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Abstract
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting
immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant
signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-
associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they
favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed
calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1
(HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor
2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and
translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the
discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the
identification of optimal therapeutic combinations for the clinical management of cancer.

Facts

● Immunogenic cell death (ICD) can initiate adaptive
immune responses, because it is accompanied by the
emission of adjuvant-like signals commonly known
as damage-associated molecular patterns (DAMPs).

● Key DAMPs for cell death to be perceived as
immunogenic include calreticulin, HMGB1, ATP,
ANXA1, and type I IFN.

● DAMP emission by cells undergoing ICD often relies
on the activation of intracellular responses of
adaptation to stress.

● Although detecting DAMP emission from dying cells
informs on the potential immunogenicity of cell

death, in vivo assays are required to validate bona
fide instances of ICD.

Open questions

● Does a core set of DAMPs common to all instances
of ICD exist?

● Can we harness transcriptional signatures of pattern
recognition receptor (PRR) signaling to assess
DAMP emission in patient biopsies?

● Will therapeutic strategies specifically conceived to
restore the immunogenicity of cell death enter the
clinical practice for cancer therapy?

Introduction
The emergence and progression of human neoplasms

strongly depends on the interaction between cancer cells
and their microenvironment, especially in its immunolo-
gical components1–7. Immunosurveillance is generally
mediated by type 1 CD4+ T-helper (TH1) cells and CD8+

cytotoxic T lymphocytes (CTLs), which specifically
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recognize antigenic epitopes emerging during malignant
transformation and tumor progression8–13. Specifically,
neoplastic cells can become visible to the adaptive
immune system as a consequence of non-synonymous
mutations in the coding region of actively expressed genes
(leading to antigens that are not covered by central tol-
erance) or the ectopic expression of otherwise normal
antigens for which central tolerance is leaky9,14–17. Thus,
the (neo)antigenic profile of a tumor is a key determinant
of anticancer immune responses18–20, as demonstrated by
the fact that several solid tumors become resistant to
immunotherapy with immune checkpoint inhibitors
(ICIs) by acquiring defects in the antigen presentation
machinery21–25. However, antigenicity is not sufficient for
malignant cells to initiate anticancer immunity, as antigen
presentation by dendritic cells (DCs) in the absence of co-
stimulatory signals to T cells generally results in the
establishment of immunological tolerance26–30. Thus,
malignant cells can also escape immunosurveillance by
losing their capacity to promote the recruitment and
functional maturation of DCs or their precursors, a fea-
ture that is cumulatively referred to as adjuvanticity31–33.
Although the adjuvanticity of infected cells mostly origi-
nates from microbial products commonly referred to as
microbe-associated molecular patterns (MAMPs; e.g.,
lipopolysaccharide)34–36, malignant cells mediate chemo-
tactic and immunostimulatory effects by emitting the so-
called damage-associated molecular patterns (DAMPs)
and secreting cytokines as they adapt or succumb to
microenvironmental perturbations16,37,38.
Immunogenic cell death (ICD) represents a functionally

unique response pattern that comprises the induction of
organellar and cellular stress, and culminates with cell
death accompanied by the exposure, active secretion, or
passive release of numerous DAMPs16,37,39–41. The spa-
tiotemporally defined emission of DAMPs in the course of
ICD and their binding to specific pattern recognition
receptors (PRRs) expressed by DCs initiates a cellular
cascade that ultimately results in the activation of both
innate and adaptive immune responses34,42–44. In line
with this notion, accumulating preclinical and clinical
evidence indicates that various DAMPs and DAMP-
associated processes may have prognostic and predictive
value for patients affected by a variety of tumors45.
Moreover, there is ample evidence that treatment-driven
ICD can elicit anticancer immune responses that rein-
force the therapeutic effects of conventional anticancer
chemotherapies and radiotherapy46–49. So far, however,
only a few bona fide ICD inducers have been successfully
employed in the clinic as therapeutics (Table 1)46,50.
These agents may be particularly relevant to initiate
anticancer immune responses that can be actioned by ICIs
or other forms of immunotherapy in the context of

combinatorial treatment regimens46,51–55, as demon-
strated in some clinical56,57 and numerous preclinical58–60

studies. In line with this notion, numerous Food and Drug
Administration-approved ICD inducers are currently
being investigated in off-label oncological settings, espe-
cially in combination with ICIs or other immunother-
apeutics61–65.
Thus, the development of methodological approaches

and platforms for identifying novel ICD inducers should
accelerate the development of next-generation anticancer
therapeutics, ultimately improving the clinical manage-
ment of a large population of oncological patients.

