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ABSTRACT  
The objectives of this study were to develop a robust protocol to measure the rate of hydrogen peroxide (H2O2) 

production in isolated perfused rat lungs, as an index of oxidative stress, and to determine the cellular sources 

of the measured H2O2 using the extracellular probe Amplex red (AR). AR was added to the recirculating 

perfusate in an isolated perfused rat lung. AR’s highly fluorescent oxidation product resorufin was measured in 

the perfusate. Experiments were carried out without and with rotenone (complex I inhibitor), 

thenoyltrifluoroacetone (complex II inhibitor), antimycin A (complex III inhibitor), potassium cyanide (complex IV 

inhibitor), or diohenylene iodonium (inhibitor of flavin-containing enzymes, e.g. NAD(P)H oxidase or NOX) added 

to the perfusate. We also evaluated the effect of acute changes in oxygen (O2) concentration of ventilation gas 

on lung rate of H2O2 release into the perfusate. Baseline lung rate of H2O2 release was 8.45 ± 0.31 (SEM) 

nmol/min/g dry wt. Inhibiting mitochondrial complex II reduced this rate by 76%, and inhibiting flavin-containing 

enzymes reduced it by another 23%. Inhibiting complex I had a small (13%) effect on the rate, whereas inhibiting 

complex III had no effect. Inhibiting complex IV increased this rate by 310%. Increasing %O2 in the ventilation gas 

mixture from 15 to 95% had a small (27%) effect on this rate, and this O2-dependent increase was mostly 

nonmitochondrial. Results suggest complex II as a potentially important source and/or regulator of 

mitochondrial H2O2, and that most of acute hyperoxia-enhanced lung rate of H2O2 release is from 

nonmitochondrial rather than mitochondrial sources. 

Introduction 
There is ample evidence that oxidative stress plays a key role in the pathogenesis of acute and chronic lung 

diseases, with the pulmonary endothelium as a primary target [1–4]. Thus, the ability to assess oxidative stress 

and to determine the major cellular sources of oxygen radicals in intact functioning lungs is important to identify 

potential therapeutic targets for such conditions, and to assess the efficacy of novel therapies against oxidative 

stress [3]. 

Cellular sources of reactive oxygen species (ROS) can be classified as mitochondrial or nonmitochondrial [5]. 

More than 10 mitochondrial ROS generating sites have been identified, mostly in the electron transport chain 

(ETC) [6], which is widely accepted as a major source of ROS [1,4,6–11]. Complex I and complex III are reported 

to be the main sources of mitochondrial ROS under physiological and pathological conditions [5,9,10,12]. 

However, other studies have suggested complex II as another major source of ROS [13–16]. Nonmitochondrial 

ROS sources include NAD(P)H oxidase (NOX), xanthine oxidase, uncoupled endothelial nitric oxide synthase 

(eNOS), nitric oxide (NO) synthase, arachidonic acid metabolizing enzymes, peroxisomal fatty acid oxidation, and 

cytochrome P450s [5]. 

Previous studies have mostly used intracellular fluorescent probes, including 20, 70-dichlorodihydrofluorescein 

diacetate (DCF) for general ROS measurement [15,17,18] or hydroethidine (HE) for measuring superoxide 

production [19,20]. Following its reaction with ROS, DCF is oxidized to DCFH, which accumulates within cells 

since it is not cell-permeable, potentially interfering with cellular functions [17]. Similarly, HE binds to DNA after 

reacting with superoxide which could also interfere with cellular functions [17]. 

Unlike superoxide, hydrogen peroxide (H2O2) has a much longer half-life, is relatively stable, and can readily 

diffuse across the cellular membranes, and hence is a more robust index of oxidative stress over time [21,22]. 

Amplex red (AR) is a colourless and nonfluorescent extracellular probe, which is oxidized to coloured and highly 

fluorescent resorufin in the presence of H2O2 and horseradish peroxidase [22–24]. The objectives of this study 

were to develop a robust protocol to use AR to measure the rate of H2O2 production in isolated perfused rat 

lungs as an index of oxidative stress, to determine the cellular sources of the measured H2O2, and to assess the 

effect of high oxygen (O2) tension in the lung ventilation gas mixture on the measured rate. The results suggest 

complex II as a potentially important source and/or regulator of mitochondrial H2O2 and a target for mitigating 



oxidative stress, and that most of acute hyperoxia-enhanced lung rate of H2O2 release is from flavin-containing 

enzymes such as NAD(P)H oxidase rather than mitochondrial sources. To the best of our knowledge, this study is 

the first to evaluate the rate of H2O2 production in the isolated perfused rat lung and to determine the 

contributions of mitochondrial and nonmitochondrial sources of H2O2 to the measured rate. 

Materials and methods 

Materials 
AR, horseradish peroxidase (HRP), and all other reagents used in experiments were purchased from Sigma 

Aldrich (St. Louis, MO, United States of America). 

