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Abstract. In this paper we study how shape information encoded in contour 

energy components values can be used for detection of microscopic organisms 

in population images. We proposed features based on shape and geometrical 

statistical data obtained from samples of optimized contour lines integrated in 

the framework of Bayesian inference for recognition of individual specimens. 

Compared with common geometric features the results show that patterns 

present in the image allow better detection of a considerable amount of 

individuals even in cluttered regions when sufficient shape information is 

retained. Therefore providing an alternative to building a specific shape model 

or imposing specific constrains on the interaction of overlapping objects.  

Keywords:  recognition, feature extraction, statistical shape analysis. 

1   Introduction 

An important tool for biotechnology research and development is the study of 
populations at molecular, biochemical and microbiological levels. However, to track 
their development and evolution non-destructive protocols are required to keep 
individuals in a suitable environment. The right conditions allow continuous 
examination and data collection that from a statistically meaningful number of 
specimens provide support for a wide variety of experiments. The length, width and 
location of microscopic specimens in a sample are strongly related to population 
parameters such as feeding behavior, rate of growth, biomass, maturity index and 
other time-related metrics. 

Population images characterized by sample variation, structural noise and clutter  

pose a challenging problem for recognition algorithms [1]. These issues alter negatively 

the estimated measurements, for instance when parts of the detected object are out of 

focus, two or more individuals can be mistakenly counted as one or artifacts in the 

sample resembles the shape of specimens of interest. A similar condition occurs in 

tracking applications when continuous identification of a given individual, while 

interacting with others of the same or different phylum is required. Nevertheless the 

increasing amount of digital image data in micro-biological studies prompts the need of 

reliable image analysis systems to produce precise and reproducible quantitative results.  
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The nematodes are one of the most common family of animals; they are ubiquitous 

in fresh water, marine and terrestrial eco-systems. As a result nematodes populations 

had become useful bio-indicator for environmental evaluation, disease expressions in 

crops, pesticide treatments, etc. A member of the specie, the C. Elegants nematode is 

widely applied in research in genetics, agriculture and marine biology. This 

microorganism has complete digestive and nervous systems, a known genome 

sequence and is sensitive to variable environmental conditions.  

Intensity thresholding and binary skeletonization followed by contour curvature 

pattern matching were used in images containing a single nematode to identify the 

head and tail of the specimen [2]. To classify C.Elegans behavioral phenotypes in [3] 

motion patterns are identified by means of a one-nematode tracking system, 

morphological operators and geometrical related features. The advantages of scale 

space principles were demonstrated on nematode populations in [4] and anisotropic 

diffusion is proposed to improve the response of a line detection algorithm; but 

recognition of single specimens was not performed. 

In [8] nematode population analysis relies on well-known image processing 

techniques namely intensity thresholding followed by filling, drawing and measuring 

operations in a semi-automatic fashion. However sample preparation was carefully 

done to place specimens apart from each other to prevent overlapping. Combining 

several image processing techniques when dealing with biological populations 

specimens increase the complexity of finding a set of good parameters and 

consequently reduce the scope of possible applications.  

Daily lab work is mostly manual, after the sample image is captured a biologist 

define points along the specimen, then line segments are drawn and measurement 

taken. User friendly approaches like live-wire [5] can ease the process as while 

pointing over the nematode surface a line segment is pulled towards the nematode 

centerline. Though in cluttered regions line evidence vanishes and manual corrections 

are eventually required. Considering that a data set usually consists of massive 

amounts of image data with easily hundreds of specimens, such repetitive task entails 

high probabilities of inter-observer variations and consequently unreliable data.  

Given the characteristics of these images, extracting reliable shape information for 

object identification with a restricted amount of image data, overlapping, and 

structural noise pose a difficult task. Certainly, the need of high-throughput screening 

of bio-images to fully describe biological processes on a quantitative level is still very 

much in demand [6]. Unless effective recognition takes place before any post-

processing procedure the utilization of artificial vision software for estimating 

statistical data from population samples [7] will not be able to provide with accurate 

measurements to scientists.  