Main hallmarks of ICD
ICD can be induced by different stressors, including but

not limited to (1) intracellular pathogens66–68; (2) con-
ventional chemotherapeutics such as anthracyclines,
DNA-damaging agents, and proteasomal inhibitors50,69–72;
(3) targeted anticancer agents such as the tyrosine kinase
inhibitor crizotinib, the epidermal growth factor receptor-
specific monoclonal antibody cetuximab and poly-ADP-
ribose polymerase (PARP) inhibitors59,73–76; and (4)
numerous physical modalities, encompassing hypericin-
and redaporfin-based photodynamic therapy, extra-
corporeal photochemotherapy, various forms of ionizing
radiation, high hydrostatic pressure, and severe heat
shock77–81.
DAMPs emitted in the course of ICD include endo-

plasmic reticulum (ER) chaperones such as calreticulin
(CALR) and heat-shock proteins (HSPs), which are
exposed on the cell surface, the non-histone chromatin-
binding protein high-mobility group box 1 (HMGB1),
the cytoplasmic protein annexin A1 (ANXA1), and the
small metabolite ATP that are liberated from dying cells
into the extracellular space, as well as type I interferons
(IFNs) that are released upon de novo synthesis38,82–84.
DAMPs can be recognized by both the innate and
adaptive immune systems via distinct PRRs driving
chemoattraction, homing, activation, and/or matura-
tion, ultimately resulting in the cross-presentation of
tumor antigens to CD8+ CTLs in the context of robust
immunostimulation34,43. Other hallmarks of ICD
include the phosphorylation of eukaryotic translation
initiation factor 2 subunit-α (EIF2S1, better known as
eIF2α), the activation of autophagy, and a global arrest
in transcription and translation85–88. Importantly, not
all ICD inducers activate the same stress responses and
hence elicit the same molecular signals16. Thus, for
instance, although autophagy is strictly required for
anthracycline-driven cancer cell death to be perceived
as immunogenic86, the same does not hold true for the
demise of cancer cells exposed to ionizing radiation89

(Fig. 1).
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Fig. 1 Main hallmarks of ICD. Different inducers of immunogenic cell death (ICD) have been shown to elicit incompletely overlapping molecular
signatures with respect to ICD biomarkers. This not only reinforces the need for the simultaneous assessment of multiple surrogate ICD biomarkers in
the context of screening campaigns, but also identifies an originally unsuspected diversity in the molecular and cellular mechanisms supporting
adaptive immunity downstream of danger signaling. ANXA1, annexin A1; CALR, calreticulin, CXCL10, C-X-C motif chemokine ligand 10; ECP,
extracorporeal photochemotherapy; HHP, high hydrostatic pressure; HMGB1, high-mobility group box 1; IFN, interferon; IL-1β (official name: IL1B),
interleukin 1 beta; IL-17 (official name: IL17), interleukin 17; PDT, photodynamic therapy.

Table 1 Immunogenic cell death inducers commonly employed as conventional chemotherapeuticsa.

Agent eIF2α phosphorylation DAMPs Main ICD-associated cytokines Combination with ICIs in mice