Isolated perfused rat lung preparation 
Animal protocols described below were approved by the Institutional Animal Care and Use Committees of the 

Veterans Affairs Medical Center and Marquette University (Milwaukee, WI, United States of America). Adult 

male Sprague–Dawley rats (347 ± 4 g (SEM), n = 41) were used for this study. Each rat was anesthetized with 

sodium pentobarbital (40–50 mg/kg i.p.). The trachea was surgically isolated and cannulated, the chest opened 

and heparin (0.7 IU/g body wt.) injected into the right ventricle, as previously described [25]. The pulmonary 

artery and the pulmonary venous outflow were accessed via cannula, then the heart/lungs removed and 

connected to a ventilation-perfusion system. The Krebs–Ringer bicarbonate perfusate contained (in mM) 4.7 KCl, 

2.51 CaCl2, 1.19 MgSO4, 2.5 KH2PO4, 118 NaCl, 25 NaHCO3, 5.5 glucose, and 3% bovine serum albumin [24–26]. 

The perfusion system was primed with the perfusate maintained at 37 C and equilibrated with 15% O2, 6% CO2, 

balance N2 gas mixture resulting in perfusate PO2, PCO2 and pH of 105, 40 Torrs, and 7.4, respectively. The lung 

was ventilated (40 breaths/min) with the above gas mixture with endinspiratory and end-expiratory pressures of 

6 and 3 mmHg, respectively. The pulmonary artery and airway pressures were referenced to atmospheric 

pressure at the level of the left atrium and monitored continuously during the course of the experiments. 

Perfusate was pumped (10 ml/min) through the lung until it was evenly blanched and venous effluent was clear 

of visible blood before switching from single pass to recirculation mode. 

Experimental protocols 
Lung baseline rate of H2O2 release and the effects of mitochondrial and flavin-containing enzymes 

inhibitors on this rate 
The following experimental protocols were carried out in a dark room to minimize the photo-oxidation of AR. 

For all the experimental protocols, the total volume of the system was 25 ml, 5 of which were the perfusion 

system tubing and the lung vasculature (~0.8 ml) [27,28]. To start the experiment, the perfusate in the reservoir 

was emptied and replaced with 19 ml of perfusate with HRP (5 U/ml), AR (25 μM), and ascorbate oxidase (1 

U/ml). Ascorbate oxidase was added to minimize the impact of ascorbate released by the lungs on the measured 

resorufin signal [29,30]. The flow (10 ml/min) was restarted (time 0 min) and 2ml reservoir samples were 

collected at times 1, 6, and 11 min. The sample collected at 1 min provided the background signal, whereas the 

samples at 6 and 11 min provided the baseline rate of lung H2O2 production as described in the data analysis 

section below. Immediately after each sample was collected from the reservoir, it was centrifuged for 1 min 

(13,000 g, 4 ⁰C) to remove any cellular components and debris. The sample supernatant was then transferred 

into a plastic cuvette and its 610nm emission signal (545nm excitation) was measured using a RatioMaster 

fluorescence imaging system (Photon Technology International, HORIBA Scientific, NJ). The emission filter used 

is centred at 610nm (ET610/30M, Chroma, VT) with a bandwidth of 30 nm. After the signal was acquired, the 

sample was added back to the reservoir. 



To determine the contribution of a given cellular source to the measured baseline rate, an inhibitor (see Table 1 

for concentrations used and references for those concentrations) was added to the recirculating perfusate after 

the reservoir sample at 11 min was collected. This was followed by collecting reservoir samples at times 16, 21, 

and 26 min. Each sample was centrifuged in the same manner as described above and its emission signal was 

then measured, after which it was added back to the reservoir. Thus, for each lung the rate of H2O2 release was 

determined before and after the addition of one of the inhibitors in Table 1. 

Table 1. Concentrations, solvents, volumes, and targets of inhibitors in the 25-ml recirculating perfusate of the 

ventilation-perfusion system. 

Inhibitor Target Perfusate 
concentration 

Vehicle Stock volume 
added 

Reference 

ROT Complex I 40 μM DMSO 10 μl [38,47] 

TTFA Complex II 20 μM DMSO 12.5 μl [38] 

AA Complex III 4 μM 95% Ethanol 5 μl [48] 

KCN Complex IV 2 mM 0.2 mM 
KH2PO4 

50 μl [38,47,49] 

DPI Flavin-containing enzymes 
such as NAD(P)H oxidase 
(NOX) 

5 μM DMSO 7.9 μl [50] 

DMSO: Dimethyl sulfoxide; KH2PO4: 0.2-mM phosphate buffer; ROT: rotenone; TTFA: thenoyltrifluoroacetone; 

AA: antimycin A; KCN: potassium cyanide; DPI: diphenyleneiodonium chloride. 

