58

Weeder AAGTAG 1 0.40 0.48 0.28 0.43

GC Actual GGGCGGCC

(Dermitzakis and Clark, 2002) SPACE GCCCCTGCC 1 0.56 0.60 0.41 0.57

MEME AAGGCTGCGTGGAC 1 0.57 0.27 0.22 0.38

Weeder ACCCAC 5 0.62 0.71 0.50 0.66

MTF1 Actual GGGTGCACTCG

(Blanchette and Tompa, 2002) SPACE GCACACTGGC 3 0.71 0.36 0.31 0.50

MEME TGCAAACCCTTTGCGCCC 6 0.65 0.29 0.25 0.42

Weeder CTCGTA 9 0.38 0.43 0.25 0.39

MYB Actual GAACGTTA

(Lenhard et al., 2003) SPACE CGTTACG 1 0.71 0.50 0.42 0.59

MEME ACGTTACGAA 9 1.00 0.55 0.55 0.73

Weeder GTTACG 1 0.57 0.57 0.57 0.40

MYF Actual GGGCCAGTTGTCCC

(Lenhard et al., 2003) SPACE GGGGCCAGG 2 0.54 0.71 0.44 0.61

MEME GGCAAGCAG 5 0.39 1.00 0.39 0.62

Weeder CTGGGTCGAC 1 0.47 0.64 0.37 0.53

AVERAGE SPACE 0.71 0.61 0.49 0.64

MEME 0.63 0.58 0.38 0.46

Weeder 0.54 0.64 0.43 0.58

Table 2. Performance of SPACE, MITRA and BioProspector (denoted BP) on four types of synthetic data (one dataset each)

Problem Motif RANK nSn nPPV nPC nCC

1. Actual TGGGTAC

SPACE GGGTACC 3 0.83 0.72 0.75 0.82

MITRA GGTACCCn 5 0.57 0.64 0.33 0.57

BP GGGTACC 1 0.62 0.32 0.27 0.44

2. Actual CCTGTnnnAGTTGTC

SPACE CCTGTnnTAGTTG 1 0.81 0.76 0.65 0.78

MITRA CnTGTACTnGTT 2 0.67 0.68 0.29 0.44

BP CCTGTnnnACTTGTT 2 0.67 0.31 0.27 0.44

3. Actual ATCGTnnnTGACCnnnCTTTC

SPACE TCGTnnnTGACnnnnnTTTC 1 0.76 0.66 0.55 0.69

MITRA ATCCTnGnTGAC 1 0.49 0.38 0.27 0.39

BP ATCGTnnnnnnnnnnnCTTTC 1 0.71 0.38 0.33 0.50

4. Actual CGGCnnnnnnTCTAA

SPACE TTCGGYnnnnTGTC 1 0.71 0.39 0.33 0.50

MITRA CGGCnAAGnGTC 3 0.50 0.24 0.13 0.20

BP CGTAnnnnnnTCTAA 1 0.33 0.18 0.13 0.22
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tools for spaced motifs with improvements in both sensitivity

and specificity and for monads, SPACE performs as good as

other tools.
However, based on the submotif notion we define, we

implicitly assume that the mismatches are uniformly distributed

in the motif instances. If that is not the case, SPACE may

fail to capture these instances, and thus may miss the motif

or the regions of the motif that contain these mismatches.

On the other hand, in real biological datasets, it seems

that mismatches are usually not clustered for most of

the motif instances. Hence, SPACE can perform well in most

cases.

For future work, we are enhancing our algorithm to handle

motifs for which the same gap may have different lengths across

different instances by exploring the idea of allowing tolerances

in the gap lengths across different instances during the mining

process. Other directions include applying our approach for

motif finding on drosophila s data where the sites maybe

overlapping and with fluctuating positions (Makeev, 2003),

discovery of motif modules (co-operating binding factors)

(GuhaThakurta and Stormo, 2001).
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