Anthracyclines Yes ANXA1

ATP

CALR

HMGB1

Type I IFN

CXCL10

IL-1β

IL-17

Anti-PD-1

Anti-CTLA4

Bleomycin Yes ATP

CALR

HMGB1

NA NA

Bortezomib Yes CALR

HSP70

NA NA

Cyclophosphamide NA ATP

CALR

HMGB1

Type I IFN

IL-17

Anti-PD-1

Anti-CTLA4

Dactinomycin Yes ATP

CALR

HMGB1

Type I IFN

IL-17

Anti-PD-1

Lurbinectedin Yes ATP

CALR

HMGB1

Type I IFN Anti-PD-1

Anti-CTLA4

Oxaliplatin Yes ATP

CALR

HMGB1

HSP70

Type I IFN

IL-1β

Anti-PD-1

Anti-CTLA4

Teniposide NA CALR

HMGB1

Type I IFN Anti-PD-1

ANXA1 annexin A1, CALR calreticulin, CTLA4 cytotoxic T lymphocyte-associated protein 4, eIF2α (official name: EIF2S1) eukaryotic translation initiation factor 2 subunit-
α, HMGB1 high-mobility group box 1, HSP70 (official name: HSPA1A), heat-shock protein family A (Hsp70) member 1A, IFN interferon, IL-1β (official name: IL1B),
interleukin 1 beta, IL-17 (official name: IL17), interleukin 17, NA not available, PD-1 (official name: PDCD1) programmed cell death 1.
aAdapted from ref. 46, not including targeted anticancer agents and extracorporeal photochemotherapy.
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Calreticulin
CALR exposed on the plasma membrane of malignant

cells undergoing ICD serves as an “eat-me” signal that
facilitates the engulfment of dying cells or their corpses by
DCs or their precursors, thus providing them with an
abundant source of antigenic material90–93. The molecular
mechanism underlying the ICD-associated exposure of
CALR include (1) the phosphorylation of eIF2α, accom-
panied by (2) a robust arrest of protein translation and (3)
the activation of pro-apoptotic caspase 8 (CASP8), fol-
lowed by the cleavage of B-cell receptor-associated protein
31 (BCAP31), the aggregation of the pro-apoptotic Bcl-2
family members BCL2-associated X protein (BAX) and
BCL2-antagonist/killer 1 (BAK1) at the outer mitochon-
drial membrane, and (4) the vesicle-associated membrane
protein 1 (VAMP1)- and synaptosome-associated protein
25 (SNAP25)-mediated anterograde transport to the Golgi
apparatus and exocytosis94.
Surface-exposed CALR binds to LDL-receptor-related

protein 1 (LRP1, best known as CD91), which is the main
ER chaperone-sensing PRR expressed by antigen-
presenting cells including DCs95,96. CD91 ligation pro-
motes the engulfment of cellular corpses and debris by a
mechanism that depends on the GTPase Rac family small
GTPase 1 (RAC1)78,95,97. Consistent with the key role of
CALR exposure in the perception of cell death as
immunogenic, CALR knockdown by RNA interference
(RNAi), CALR deletion by CRISPR/Cas9, or CALR
blockade by neutralizing antibodies decreases the potency
of ICD-mediated anticancer immune responses in a
variety of settings79. Besides the role of CALR on the
initiation of adaptive T-cell-mediated immunity down-
stream of ICD, we have recently demonstrated that CALR
spontaneously exposed on the surface of malignant blasts
from acute myeloid leukemia patients is associated with
improved innate immunity as a consequence of improved
interleukin 15 (IL15) trans-presentation to natural killer
(NK) cells98,99. Altogether, these findings document that
surface-exposed ER chaperones are important hallmarks
of ICD stimulating both innate and adaptive anticancer
immunity.

High-mobility group box 1
The release of HMGB1 from cancer cells undergoing

ICD involves the permeabilization of both the nuclear
lamina and the plasma membrane in a two-step process
that enables the translocation of the protein from the
nucleus to the cytoplasm, followed by its liberation into
the extracellular space100,101. Extracellular HMGB1 can
bind multiple PRRs expressed by myeloid cells, encom-
passing advanced glycosylation end-product-specific
receptor (AGER, best known as RAGE) and Toll-like
receptor 4 (TLR4)102–105. However, it appears that
TLR4 signaling via MYD88 innate immune signal