As an alternative to past efforts focused at deriving shape models from a set of 

single object images using evenly distributed feature points [14]. We propose recover 

shape information by examining the energies of sample optimized active contours 

from a population image. In order to assert the efficiency of such approach we 

compare them with geometrical measurements. Our aim is to prove that patterns 

extracted from sample contours can lead to recognition of individual specimens in 

still images even in the presence of the aforementioned problems. 
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This paper is organized as follows. In section 2 the active contour approach is 

discussed. Shape features of detected nematodes are proposed and used for 

classification in Section 3. Comparative results are shown in Section 4; finally 

conclusions and future work is presented in Section 5. 

2   Segmentation Using Active Contours 

Nematodes are elongated structures of slightly varying thickness along their length, 

wide in the center and narrow near both ends.  Contrary to one might think its simple 

shape makes segmentation process a complex task in population images because 

nematodes interact with the culture medium and other specimens in the sample. 

Nematodes lie freely on agar substrate and explore their surroundings by bending 

their body. While foraging, nematodes run over different parts of the image, crawl on 

top of each other and occasionally dive into the substrate. This behaviour leads to 

potential issues in segmentation because substantial variations in shape and 

appearance are observed in population images. 

Nematodes exhibit different intensity level distributions either between individuals 

or groups when image background is non-homogeneous. Darker areas appear every 

time internal organs become visible or at junctions when two or more specimens 

overlap. Some parts get blurred as they get temporarily out of focus when diving into 

the sustrate. Regarding shape, the lack of contour features and complex motion 

patterns prevent using simple shape descriptors or building models able to account for 

the whole range shape configurations. These two characteristics also make difficult to 

find a set of geometrical constrains that can illustrate all the junction types found in 

overlapping situations Fig. 1. 

Under these conditions, thresholding techniques commonly used in images of 

isolated specimens fail to provide a reliable segmentation. Approaches based on 

differential geometry [11] can handle better the intensity variation, but a trade off 

between the image-content coverage and conciseness [12] is needed to set appropriate 

parameter values. Statistical tests on hypothetical center-line and background regions 

at every pixel locations as proposed in [23] rely on having enough local line evidence, 

which precisely disappear at junctions where saddle regions form. The inherent 

disadvantages of the aforementioned techniques allow in practice to obtain only a set 

of unconnected points hopefully the majority located on the traversal axis of some of 

the nematodes present in the image.  

Line grouping based on graph search  and optimisation techniques enforcing line 

continuity and smoothness were applied to integrate line evidence [13,23], but 

segmentation of objects based on linear segments requires relevant local segments 

configurations that capture objects shape characteristics [22]. Shape modelling 

assuming evenly distributed landmark points along nematode body proved a complex 

issue, although non-linear systems had been devised [10] the complete range of 

nematode body configurations is still far from being model. Spatial arrangement of 

feature points at different scales were exploited in [15] to search for regions of high 

probability of containing a rigid wiry object in different cluttered environments, yet in 

populations clutter is mostly caused by nematode themselves. 
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Fig. 1. Left: Nematodes in a population image. Center: Structural noise produced by internal 

organs, and overlapping. Right: Non-homogenous background cause differences in appearance. 

In this paper we propose the utilization of active contours energies to capture 

relevant statistical shape information for recognition applied to nematode detection in 

population images. Active contours introduced by Kass with a model called snake 

[16] has drawn attention due to their performance in various problems. Segmentation 

and shape modeling in single images proved effective by integrating region-based 

information, stochastic approaches and appropriate shape constrains [17, 18].  

Active contours combine image data and shape modeling through the definition of 

a linear energy function consisting of two terms: a data-driven component (external 

energy), which depends on the image data, and a smoothness-driven component 

(internal energy) which enforces smoothness along the contour. 

ext21contour Eλ+Eλ=E ⋅⋅ int  (1) 

The internal energy can be decomposed further into tension and bending energies, 

they report higher values as the contour stretches or bends during the optimization 

process. The goal is to minimize the total energy iteratively using gradient descent 

techniques as energies components balance each other. 

∫∫
S

extext

S

bt (s)dse=E,(s)dse+(s)e=E
00

int
 (2) 

The proposed approach is based on the idea that given convergence of the active 

contours mostly data-driven, appearance and geometrical data can be recovered from 

the resulting energy component value distribution.  Contrary to other works that tried 

to embed partial shape information to guide the evolution of the contour [21], we 

consider the analysis of energy based derived features a natural way to explore the 

range of possible nematode shape configurations in a set of population images 

without having to build an specific model or making explicit constrains about objects 

interaction [19]. We leave to the active contour optimization process the task of 

locating salient linear structures and focus on exploiting the distribution of energy 

values for recognition of those contours corresponding to nematodes. 