To determine the impact of the inhibitor vehicles (dimethyl sulfoxide (DMSO), KH2PO4, or 95% ethanol, see Table 

1) alone on the lung rate of H2O2 release, the above protocol was repeated in a group of lungs with the vehicle 

only (instead of inhibitorþvehicle) added at time 11 min to the recirculating perfusate. For DMSO, the volume 

added to the 25 ml recirculation perfusate was 12.5 ml. 

At the end of the above protocol, the lungs were removed from the system and their wet weight was measured. 

The lungs were then dried to normalize the measured rate of H2O2 release to dry lung weight as described in the 

data analysis section. 

Lung-independent rate of AR conversion to resorufin (AR photo-oxidation rate) 
AR can photo-oxidize to resorufin in the presence of HRP [31]. To estimate this photo-oxidation rate, AR and 

HRP were added to the reservoir of the ventilationperfusion system without the lungs connected to the system 

and with the flow rate set at 10 ml/min. The measured rate of resorufin formation without lungs in the circuit 

was attributed to AR photo-oxidation and was subtracted from the overall rate measured with the lungs 

connected to the ventilation-perfusion system as described in the data analysis section. 

Effect of oxygen level in the ventilation gas on the lung rate of H2O2 release 
To evaluate the effect of acute increases in FiO2 on lung rate of H2O2 release, we measured the rate of H2O2 

release following lung ventilation with either a normoxic gas mixture (15% O2, 6% CO2, balance N2) or hyperoxic 

gas mixture (95% O2þ5% CO2). For each experiment, the lungs were initially ventilated with the normoxic gas 

mixture for the baseline H2O2 release rate. After collection of reservoir sample at 11 min of recirculation, the 

ventilation gas was switched to the hyperoxic gas mixture and the rate was measured again under hyperoxic 

conditions. 



Subcellular sources of hyperoxia-enhanced 

H2O2 production 
To begin to determine the sources of the hyperoxiainduced increase in the lung rate of H2O2 release, in another 

group of lungs we measured the lungs baseline rate of H2O2 release and the rates in the presence of 

thenoyltrifluoroacetone (TTFA) with the lungs ventilated first with the normoxic gas mixture and then with the 

hyperoxic gas mixture. 

Standard curves 
For each experimental day, a standard curve was obtained as described below and used to convert resorufin 

signal to H2O2 concentration in the recirculation perfusate. Four tubes, each containing 4ml of perfusate that 

included HRP and AR at the same concentrations as those used in the lung experimental protocol described 

above were prepared. A predetermined volume of 0.2mM H2O2 was added to each of the four tubes for final 

H2O2 concentrations of 0, 1, 2, and 3 μM in tubes 1, 2, 3 and 4, respectively. For each tube, a 2 ml sample was 

then treated the same way as the samples collected from the reservoir with the lungs collected to the 

ventilation-perfusion system. Thus, each sample was centrifuged for 1 min (13,000 g, 4⁰C), after which its 610nm 

emission signal was measured. For a given inhibitor, the standard curve was repeated with the inhibitor added 

to the samples prior to the addition of H2O2 to determine if the inhibitor and/or its vehicle interfered with the 

resorufin signal. A standard curve experiment with catalase (150 U/ml) added to each sample prior to the 

addition of HRP, which catalyses the reduction of H2O2, was also carried out to demonstrate the specificity of the 

resorufin signal to H2O2. 

Data analysis 

Standard curve 
For each standard H2O2 concentration, the resorufin fluorescent intensity was determined from the average of 

the intensity measurements acquired over a period of 5 sec. Sample values with no H2O2 added to the sample 

were considered background, and this intensity was subtracted from the intensities measured with different 

H2O2 concentrations added to the standard samples. The resulting intensities were then plotted against the 

known H2O2 concentrations added to each standard sample. Linear regression analysis was then used to 

estimate the slope of the standard curve which was used to convert resorufin intensity in a given reservoir 

sample (without or with lungs connected to the ventilation-perfusion system) to H2O2 concentration in the 

recirculating perfusate. 

Analysis of reservoir samples without or with lungs connected to the ventilation-

perfusion system 
For each reservoir sample at a given sampling time, the measured intensity was determined as the average of 

the intensities acquired over a period of 5 sec. Sample values collected at time 1 min were considered 

background intensity and subtracted from the intensities of all subsequent samples. This time point is long 

enough for the perfusate in the reservoir and he rest of the ventilation-perfusion system to mix. The slope of the 

standard curve for each day of experiments was used to convert the measured intensity to H2O2 concentration 

in the recirculating perfusate at the time the reservoir sample was collected. The "equivalent" amount of 

H2O2 (in nmol) in the 25 ml recirculating perfusate was then obtained as the product of the H2O2 concentration 

and volume of recirculating perfusate (25 ml). The result of this analysis represents the amount of H2O2 in the 

system as a function of recirculation time with or without the lung attached to the ventilation-perfusion system. 