transduction adaptor (MYD88)106–108 is required and
sufficient for cell death to be perceived as immunogenic,
as demonstrated with a variety of genetic and pharma-
cological approaches16. In line with this notion, the
knockout of HMGB1 in cancer cells and the antibody-
mediated neutralization of TLR4 in the host limit ther-
apeutically relevant immune responses (and hence disease
control) driven by anthracyclines, cyclophosphamide, or
oxaliplatin in preclinical in vivo models103,109. In addition,
loss-of-function polymorphisms in TLR4 have been
associated with unfavorable disease outcome in patients
with breast cancer receiving anthracyclines as part of their
clinical management103, in head and neck squamous cell
carcinoma patients exposed to standard-of-care che-
motherapy110, as well as in melanoma patients treated
with an experimental DC-based vaccine111,112. Altogether,
these findings indicate that the HMGB1-mediated acti-
vation of TLR4 is a crucial constituent of ICD-elicited
immunogenicity. That said, HMGB1 release appears to be
common to both immunogenic and non-immunogenic
variants of cell deaths. In line with this notion, extra-
cellular HMGB1 has been consistently used as a bio-
marker for plasma membrane permeabilization113. This
implies that the mere detection of HMGB1 release cannot
be interpreted as a reliable sign of ICD.

ATP
During the course of ICD, ATP is released in an

autophagy-dependent manner through the active exocy-
tosis of ATP-containing vesicles via pannexin chan-
nels114–116. Extracellular ATP operates as a prominent
“find-me” signal for DC precursors and macrophages
upon binding to purinergic receptor P2Y2 (P2RY2, a
metabotropic receptor), thus facilitating the recruitment
of myeloid cells to sites of active ICD117,118. Moreover,
extracellular ATP mediates pro-inflammatory effects
upon activation of the CASP1-dependent NLRP3
inflammasome and consequent secretion of mature
interleukin 1 beta (IL1B, best known as IL-1β) and IL-
18119–121. These effects, which originate from purinergic
receptor P2X 7 (P2RX7, an inotropic receptor), culminate
with the activation of CD8+ T cells and IL-17-producing
γδ T cells119. Consistent with the importance of these
events for immune responses driven by ICD, the immu-
nogenicity of cell death is abrogated when either ATP fails
to accumulate in the microenvironment of dying cancer
cells or when P2RX7 or P2RY2 are absent from the
myeloid compartment of the host119. Thus, over-
expression of the ATP-degrading ectoenzyme ectonu-
cleoside triphosphate diphosphohydrolase 1 (ENTPD1,
best known as CD39) in malignant tissues exerts potent
immunosuppressive effects122–124. Moreover, loss-of-
function polymorphisms in P2RX7 has been associated
with poor clinical outcome in breast cancer patients
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subjected to anthracycline-based chemotherapy119. Of
note, the cell death-associated secretion of ATP resembles
HGMB1 release in that it can also accompany non-
immunogenic variants of cell death. At least in vitro,
however, normalizing extracellular ATP levels to per-
centage of dead cells or to the ATP plateau that can be
achieved with a detergent aids the discrimination of non-
immunogenic vs. immunogenic forms of cell death.

Annexin A1
The mechanisms involved in the release of ANXA1 by

cancer cells succumbing to ICD remain largely obscure.
However, ANXA1 appears to mediate a non-redundant
role as a homing factor that governs the final approach of
DCs or their precursors to malignant cells undergoing
ICD125. Consistent with such a key function, malignant
cells lacking Anxa1 exhibit limited sensitivity to
anthracycline-based chemotherapy in vivo125. Similarly,
the anticancer activity of anthracyclines in mice is amply
compromised when the host lacks formyl peptide receptor
1 (FPR1), which is the main receptor for extracellular
ANXA1125. Moreover, loss-of-function polymorphisms in
FPR1 have been associated with poor overall survival and
metastasis-free survival in breast cancer patients receiving
adjuvant anthracycline-based chemotherapy125.

Type I interferon
Finally, ICD is accompanied by a robust type I IFN

response, which can be driven by both RNA and DNA
species126–128. In the former setting, the receptor is endo-
somal TLR3126,129, whereas in the latter scenario a key role
is played by cytosolic cyclic GMP-AMP synthase (CGAS)
and its signal transducer stimulator of IFN response
cGAMP interactor 1 (STING1, best known as
STING)89,130,131. Irrespective of the precise mechanism
underlying type I IFN secretion, this cytokine mediates
prominent immunostimulatory effects upon binding to
homodimeric or heterodimeric receptors expressed by
various immune cells36,132,133. For instance, type I IFN is
known to enhance the cytotoxic functions of both CD8+