For segmentation we used ziplock snake [20], this active contour model is 

designed to deal with open contours. Given a pair of fixed end points optimization is 
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carried out from them towards the center of the contour using in every step a 

increasing number of control points. This procedure is intended to raise the 

probability of accurate segmentation by progressively locating control points on the 

object surface. They can encode shape information explicitly [21] and provide faster 

convergence than geodesic snakes.   

It is important to point out that as in any deterministic active contour formulation 

there are situations in which convergence tends to fail. For instance in the presence of 

sharp turns, self-occlusion or in very low contrast regions. Nevertheless as long as the 

number of correct classified contours represent a valid sample of the population we 

can obtain meaningful data for bio-researchers. In the context of living specimens we 

should expect that eventually every individual will have the possibility of match with 

a nicely converged contour. 

For our experiments, the tension energy et was defined as the point distance 

distribution, the bending energy eb calculated by means of a discrete approximation of 

the local curvature and a normalized version of the intensity image was employed as 

energy field eext.  
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The main bottleneck in the automated use of ziplock snakes is the need for 

specifying matching end points for a contour. The absence of shape salient features in 

head and tail nematode sections prevents building a reliable matching table. The only 

option is to examine all possible combination of points, but this can lead to a 

combinatorial explosion of the search space. In this context we devised two criteria to 

constrain the number of contours to analyze: 
 

• Matching end points within a neighborhood of size proportional to the expected 

nematode length, 

• Matching end points connected by path showing consistent line evidence. 
 

Fig. 2 depicts initial contours generated after applying the both criteria. In the first 

case the nematode length was derived from a sample nematode, in the second case the 

raw response of a line detector [24] was used to look for line evidence between end 

points. Any path between a pair of end points consisting of non-zero values was 

considered valid and allows the initialization of a contour.  

Once the contours had converged, we observe different situations regarding their 

structure: 
 

• The contour can be located entirely on a single nematode. 

• The contour sections correspond to different nematodes. 

• Part of the contour lies on the image background. 
 

The first case requires both end points to be located on the same object, occurs 

when the specimen is isolated or the energy optimization is able to overcome 

overlapping regions. The second type of contour appears when a contour spreads 

among overlapping nematodes while fitting a smooth curve between its end points. If 
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the smoothness constrain can not be enforce some contour sections might rest on the 

image background. 

In the following we will refer to contours located on single nematode as nematode 

contours and the remaining cases as non-nematode contours. Our interest is to extract 

nematode contours reliably, but as can be seen in Fig. 2. there is no simple way to 

distinguish them without additional processing steps and the inconvenient problems 

mentioned previously.  Hence the suggested solution is presented in the following 

section. 

  

  

Fig. 2. Contours (white) from end points (blue) matching criteria. Left column: expected 

length. Right column: line evidence. First row: before convergence. Second row: after 

convergence. Right bottom: Examples of nematode (green) and non-nematode (orange) contour 

classes. 

3   Detection of Specimens Using Energy Features 

The goal of our experiments is to explore the feasibility of classifying a given contour 

in a corresponding nematode wn  or non-nematode wt classes. Let C be the set of 

contours {c1,...,cm} generated after the convergence process and define a contour c as a 

sequence of n control points (x1,...,xn ).  Two types of shape measurements based on 

the three relations (length, curvature and line evidence) encapsulated in the energy 

terms are defined.   

The expected point energy Me captures the average value of a given energy term e 

along the contour:   
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{ }extbtcec eeeee=M ,,,, ∈  (4) 

and the point sequence energy Se  integrates the  control point’s  energy in a vector 

providing evidence about the effect that different shape and appearance 

configurations have on the individual contour components:  
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The distributions of these energy based feature values allows us to study the 

similarity between contours belonging to objects of interest and their properties. It 

seems reasonable to expect that the energy configuration space should display clusters 

in regions linked to objects of consistent shape and appearance.  

