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ABSTRACT

We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification
observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos
around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations
we explore the effects of various systematics, including antenna phase errors and source priors, and show how such
errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find
evidence for the presence of a M=108.96±0.12Me subhalo near one of the images, with a significance of 6.9σ in a
joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also
derive constraints on the abundance of dark matter (DM) subhalos down to M∼2×107Me, pushing down to the
mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies
between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional
substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic
imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of
ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of
substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses
with ALMA should be able to improve the constraints on the abundance of galactic substructure.

Key words: dark matter – gravitational lensing: strong

1. INTRODUCTION

Over the past few decades, multiple probes of the large-scale
structure of the universe have established a clear picture of our
cosmology that is described well by a simple model, the
ΛCDM model (e.g., Dodelson 2003). This model predicts that
structures including galaxies arise through a process of
hierarchical structure formation, which is driven by the
gravitational instability of cold dark matter (CDM) density
perturbations seeded by quantum fluctuations generated during
an early epoch of exponential expansion called inflation. On
large scales (megaparsecs) and across all epochs, the
predictions of this model agree remarkably well with a wide
variety of observations, including cosmic microwave back-
ground anisotropies (Planck Collaboration et al. 2015), galaxy
clustering (Anderson et al. 2014), and weak gravitational
lensing (Heymans et al. 2012). On smaller, subgalactic scales
where structure has become highly nonlinear (e.g., 10 kpc) at
low redshift, the agreement between CDM predictions and
observations of galactic structure has been less clear.

One of the most famous examples of CDM’s small-scale
difficulties is the missing satellite problem (e.g., Kravtsov 2010,
and references therein). Numerical simulations of the formation
of galactic dark matter (DM) halos robustly predict the
presence of a large population of bound subhalos orbiting
within all virialized objects such as the Milky Way. These
subhalos span a broad spectrum of masses from objects like the
Magellanic Clouds and extending down to the resolution limits
of the simulations M∼103Me (Diemand et al. 2008; Stadel
et al. 2009; Navarro et al. 2010). Observations of dwarf
galaxies in the Local Group find an almost factor of 10 deficit
of satellites compared to ΛCDM predictions, at masses
corresponding to Vcirc∼10 km s−1 (Kravtsov 2010).
Two main classes of solutions have been proposed to resolve

this discrepancy. The first solution involves modifying the
microphysics of DM particles in a manner that would suppress
the abundance of low-mass substructure while remaining
consistent with the existing bounds on structure at
k10hMpc−1 from the Lyman α forest (Seljak et al. 2006;
Markovič & Viel 2014). Examples of proposed modifications
to CDM include warm dark matter (WDM), in which the
thermal streaming motions of DM particles wipe out small-
scale structure (Bode et al. 2001; Abazajian 2006), or self-
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interacting DM, in which DM particles can have non-
gravitational interactions (Spergel & Steinhardt 2000). In
principle, fluid descriptions of DM could also suppress
satellites (Khoury 2015).

Alternatively, the solution to the missing satellite problem
may lie within baryonic astrophysics. Numerous processes
have been suggested for suppressing the efficiency of star
formation within low-mass halos and subhalos, such as
photoevaporation during reionization or feedback from massive
stars, supernovae, or black holes (see Kravtsov 2010, for a
review). In this scenario, a large number of DM subhalos
should exist around most galaxies; however, most of them
would be devoid of stars and therefore difficult to detect using
conventional means.

Gravitational lensing has long been suggested as a method of
distinguishing between these possibilities (various properties of
tidal streams and their disruption have also been suggested as a
method to detect subhalos in the Milky Way, e.g., Siegal-
Gaskins & Valluri 2008; Carlberg 2009; Erkal & Belokurov
2015a, 2015b). Strong gravitational lensing is sensitive to
galactic substructure even if that substructure is completely
devoid of baryons (e.g., Mao & Schneider 1998; Metcalf &
Madau 2001; Dalal & Kochanek 2002; Moustakas &
Metcalf 2003; Kochanek & Dalal 2004; Koopmans 2005;
Keeton et al. 2006; Vegetti & Koopmans 2009; Vegetti
et al. 2012; Nierenberg et al. 2014; Cyr-Racine et al. 2015; Xu
et al. 2016). Dalal & Kochanek (2002) analyzed a sample of
strongly lensed quasars and found that the lenses must have a
large abundance of substructure. They found that the fraction of
projected mass within ∼10 kpc of lens galaxies in the form of
substructure was 0.3%<fsub<3.5%, at 90% confidence.
Vegetti et al. (2014) analyzed a sample of strongly lensed
galaxies observed using the Hubble Space Telescope (HST) and
Keck AO data and found 0.2%<fsub<2.8%, at 68%
confidence, with two detections reported in Vegetti et al.
(2010, 2012). These measurements of projected substructure
are in broad agreement with expectations for the massive
elliptical galaxies that are typical of strong lenses (see
Section 6), but the large uncertainties do not yet allow for a
discriminating test of DM models.