T cells and NK cells134, and promote cross-priming by
DCs135,136. Moreover, type I IFN can trigger the secretion of
pro-inflammatory mediators by macrophages137 and inhibit
the immunosuppressive functions of CD4+CD25+FOXP3+

regulatory T cells138. Besides these direct immunostimula-
tory functions, type I IFN also elicits the synthesis of the C-
X-C motif chemokine ligand 10 (CXCL10, a prominent
chemotactic factor) by cancer cells undergoing ICD via an
autocrine signaling loop126. The immunogenicity of ICD
driven by anthracyclines and radiation therapy strongly
relies on type I IFN signaling, as documented by the fact
that therapeutic efficacy in mice is amply reduced when
neoplastic lesions key components of the type I IFN
response, such as Ifnar1, Ifnar2, Tlr3, Cgas, or Sting1, as

well as when mice are co-treated with IFNAR1-blocking
antibodies126,139,140. Along similar lines, Ifnar1−/− neoplas-
tic cells exposed to doxorubicin in vitro lost their capacity
to vaccinate syngeneic hosts against a rechallenge with
living cells of the same type due their inability to prime
adaptive immune responses126. That said, although acute,
robust type I IFN responses have been consistently asso-
ciated with immunostimulation, chronic, indolent type I
IFN signaling mediates immunosuppressive effects83. Thus,
caution should be employed when characterizing type I IFN
responses in the context of ICD.
Irrespective of this and other caveats, DAMP-dependent

adjuvanticity occupies a key position in the mechanism
that governs the immunogenicity of malignant cells suc-
cumbing to ICD.

Monitoring CALR, HSPs, and the ISR
The exposure of CALR and other ER chaperones such as

heat-shock protein family A (Hsp70) member 1A (HSPA1A,
best known as HSP70) and heat-shock protein 90 α-family
class A member 1 (HSP90AA1, best known as HSP90) on
the plasma membrane of cells undergoing ICD can be
monitored by several assays. The cytofluorometric detection
of CALR exposure requires the use of specific anti-CALR
antibodies and vital dyes such as such as 4′,6-diamidino-2-
phenylindole (DAPI), propidium iodide (PI), or 7-
aminoactinomycin D (7-AAD), to exclude permeabilized
cells from the analysis and hence to avoid false-positive
values98,99. The transgene-enforced expression of a CALR-
HaloTag™ fusion protein141,142 can be also be used to spe-
cifically detect CALR exposure on (hitherto) living cells based
on a cell-impermeant fluorescent HaloTag™ ligand143.
However, this approach requires transgenic cell lines and
hence is not suitable for ex vivo applications on freshly col-
lected malignant cells. Surface-exposed CALR and other ER
chaperones can also be detected by immunoblotting after cell
surface proteins are biotinylated in pre-apoptotic cells (to
avoid the detection of intracellular chaperones), followed by
streptavidin-mediated precipitation78. Alternatively, fluores-
cence microscopy can be harnessed to monitor subcellular
CALR localization, either upon immunostaining with CALR-
specific antibodies, or in cells that have been engineered to
express CALR in conjunction with a fluorescent moi-
ety144,145. The latter technology is particularly advantageous
for high-content screening (HCS) campaigns aimed at the
identification of agents that cause CALR/HSP translocation
on the plasma membrane. Retrospectively monitoring
CALR/HSP expression in formalin-fixed paraffin-embedded
bioptic samples from cancer patients by immunohis-
tochemistry coupled to the evaluation of clinicopathological
variables, offers a tool to estimate the impact of CALR/HSP
exposure on disease progression91,146. Nevertheless, this
technique is unable to precisely distinguish between the
intracellular and surface-exposed pools of CALR and HSPs.
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The ICD-associated exposure of CALR/HSP depends
on the so-called integrated stress response (ISR), which is
orchestrated around the inactivating phosphorylation of
eIF2α147,148. The latter is generally catalyzed by eukaryotic
translation initiation factor 2α kinase 2 (EIF2AK2, best
known as PKR) and EIF2AK3 (best known as PERK),
which are particularly sensitive to the accumulation of
unfolded proteins within the ER149. Intriguingly, the other
reticular arms of the ISR such as the splicing of X-box
binding protein 1 (XBP1)150, as well as the derepression of
activating transcription factor 4 (ATF4) and ATF6151,152

are not mechanistically linked to the immunogenicity of
dying cancer cells, meaning that solely the phosphoryla-
tion of eIF2α constitutes a pathognomonic feature of
ICD149,153. The ICD-associated phosphorylation of eIF2α
can be detected by immunoblotting, flow cytometry, and
immunofluorescence microscopy based on
phosphoneoepitope-specific antibodies154–158, with the
latter two approaches offering the scalability that is nee-
ded for HCS applications.