The relevance of using active contours and their associated energies becomes 

manifest when comparing contours after convergence. In background regions, control 

points are collinear and equidistant, therefore Me  features should report rather fixed 

values. For nematode contours, control point spatial distribution is not homogeneous 

because their location is determined by the foreground image data and body 

geometrical configuration. Since at some degree they look alike and share similar 

movement behavior a suitable set of Se features values could capture such limited 

configuration space.  

Other patterns can be deduced, but it is unlikely that features derived from any  

individual energy term will provide by itself a reliable recognition outcome. The 

combination of energy based features in a statistical framework is proposed to 

measure their discriminative power. To that aim the Bayes rule was applied to classify 

contours as nematode or non-nematode. The ratio of the a posteriori probabilities of 

nematode to non-nematode classes given the values of an energy based feature set 

was defined as discriminant function.  

 The prior probabilities were regarded homogeneous to test the effectiveness of the 

proposed features, however they can be modeled for instance by the distribution of 

control point distances to the nearest end point or by the distribution of line evidence. 

This reduces the discriminant function to the ratio of the probabilities of feature 

values given that a contour is assigned to a particular class. Assuming independence 

between energy terms and control point locations theses distributions can be readily 

defined as the product of the probabilities of  the feature set  elements given a class 
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Finally, the computational cost for contour classification in a population image 

depends on the size of C, the feature type selected and the number of energy terms 

included. In the case of Se there is no extra cost because their components are the 

terms of Econtour, Me calculations requires an additional step to calculate the associated 

average.  
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4   Experimental Evaluation 

The proposed methodology was evaluated on a set of high resolution time-lapse 

images depicting populations of adult nematodes with approximately 200 specimens. 

The end point set was extracted from ground truth images and straight initial contours 

placed between pairs of matching points according to the criteria presented in section 2. 

Both contour sets with 903 and 1684 elements, each having 16 control points, were 

optimized until convergence. To estimate the conditional probability distributions we 

built a training set of 50 randomly selected nematodes and non-nematode contours. 

Given the non-gaussian nature of P(Me|w) and P(Se|w) data we fitted them using 

weibull and gamma probability density functions respectively to extract the 

distribution parameters.  

The features derived from the expected point energy and the point sequence energy 

definitions, comprised all the possible combinations of energy terms. Every feature 

type was evaluated separately and combined totaling 21 energy based features. For 

completeness we included also the total contour energy Econtour. We additionally 

performed energy based feature classification considering different number of control 

points. To do that an increasing number of control points on both ends of every 

contour was gradually discarded. 

To assert the performance of the proposed energy based features we compared 

them to geometrical features used in previous work on nematode classification [3]. 

They include: the contour length  Len, the summation of signed distance from the end 

points to the contour’s centroid that provides a measure of symmetry Sym, a 

compactness Cmp metric calculated as the ratio between the contour length and its 

eccentricity, and the angle change rate Acr computed from the summation of the 

difference in angles between contour segments normalized by the length and number 

of control points. We tested them separately and combined using the same 

probabilistic framework described in section 3.  

Table 1. summarizes the classification results, it shows the true positive Tp rate, the 

false positive Fp rate, and the distance D to perfect detection corresponding to best 

performance for every feature type. In the case of energy based features the first 

 

Table 1. Best classification results for energy and non-energy based feature combinations 

 Line Evidence Expected length 

 D Tp Fp D Tp Fp 
16

)
ext

e
b

e
t

(e ,,S  0.263 0.884 0.236 0.137 0.911 0.104 

10

)
ext

e
t

(e ,M  0.406 0.614 0.125 0.227 0.800 0.108 

12

)
ext

e
t

(e ,S+M  0.543 0.467 0.106 0.398 0.604 0.044 

Len + Sym +Acr 0.479 0.924 0.473 0.352 0.901 0.338 

Econtour 0.747 0.924 0.743 0.736 0.923 0.732 
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column also specifies the energy terms included and the amount of control points.  

The proposed energy based features consistently show a better trade off between true 

and false detection rates compared to other features. Though in combination the true 

positive detection drops it is still comparable with non-energy based features that 

despite of detecting most nematode contours have a high rate of false detections. The 

total contour energy Econtour performed poorly.  