Using linear regression, the "equivalent" rates of H2O2 released without and with the lung attached to the 

perfusion system were then obtained. The difference was then used as the lung rate of H2O2 release (nmol/min). 

https://0-web-a-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=2&sid=5e0dabfa-0dab-4994-908c-0818b07939a1%40sdc-v-sessmgr03&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
https://0-web-a-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=2&sid=5e0dabfa-0dab-4994-908c-0818b07939a1%40sdc-v-sessmgr03&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
https://0-web-a-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=2&sid=5e0dabfa-0dab-4994-908c-0818b07939a1%40sdc-v-sessmgr03&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc
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To account for differences in lung weights, the measured rate of lung H2O2 release was normalized to lung dry 

weight and expressed as nmol/min/g dry lung wt. 

The rate of "equivalent" H2O2 generation without the lungs attached to the perfusion system due to photo-

oxidation was determined using a separate group of experiments (n = 3). The average rate of H2O2 generation 

(nmol/min) from three experiments without lungs in the circuit was subtracted from the rate of H2O2 generation 

with the lungs connected to the ventilation-perfusion system. 

Statistical analysis 
Statistical evaluation of data was carried out using SigmaPlot version 12.0 (Systat Software Inc, San Jose, CA). A 

paired t-test was used to compare lung rates of H2O2 measured before and after the addition of an inhibitor to 

the recirculating perfusate, or following lung ventilation with the normoxic or hyperoxic gas mixture. Values 

from different groups were compared using unpaired t-test or one-way ANOVA followed by followed by Tukey's 

range test to evaluate differences between means of groups. The level of statistical significance was set 

at p <.05. Values are mean ± SEM as indicated in the text unless otherwise indicated. 

Results 

Body weights, lung wet weights, lung wet/dry weight ratios, and pulmonary artery 

pressures 
Table 2 shows that the rat body weights of the experimental groups were not different (ANOVA, p = .311). None 

of the experimental protocols had a significant effect (ANOVA) on lung wet weights (p = .452), wet/dry weight 

ratios (p = .654), or pulmonary artery pressures (p = .385). 

BW, lung wet weights, wet/dry weight ratios, and pulmonary artery pressures. 

 

Table 2. BW, lung wet weights, wet/dry weight ratios, and pulmonary artery pressures. 

Treatment BW (g) Lung wet weight (g) Wet/dry weight ratio Artery Pressure (mmHg) 

Ethanol (n = 3) 346 ± 9 1.23 ± 0.05 5.50 ± 0.16 6.3 ± 0.3 

DMSO (n = 4) 339 ± 16 1.39 ± 0.06 5.65 ± 0.09 6.2 ± 0.2 

KH2PO4 (n = 4) 350 ± 16 1.33 ± 0.05 5.60 ± 0.08 6.3 ± 0.3 

ROT (n = 4) 379 ± 8 1.39 ± 0.03 5.49 ± 0.33 6.3 ± 0.4 

95% O2 (n = 4) 350 ± 9 1.26 ± 0.05 5.51 ± 0.14 6.6 ± 0.2 

95% O2+TTFA (n = 4) 326 ± 6 1.31 ± 0.07 6.17 ± 0.37 6.4 ± 0.3 

TTFA (n = 6) 334 ± 11 1.28 ± 0.06 5.69 ± 0.31 6.3 ± 0.3 

AA (n = 4) 341 ± 19 1.31 ± 0.06 5.92 ± 0.24 6.8 ± 0.3 

KCN (n = 4) 350 ± 12 1.24 ± 0.03 5.51 ± 0.17 6.0 ± 0.2 

DPI (n = 4) 363 ± 11 1.24 ± 0.04 5.59 ± 0.07 6.9 ± 0.3 

Values are mean ± SEM, n is the number of lungs for a given treatment. 
DMSO: dimethyl sulfoxide; KH2PO4: 0.2-mM phosphate buffer; ROT: rotenone; TTFA: thenoyltrifluoroacetone; 
AA: antimycin 
A; KCN: potassium cyanide; DPI: diphenyleneiodonium chloride; BW: body weights. 

Resorufin standard curve and the effects of inhibitors 
Figure 1(A) shows a representative standard curve without and with catalase added to the standard samples to 

inhibit the oxidation of AR to resorufin. TTFA (Figure 1(B)), rotenone (data not shown), antimycin A (AA) (data 

not shown), and diphenyleneiodonium chloride (DPI) (data not shown) had no effect on the resorufin emission 

signal in the standard curve. Only potassium cyanide (KCN) had an effect on the resorufin emission signal (Figure 
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1(C)), appearing to quench the resorufin signal; the slope of the standard curve scaled down by ∼60% as 

compared to that without KCN. This quenching effect was accounted for in the analysis of the resorufin signal 

measured in perfusate recirculating through the lungs in the presence of KCN. 