Monitoring HMGB1 release
The ICD-associated release of HMGB1 can be evaluated

indirectly, upon quantification of the residual pool of intra-
cellular HMGB1 by immunoblotting, as well as directly, upon
assessment of extracellular HMGB1 levels in cell culture
supernatants based on commercially available enzyme-linked
immunosorbent assay (ELISA) kits80,103,143,159–162. ELISA kits
are advantageous in that they offer a precise and sensitive
means to quantify HMGB1 in a variety of samples including
culture supernatants, sera and other biological fluids163–165.
An alternative technological approach consists in the gen-
eration of cells expressing a green fluorescent protein (GFP)-
tagged variant of HMGB1, which can be assessed by fluor-
escence microscopy in the presence of an appropriate
nuclear counterstain, to quantify the residual pool of nuclear
HMGB1160. This approach offers adequate scalability for
HCS applications, but obviously cannot be employed to
retrospectively investigate HMGB1 release from patient
samples. Immunohistochemistry has been successfully har-
nessed to such aim, although (at least in some setting) a clear
distinction between nuclear and cytoplasmic HMGB1 has
been relatively hard to make166–168. Recently, the retention
using selective hooks (RUSH) system169,170 has also been
established as a fully automated technology with high-
throughput workflow to determine the presence of DAMPs
in distinct subcellular compartments. In the RUSH system, a
streptavidin-NLS3 fusion protein is used as a nuclear hook to
sequestrate a streptavidin-binding peptide (SBP) fused with a
target and a reporter such as HMGB1 and GFP, respec-
tively160. In this setting, the exogenous addition of biotin
competitively disrupts the interaction between streptavidin-
NLS3 and HMGB1-SBP-GFP to release the biosensor from
its hook, hence allowing the fluorescent signal to leave the

nucleus provided that an HMGB1-releasing stimulus is
present160. The main advantage of the RUSH system is that it
limits the amount of false-positive hits due to auto-
fluorescent molecules and enables the retention of HMGB1
unless biotin is provided, constituting an interesting investi-
gational platform to assess ICD-related processes specifically
linked to HMGB1 release in the context of near-to-normal
HGMB1 levels (which is not the case for RNAi- or CRISPR/
Cas9-based manipulations).

Monitoring ATP secretion
In analogy to HMGB1, ICD-associated secretion of ATP

can be monitored both directly, upon quantification of
extracellular ATP, and indirectly, upon assessment of the
residual pool of intracellular ATP (after cell lysis)86.
Commercial luminescence-based assays represent the
gold standard for both direct and indirect quantification
of ATP levels171,172. Indeed, luciferase can catalyze the
oxidation of its substrate luciferin, which is associated
with light emission, only in the presence of magnesium,
oxygen, and ATP173,174, which can be harnessed for
quantitative assessments based on a conventional stan-
dard curve. The main disadvantage of the direct approach
reflects the potential expression of ATP-degrading
enzymes such as CD39 by cancer cells175,176, which may
lower ATP concentrations below limit-of-detection. The
indirect approach may potentially be confounded by
agents that alter intracellular ATP levels in the absence of
any cytotoxicity (and hence any ATP release), such as
drugs targeting bioenergetic metabolism177–179. As an
alternative to luminescence-based approaches, intracel-
lular ATP-containing vesicles can be visualized and
quantified by quinacrine180, a fluorochrome that emits in
green in the presence of ATP, enabling quantitative
assessment by flow cytometry and fluorescence
microscopy181,182.