Point sequence features discriminative power increases as more control points are 

added while for expected point energy features results improves when this number 

decreases. This is indicative that nematode and non-nematode contour classes have 

similar average energy value distributions and only when the contour’s central part is 

analyzed the difference is large enough to allow reliable classification. A possible 

explanation relies on the fact that nematodes central area is the less flexible part of 

their body so  contour variations become prominent if we use only the central control 

points.  Regarding the two search spaces we noticed that results improve as we 

include more initial contours since we have more possibilities of segmenting all the 

nematodes contained in the sample. 

   

Fig. 3. Classification results for nematode (green) and non-nematode contours (red) some non-

nematode contours were remove to improve visibility 

The results showed that the single most discriminating energy term for  Me , Se and  
Me + Se features is the tension energy term et, the spatial distribution of control points 

appears to capture nematode evidence accurately. This observation is explained in 

terms of the relations between energy terms during optimization. Since in our image 

set nematodes show  lower external energy eext values near the center, control points 

tend to gather in that area however as they move et increases in the vicinity of contour  

ends and pulls them in the opposite direction. Therefore, the distance between  control 

points varies depending on the regions they are located, in our specimens these 

regions correspond to nematode appearance features. It must be noted that only by 

combining several energy terms the false positive rate can be consistently reduced. As 

expected bending energy eb allow us to filter out contours with sharp turns and the 
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external energy eext, those with spatial intensity distribution too different from those 

found  in the population Fig. 3. 

Nematode contour misclassification occurs when appearance information is lost or 

in the presence of an unusual shape configuration. The first case includes nematodes 

close to the petri dish border where lightning conditions reduce the contrast between 

foreground and background. The other case is frequently the result of optical 

distortion produced by the microscope lens. Non-nematode contours can be 

mistakenly classified when most of their control points converge towards a real 

nematode, for instance in the presence of parallel nematodes very close to each other, 

or when in heavy overlapping regions a contour manages to run over parts of several 

objects and still resemble a real nematode Fig. 4. 

   

Fig. 4. Misclassification examples (yellow). Right: nematode contour affected by blur. Left: 

non-nematode contour partially running over different nematodes in overlapping region. 

The change of relative optical density at junction constitutes the main source of 

structural noise. The resulting darker areas affect negatively the spatial distribution of 

control points during the optimization process and hence the recovered energy values. 

The more occluded is a nematode the less its discriminant function value, nevertheless 

correct detection of a number of nematodes in overlapping regions is feasible when 

enough shape information is retained. We also noticed that nematode contours sharing 

a end point with wrongly detected contours have a consistently higher discriminant 

function value, this relation could be used to improve detection results further but has 

not explored yet in these experiments. 

5   Conclusions 

A set of features for detection of individual nematodes in population has been 

proposed. The resultant patterns from a set of optimized contours proved a valid 

source of shape evidence for recognition of specimens in difficult scenarios. 

Detection rates allowed us to reject most non-nematode contour while keeping a 

significant number of correct detected nematodes.  
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The proposed approach differ from existing shape modeling approaches where 

feature points are manually located on salient regions on individual object to build 

linear and non-linear shape model. We use the evolution of active contour models to 

capture object statistics therefore constraining the range of possible appearance and 

geometrical configurations to those present in the current sample set. 

Features based on average and local contour energy component distributions were 

tested on manually segmented images in the framework of Bayesian inference.    

Experimental results with two different contour initialization strategies show that 

energies based features  provide better detection rates that geometrical based features 

commonly applied in image processing of biological samples. In particular energy 

term combination displayed a consistent performance for true nematode detection. 

When nematode and non-nematode contours have similar average feature values the 

results can be improved if only the central region of the contour is evaluated which is 

consequent with the morphological characteristic of these specimens captured during 

the optimization process.  

Despite the limitations of active contours to converge correctly in low contrast 

regions or in the vicinity of sharp corners we found out that recognition is still 

feasible if a sufficient amount of shape information is retained even in overlapping 

regions. Further improvement in detection rates could be achieved if interactions 

between classified contours and  prior knowledge about line evidence are included 

however this work is out of the scope of this paper. We let for future work extending 

our findings to video sequences for tracking moving nematodes in occlusion 

situations. 
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