 
Figure 1. Panel A. Standard curves of AR oxidation to resorufin with (○) or without (•) catalase added to the 
standard curve samples. Panel B. Standard curves with (○) or without (•) thenoyltrifluoroacetone (TTFA) added 
to the standard curve samples. Panel C. Standard curves with (○) or without (•) potassium cyanide (KCN) added 
to the standard curve samples. 
 

AR photo-oxidation rate 
To determine the photo-oxidation rate of AR to resorufin in perfusate recirculating through the lungs, the slope 

of the standard curve exemplified in Figure 1(A) was used to convert the resorufin emission signal in reservoir 

samples collected without the lungs attached to the ventilation-perfusion system to "equivalent" nmol of 

H2O2 in the recirculating perfusate (Figure 2(A)). AR photo-oxidation rate to "equivalent" H2O2 formation was 

then estimated as the linear regression slope. This "equivalent" rate of H2O2 formation due to AR photo-

oxidation to resorufin was 0.43 ± 0.02 (SEM, n = 3) nmol/min. 

  

Figure 2. Panel A. Representative "equivalent" amount of H2O2 formed in the recirculating perfusate due to AR 

photo-oxidation to resorufin as a function of recirculation time following the addition of AR + HRP to the 

recirculating perfusate. Values are mean ± SEM (n = 3). Panel B. Representative "equivalent" amount of H2O2 in 

the recirculating perfusate as a function of recirculation time with the lungs connected to the ventilation-

perfusion system before (•) and after (○) the mean rate of "equivalent" H2O2 formation due to AR photo-

oxidation (Panel A) was subtracted. Panel C. Representative amount of H2O2 released from the lungs per gram of 

dry lung wt. as function of recirculation time. 

To determine the lung rate of H2O2 release, the slope of the standard curve exemplified in Figure 1(A) was used 

to convert the resorufin emission signals in reservoir samples collected with the lungs attached to the 

ventilation-perfusion system to "equivalent" nmol of H2O2 in the recirculation perfusate as exemplified in Figure 

https://0-web-a-ebscohost-com.libus.csd.mu.edu/ehost/detail/detail?vid=2&sid=5e0dabfa-0dab-4994-908c-0818b07939a1%40sdc-v-sessmgr03&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#toc


2(B) (solid symbols). The slope of the resulting curve is interpreted as the sum of the rates of lung H2O2 release 

and AR photo-oxidation rate to resorufin. On average, AR photo-oxidation rate to resorufin (0.43 nmol/min) was 

∼18% of the total rate of resorufin formation with the lung connected to the ventilation perfusion system. The 

lung rate of H2O2 release (slope of the data exemplified in Figure 2(C)) is reported in units of nmol/min/g dry 

lung wt. 

Lung rate of H2O2 release and the effects of mitochondrial and flavin-containing enzymes 

inhibitors on this rate 
The lung rate of H2O2 release under normoxic ventilation conditions (15% O2, 6% CO2, balance N2) was 

8.45 ± 0.31 (SEM, n = 41) nmol/min/g dry lung wt. Figure 3 shows that lung treatment with the mitochondrial 

complex II inhibitor (TTFA) decreased the lung rate of H2O2 release by ∼76% (paired t-test, p = .002), whereas 

lung treatment with the DPI (inhibitor of flavin-containing enzymes such as NOX) decreased the rate by ∼23% 

(paired t-test, p = .004). Moreover, Figure 3 shows that lung treatment with the complex I inhibitor rotenone 

(ROT) had a small (∼13%), but significant effect on the lung rate of H2O2 release (paired t-test, p = .043), whereas 

lung treatment with the complex III inhibitor AA had no significant effect on this rate (paired t-test, p = .315). On 

the other hand, lung treatment with complex IV inhibitor KCN increased the lung rate of H2O2 release by ∼310% 

(paired t-test, p = .004). These results suggest that in normoxic lungs most of the rate of H2O2 release, and hence 

ROS formation, is from the mitochondrial electron transport chain. Baseline lung rates of H2O2 release for the 

different experimental conditions (Figure 3) are not significantly different (ANOVA, p = .387). 

 

Figure 3. Panel A. Lung rates of H2O2 release before (control) and after the addition of rotenone (ROT, n = 4), 

thenoyltrifluoroacetone (TTFA, n = 6), AA (n = 4), or diphenyleneiodonium chloride (DPI, n = 4) to the 

recirculating perfusate. Panel B. Lung rates of H2O2 release before (control) and after the addition of potassium 

cyanide (KCN, n = 4) to the recirculating perfusate. Values are mean ± SEM. *significantly different from the 

corresponding rate without any inhibitor, paired t-test (p < 0.05). 

Effects of vehicles of mitochondrial inhibitors and DPI on the measured lung rates of 

H2O2 release 
Figure 4 shows that none of the vehicles had a significant effect (paired t-test, p = .431.108, and.288 for DMSO, 

phosphate buffer, and ethanol, respectively) on the measured lung rate on H2O2 release. 