Monitoring the release of type I IFNs
The secretion of type I IFN from cancer cells under-

going ICD can be monitored by several assays183. In this
setting, ELISA-based detection represents the gold stan-
dard approach, as it enables the quantitative assessment of
type I IFN in a wide panel of biological specimens with
superior sensitivity184–186. However, ELISAs are dis-
advantageous in that they cannot be harnessed to pre-
cisely identify type I IFN-producing cells within
heterogeneous cell populations187,188. Such a disadvantage
can be overcome by cytofluorometric tests based on
intracellular staining with a type I IFN-specific (most
often IFNB1-specific) antibody98. This approach can be
widely used to analyze the production of type I IFN in
cultured cells, as well as in primary tumor cells freshly
isolated from patients91, although it is intrinsically unapt
for the assessment of actual type I IFN secretion. RT-PCR

Fucikova et al. Cell Death and Disease         (2020) 11:1013 Page 6 of 13

Official journal of the Cell Death Differentiation Association



and immunoblotting on cell lysates are also commonly
employed to monitor type I IFN expression in cells
responding to stress139,189. However, neither of these
approaches can be employed to evaluate type I IFN
secretion (as opposed to intracellular expression). More-
over, mRNA measurements do not formally evaluate type
I IFN signaling, as transcription is not necessarily asso-
ciated with translation190,191. Immunostaining based on
type I IFN-specific antibodies coupled with immunohis-
tochemistry or immunofluorescence microscopy has also
been successfully employed to detect type I IFN in bioptic
specimens from cancer patients and mice192–198. How-
ever, it is complex to discriminate between intracellular
expression and secretion on these technical platforms. As
an alternative to direct type I IFN measurements, genes
expressed by cells exposed to type I IFN (which are
commonly referred to as IFN-stimulated genes, ISGs),
including MX dynamin-like GTPase 1 (MX1), have been
evaluated by RT-PCR as proxies for the transcriptional
response driven by IFN receptor dimers126,199. This
approach overcomes several of the aforementioned lim-
itations, although it cannot be implemented on a per cell
basis. To this aim, although, biosensor cell lines expres-
sing GFP under the control of the MX1 promoter have
been engineered200. Such cells are amenable not only to
cytofluorometric studies, but also to plate-based fluores-
cence measurements for HCS applications. A similar
strategies relying on type I IFN signaling effectors has
been adopted for the immunohistochemical evaluation of
type I IFN activity in patient biopsies201,202.

Assessment of transcription and translation
One salient feature of ICD is the inhibition of RNA

transcription85, constituting yet another feature that can
be monitored in screening campaigns aimed at the iden-
tification of novel ICD inducers. Stalled RNA synthesis
can be assessed in vitro by means of a chemically deri-
vatized uridine analog that incorporates into nascent RNA
and can be visualized as a fluorescent signal by click
chemistry85. Alternatively, the inhibition of transcription
can be accessed via the immunofluorescence microscopy-
based detection of nucleolin and fibrillarin, two proteins
that colocalize in the nucleus when RNA synthesis is
active, yet can be detected as separate entities when
transcription is stalled85. Besides laborious methods based
on the incorporation of radiolabeled amino acids into
nascent proteins203, translational proficiency can be
assessed by polysome profiling, which is commonly based
on the separation of cellular lysates on a sucrose gradient
coupled to immunoblotting for ribosomal subunits on the
fractions collected therefrom204,205. It may be difficult,
however, to scale up polysome profiling for HCS appli-
cations. Irrespective of these and other unresolved issues,
incorporating the assessment of transcriptional and

translational proficiency into screening campaigns aimed
at identifying novel ICD inducers may limit false
positivity rate.

Discovery platform for the identification of ICD
inducers
To address the need for novel ICD-inducing agents, we

have built a phenotypic screening platform that incorpo-
rates many of the aforementioned assays coupled to
automated epifluorescence microscopy (Fig. 2). Specifi-
cally, we employ biosensor cell lines to measure fluor-
escent surrogate markers for ATP release (with
quinacrine), CALR exposure (using cells stably expressing
CALR-GFP), type I IFN signaling (with cells expressing
GFP under the control of the MX1 promoter), and
HMGB1 release (in cells stably transduced with an
HMGB1-GFP fusion) along with morphological traits of
cell death such as the rarefaction of cells or the appear-
ance of pyknotic nuclei206. These biosensors can be cul-
tured in the presence of agents from large chemical
collections and screened for ICD manifestations in a
semi-automated manner, followed by in vitro validation
experiments with alternative methods for ICD detection
and additional cell lines. Finally, potential ICD inducers
selected from the phenotypic screening need to be vali-
dated for their capacity to induce anticancer immune
responses in vivo, in mouse models of prophylactic vac-
cination or therapeutic challenge. In some cases, indeed,
abundant DAMP emission does not necessarily correlate
with the ability of dying cells to drive anticancer immu-
nity143 and in vivo functional assays remain the gold
standard approach to identify bona fide ICD. More
recently, we have used artificial intelligence to design
algorithms that relate physicochemical descriptors of
chemical agents with biological activity. These algorithms
can predict the likelihood of distinct molecules to induce
ICD, hence enabling the pre-selection of drugs with a high
probability to operate as bona fide ICD inducers and
hence reducing the cost of screening campaigns149,206.