 

Figure 4. Lung rates of H2O2 release before (control) and after the addition of 50 µl 0.2-μM phosphate buffer 

(KH2PO4, n = 4), 5 µl 95% ethanol (n = 3), or 12.5 µl of dimethyl sulfoxide (DMSO, n = 4) to the 25-ml 

recirculating perfusate. Values are mean ± SEM. 

Effect of % O2 in ventilation gas mixture on the lung rate of H2O2 release 
To evaluate the effect of acute changes in O2 concentration in the ventilation gas mixture on lung rate of 

H2O2 release, we evaluated this rate following lung ventilation with either the normoxic gas mixture (15% O2, 6% 

CO2, balance N2) or hyperoxic gas mixture (95% O2 + 5% CO2). Figure 5(A) shows that H2O2 release during 

ventilation with hyperoxic gas mixture (13.31 ± 0.58 nmol/min/g dry lung wt., n = 4) for 10 min was ∼27% higher 

(paired t-test, p = .026) than that measured during ventilation with normoxic gas mixture. 

 

Figure 5. Panel A. Lung rates of H2O2 release during lung ventilation with normoxic (15% O2) or hyperoxic (95% 

O2) gas mixture (n = 4). Panel B. Baseline lung rates of H2O2 release (control) along with rates in the presence of 

thenoyltrifluoroacetone (TTFA) during lung ventilation with normoxic (15% O2) or hyperoxic (95% O2) gas 

mixture (n = 4). Values are mean ± SEM. *significantly different from control (15% O2), #significantly different 

from TTFA (15% O2), paired t-test (p < 0.05). 

To begin to determine how much of this increase in the rate of lung H2O2 release at 95% O2 is from 

mitochondrial sources and how much from flavin-containing enzymes, we measured the rate of H2O2 release in 

the presence of TTFA in lungs ventilated first with the normoxic gas mixture and then with the hyperoxic gas 

mixture. Figure 5(B) show that the rate of lung H2O2 release during ventilation with the hyperoxic gas mixture 

(4.96 ± 0.05 nmol/min/g dry lung wt., n = 4) was 154% larger than that during ventilation with the normoxic gas 

mixture (1.95 ± 0.11-nmol/min/g dry lung wt.). This increase is large enough to account for the hyperoxia-
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induced increase in baseline lung rate of H2O2 release (Figure 5(A)), suggesting that most of the oxygen-

dependent increase in lung H2O2 release is nonmitochondrial. 

Discussion and conclusions 
Our study describes a fluorometric approach for measuring the rate of H2O2 release from isolated perfused rat 

lungs, as an index of pulmonary oxidative stress, using the extracellular probe AR. For lungs from control rats 

ventilated with the normoxic gas mixture, the results show that inhibiting mitochondrial complex II reduced this 

rate by ∼76%, and inhibiting flavin-containing enzymes reduced it by another ∼23%. The results also show that 

inhibiting complex I had a small (∼13%) effect on the rate, whereas inhibiting complex III had no effect on this 

rate. On the other hand, inhibiting complex IV increased the lung rate of H2O2 release by ∼310%. Furthermore, 

increasing the oxygen concentration in the ventilation gas mixture from 15 to 95% had a relatively small (∼27%), 

but significant effect on the lung rate of H2O2 release, and this acute oxygen-dependent increase was mostly 

nonmitochondrial. These results suggest that mitochondria are the main source of H2O2 released from lungs into 

the recirculating perfusate, that complex II is a potentially important source of H2O2 and a potential target for 

mitigating pulmonary oxidative stress, and that the hyperoxia-enhanced lung rate of H2O2 release acutely is 

most likely from flavin-containing enzymes such as NOX rather than mitochondrial sources. 

AR has many advantages, including its minimal interaction with cellular functions, its sensitivity and specificity to 

H2O2, and its reduced background fluorescence in comparison to other fluorescent ROS probes [12,17,22,31,32]. 

Because AR is a measure of the H2O2 that has overwhelmed intracellular antioxidant defenses and leaked to the 

extracellular space, the rate of resorufin formation and hence the rate of H2O2 released into the extracellular 

space could be considered an index of oxidative stress experienced by the lung cells under a given condition. AR 

has been used previously to measure the rate of H2O2 production mostly in in vitro assays including isolated 

mitochondria, cultured cells, and tissue homogenates [12,31]. Few studies have used AR to measure the rate of 

H2O2 production in intact organs, including isolated perfused mouse lungs [19,24,26]. In those studies, the 

cellular sources of the measured H2O2 were not identified. In our investigations, changes in the measured lung 

rates of H2O2 release after inhibitors are reflective of changes in the rate of cellular ROS production. To the best 

of our knowledge, this is the first study measuring the rate of H2O2 release from isolated perfused rat lungs, 

identifying the main sources of this rate under physiological conditions, and evaluating the effect of acute 

hyperoxia on this rate. 

Previously we reported the lung rate of O2 consumption to be ∼2.4-µmol/min/g dry lung wt. [38]. The baseline 

lung rate of H2O2 release measured in the present study under normoxic ventilation conditions is 

8.45 ± 0.31 nmol/min/g dry lung wt. Since superoxide to O2 stoichiometry is 1:1 and superoxide to 

H2O2 stoichiometry is 2:1, then the equivalent O2 consumption rate of the measured lung rate of H2O2 release is 

∼17-nmol/min/g dry lung. This rate is ∼0.7% of the rat lung rate of O2 consumption, and hence within the 1-2% 

of the total O2 consumption rate converted to ROS production, as suggested by A. Starkov [ 6]. In addition, it is 

consistent with results from a study by Makrecka-Kuka et al. in which they measured an H2O2 flux in 

permeabilised cells that was <1% of the O2 flux [35]. 

Complex II is unique in that it couples the Krebs cycle and the ETC [14], although it does not contribute directly 

to the generation of the proton motive force. As such, the main function of complex II is to help keep the 

quinone pool reduced. An important and somewhat unexpected result is the large effect of inhibiting complex II 

on the lung rate of H2O2 release, and the relatively small effect of inhibiting complex I or complex III on this rate. 

The effect of TTFA, which inhibits complex II at the quinone reduction site [39], on the lung rate of H2O2 release 

could be due to complex II being an important source of ROS and/or via its effect on ROS production at 

complexes I and/or III [39]. Quinlan, et al. suggested that complex II may be a major source of ROS in vivo [14]. 

They showed that complex II can be a major source of ROS under conditions of low succinate concentration 
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(maximum rate at succinate concentration of ∼400 µM, close to the physiological range) and inhibition of 

ubiquinone reoxidation via complex I and III (i.e. in the presence of complex I and III inhibitors rotenone and 

myxothiazol, respectively). Both ubisemiquinone and FAD semiquinone radicals can be electron sources for the 

generation of ROS at complex II, although evidence points to fully reduced FAD as the major source under such 

conditions [39]. These results suggest that the direct or indirect contribution of complex II to mitochondrial ROS 

production depends on substrate availability, mitochondrial membrane potential, and the activities of other ETC 

complexes [ 6,39]. 

Results from previous studies regarding the effect of inhibiting complex I on mitochondrial ROS production have 

not been consistent, with some showing an increase, while others showing a decrease or no change in rate of 

ROS production [10,17]. Brueckl, et al. measured capillary endothelial cells ROS production in isolated perfused 

rat lungs using the intracellular fluorescent probe DCF with the lungs ventilated with either a normoxic (21% O2) 

or hyperoxic gas mixture (up to 70% O2) [17]. The results show that DCF signal increased almost linearly with the 

O2 concentration in the ventilation gas, which varied between 21 and 70%. In addition, they showed that lung 

treatment with rotenone reduced baseline DCF signal (and hence baseline ROS production) by ∼60% and 

completely inhibited the hyperoxia-induced increase in DCF signal. These results are not consistent with the 

results from the present study. This could be in part due to differences in the two probes used (DCF vs. AR). Due 

to the extracellular nature of AR, it cannot be used for measuring the actual lung rate of H2O2 production from a 

specific source since the measured rate is the net of cellular H2O2 production at multiple sources and 

H2O2 scavenging rates. Another potential reason for differences could be that in the present study the measured 

rate of H2O2 is from the whole lung (all 40 different types of cells) instead of from just capillary endothelial cells 

in the study by Brueckl, et al. [17]. 

Brueckl, et al. also showed that DPI, an inhibitor of flavin-containing enzymes such as NOX, did not affect 

baseline DCF signal, but had a significant effect on hyperoxia-induced increase in DCF, especially towards the 

later phase of the 90 min exposure period [17]. They suggested that the early phase of hyperoxia-induced 

increase in DCF signal was due to an increase in mitochondrial ROS, but the later phase of the hyperoxia-

enhanced DCF signal was due to activation of NOX by endothelial calcium signalling and Rac1 activation. DPI's 

lack of effect on baseline DCF signal is also not consistent with the effect of DPI on the lung rate of H2O2 release 

in the present study, although the contribution of NOX to hyperoxia-enhanced DCF signal is congruent with the 

results from the present study. 