Concluding remarks
In summary, we and others have developed assays to

assess ICD parameters in vitro (in cell cultures) and
ex vivo (on tumor biopsies), which can be harnessed for
the discovery of next-generation anticancer agents and
the identification of optimal therapeutic regimens for
clinical application, respectively. The construction of a
multistep discovery pipeline involving artificial
intelligence-driven pre-selection and a robotized work-
flow for the detection of surrogate ICD biomarkers
enables us to implement various HCS campaigns that
ultimately identified novel ICD inducers206. Some of the
compounds identified with this platform have entered
clinical trials, either as single agents or in combination
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with ICIs61,63. Similarly, novel approaches to drive ICD
have been harnessed for the development of therapeutic
DC-based vaccines, which are currently under clinical
evaluation207,208. Moreover, the systematic assessment of
ICD biomarkers such as the expression of CALR or
HMGB1 on tumor biopsies may yield useful information
for patient stratification (Fig. 3). That said, DAMP
detection in patient samples remains particularly chal-
lenging16, as even in the case of proteins (which are

considerably more stable than ATP), expression levels do
not necessarily relate to emission16. At least in part, this
problem could be circumvented by concomitantly asses-
sing: (1) the intracellular levels of a specific DAMP (when
possible, as for proteins) and/or the activation of the
intracellular stress response that drives the emission of
such DAMP (together, assessing the probability of DAMP
emission); and (2) transcriptional programs driven by PRR
activated by the same DAMP (as a measure of active

Fig. 3 ICD inducers from HCS campaigns to the bedside. Several high-content screening (HCS) campaigns have led to the discovery of novel
immunogenic cell death (ICD) inducers that have entered clinical testing, either alone (A), or combined with immune checkpoint inhibitors (B). ICD
induction is also being harnessed for the generation of dendritic cell (DC)-based vaccines for therapeutic purposes (C). Finally, biomarkers of ICD may
be used to stratify patient populations and hence identify individuals with an elevated likelihood to respond to treatment and/or subjects that would
benefit from strategies correcting existing defects in ICD signaling (D). HHP, high hydrostatic pressure.

Fig. 2 Main methodological approaches to measure ICD biomarkers in vitro. The main hallmarks of immunogenic cell death (ICD) can be
assessed by flow cytometry, (immuno)fluorescence microscopy, immunoblotting, or luminometry, based on a variety of different approaches. ANXA1,
annexin A1; CALR, calreticulin, CXCL10, C-X-C motif chemokine ligand 10; HMGB1, high-mobility group box 1; IFN, interferon; IL-1β (official name:
IL1B), interleukin 1 beta; IL-17 (official name: IL17), interleukin 17; RUSH, retention using selective hooks.
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signaling). To the best of our knowledge, however, such a
combinatorial approach has not yet been undertaken.
On theoretical grounds, the absence or limited avail-

ability of ICD biomarkers should prompt the use of
therapeutic approaches that (attempt to) compensate for
the missing factors209. For instance, the absence of CALR
might be compensated by the direct injection of recom-
binant CALR into the tumor or the administration of a
CD47-blocking antibody, which neutralizes the main
functional antagonist of CALR210,211. Similarly, the
absence of HMGB1 might be compensated by the
administration of recombinant HMGB1 itself or alter-
native TLR4 agonists212. These examples illustrate how
the in-depth exploration of ICD-related processes and
molecules might yield knowledge that may be harnessed
to improve cancer therapies in a personalized, biomarker-
driven manner.
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