Ghanian, et al. measured the rate of superoxide production in the cultured fetal lamb pulmonary artery 

endothelial cells using the fluorescence probe MitoSOX Red, a derivative of hydroethidine [10]. They showed 

that inhibition of complex I with rotenone increased superoxide production as measured by MitoSOX Red signal 

by ∼60%. Additional results show that treatment of cells with AA or potassium cyanide (KCN) also increased 

superoxide production by ∼130 and 60%, respectively. The results with rotenone and AA are inconsistent with 

the results of the present study or the study by Brueckl, et al. [17] with respect to the effect of rotenone on ROS 

production. Differences between cultured cells and organs and/or probes used could account for this apparent 

inconsistency. The increase in superoxide production in the presence of KCN reported by Ghanian, et al. is 

consistent with the results in the present study, although the increase is smaller than the measured KCN-

induced increase in the lung rate of H2O2 release in the present study [10]. Ghanian, et al. concluded that 

complexes I, III and IV are major sources of superoxide in cultured pulmonary endothelial cells [10]. The effect of 

KCN on the lung rate of H2O2 release in the present study could be indicative of complex IV being a source of 

ROS, especially since in the present study inhibiting complex III with AA had no significant effect on the lung rate 

of H2O2 release. 

Previous studies have reported an increase in ROS production with the addition of AA in reduced systems (e.g. 

cells and submitochondrial particles) [12,40]. Those results are not consistent with the results from the present 
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study. Again, this could be to differences between reduced systems and intact functioning lung and/or 

differences between the probes and/or substrates. 

Using AR, Lee, et al. measured the rate of H2O2 release by isolated perfused lungs from normal mice and from 

mice 24 hours after treatment with lipopolysaccharide (LPS) to induce lung injury [24,26]. They showed that LPS 

increased lung rate of H2O2 release by more than 9-fold and that ∼90% of this increase was due to the NOX 

isomer NOX2. However, NOX2 does not appear to contribute much to the baseline rate of lung H2O2 release. Our 

data show that ∼75% of the basal lung rate of H2O2 release is from the mitochondria, and ∼23% from flavin-

containing enzymes, potentially NOX2 and/or NOX4. For the above studies by Lee, et al., the baseline rate of 

mouse lung H2O2 release was 0.011-nmol/min/g dry lung wt., which is very small compared to the rate in rat 

lungs (8.45 nmol/min/g dry lung wt.) in the present study. This could be due to species differences and/or 

differences in the approach used to convert resorufin signal to H2O2. Lee et al. [24,26] used Amplex red's 

extinction coefficient (54000 cm−1 M−1) for the conversion, whereas in the present study a standard curve with 

known H2O2 concentrations was used. 

Previous studies have suggested that the lung rate of ROS formation is dependent on the level of O2 in the 

ventilation gas mixture [17,41]. Results of the present study show that increasing the O2 concentration in the 

ventilation gas mixture from 15 to 95% O2 had only a small (27%) effect on the lung rate of H2O2 release, and 

suggest that this O2-dependent increase was mostly nonmitochondrial (Figure 5). The results of the present 

study with acute hyperoxia may not be reflective of the sources of pulmonary oxidative stress in chronic 

hyperoxia, which others and we have used as a model of human acute respiratory distress syndrome (ARDS) 

[25]. 

At least three of the known NOX isomers, NOX2, NOX3, and NOX4, are present in lung tissue [ 2]. The results of 

the present study are consistent with NOX4 being the main NOX source of the lungs rate of H2O2 release since its 

rate of ROS formation has a relatively large Michaelis-Menten constant (Km = ∼18%) for O2 [41] as compared to 

that for NOX2 (Km = ∼2-3%). NOX4, which is present in the pulmonary artery endothelial and smooth muscle 

cells, and in the myofibroblasts in the airways is unique since it produces ROS mainly (90%) as H2O2 rather than 

superoxide from molecular O2, and is regulated by O2 level [41]. In addition, because of its relatively high Km for 

O2, NOX4 may serve as an O2 sensor in cells, with H2O2 as the signalling molecule [41]. 

Limitations of AR in the isolated perfused rat lung 
AR provides a robust approach for measuring the rate of H2O2 release from isolated perfused lungs. However, 

due to its extracellular nature AR cannot be used to measure the actual lung rate of H2O2 production or the rate 

of production from a specific source since the measured rate is the net of the rates of cellular H2O2 production 

and H2O2 scavenging. In addition, a given inhibitor can affect H2O2 production at multiple sources as discussed 

above. 

The lung consists of 40 different cell types [45,46]. The results using AR provide no direct information regarding 

the contributions of the different cell types to the measured lung rate of H2O2 release, although endothelial cells 

would be expected to dominate because of their large surface area and high fraction (∼50%) of total lung cells, 

and their direct contact with AR in perfusate [44]. Although the question regarding the contributions of specific 

cell types will be important for future studies, alteration in the lung rate of H2O2 release as an index of 

pulmonary oxidative stress has functional implications regardless of the lung cell types involved. 

To the best of our knowledge, this study is the first to evaluate the rate of H2O2 production in the isolated 

perfused rat lung and to determine the contributions of mitochondrial and nonmitochondrial sources of H2O2 to 

the measured rate. This approach could be used to assess the role of oxidative stress in the pathogenesis of 
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acute and chronic lung diseases and the efficacy of novel therapies for mitigating oxidative stress in intact 

functioning lungs. 
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