Recently, Hezaveh et al. (2013a) proposed that ALMA
observations of the large population of strongly lensed dusty
galaxies discovered in sub-mm surveys like the South Pole
Telescope (Hezaveh et al. 2013b; Vieira et al. 2013), the
Atacama Cosmology Telescope (Marsden et al. 2014) or
Herschel (Negrello et al. 2010; Bussmann et al. 2013; Wardlow
et al. 2013) could significantly improve constraints on DM
substructure. Toward that end, in this paper we present a
method for detecting DM subhalos using interferometric data,
showing a few examples of the performance of the pipeline on
mock data. Finally, we apply our formalism to the recent
ALMA Science Verification observations of the strongly lensed
dusty galaxy SDP.81 (ALMA Partnership et al. 2015b).

The outline of the paper is as follows. In Section 2 we
present a formalism for modeling extended lensed sources
using interferometric observations. In Section 3 we present a
perturbative method for searching for subhalos using interfero-
metric observations. Section 4 describes our implementation of
this method and presents the results of various tests and
analysis of mock data used to test the pipeline. In Section 5 we
analyze ALMA observations of SDP.81 using this pipeline,
quantifying the abundance of subhalos in the lensing galaxy. In

Section 6 we compare the constraints obtained in the previous
section with the predictions of the ΛCDM model, and finally
discuss the results in Section 7. For all of the modeling
presented in this paper, we assume a flat ΛCDM expansion
history with mean matter density ΩM=0.267 and current
expansion rate H0=71 kmMpc−1 s−1.

2. FRAMEWORK: FITTING VISIBILITIES WITH A
PIXELATED SOURCE

Data from interferometric observations consist of a large
number of complex visibilities. We fit these data using a model
for the distribution of matter in the lensing galaxy, the
background source emission, and certain aspects of the
measurements such as time-varying antenna phase errors. To
describe the source emission, we use a pixelated source map
containing many pixels for each observed channel. We can
think of the source map pixels as parameters in our lens model,
along with parameters describing the lens mass distribution and
other nuisance parameters like antenna phase errors. Below, we
will use the notation h to denote lens mass parameters (see
Table 1), S to denote source pixel parameters,f to denote other
parameters like phase errors, and p to denote the full set of
parameters, i.e., h f=p S, ,{ }.
The general framework of fitting strongly lensed images with

pixelated sources is described in detail in Warren & Dye (2003)
and Suyu et al. (2006). In general, given data vector D, model
predictions M p( ), which depend on lensing parameters h (e.g.,
lensing mass), and source parameters S (i.e., pixel values), we
can write the posterior probability distribution (PDF) for the
parameters as  µ -e 2, where  is defined as

T T

T T T



f f

= - - +

= - - + + f

- -

- - -

p D M p D M p p p

D M D M S S

C C

C C C . 1

N p

N s

1 1

1 1 1

( ) ( ( )) ( ( ))

( ) ( ) ( )

In this expression, the first term on the right-hand side
corresponds to the usual goodness-of-fit χ2, and the second
term corresponds to a prior on the model parameters p. CN is
the noise covariance matrix and Cp is the prior covariance
matrix describing our assumed multivariate Gaussian prior

Table 1

Best-fit Lens Parameters with 68% Uncertainties

Parameter Definition Value

α radial slope 1.06±0.03
Mlog10 10 kpc( ) mass within 10 kpc (Me) 11.60±0.006

òx ellipticity x 0.371±0.019
òy ellipticity y −0.046±0.008
xlens lens x (″) 0.481±0.006
ylens lens y (″) 0.154±0.005
γ1 external shear 0.0004±0.006
γ2 external shear 0.0017±0.006
A3 m=3 multipole [5.90 ± 6.26]×10−3

B3 m=3 multipole [25.44 ± 6.00]×10−3

A4 m=4 multipole [12.53 ± 10.10]×10−3

B4 m=4 multipole [6.52 ± 11.20]×10−3

Mlog10 sub( ) subhalo mass (Me) 8.96±0.12

xsub subhalo position x (″) −0.694±0.025
ysub subhalo position y (″) −0.749±0.044

Note. Best-fit parameter values from a joint fit to bands 6 and 7 data. Positions
are in arcseconds relative to the ALMA phase center.
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PDF for source parameters. We assume that the covariance
matrix is block diagonal, = h fC C C Cdiag , ,p s( ) i.e., we
assume no prior covariance between lens parameters, source
parameters, and phase parameters. In the second line of
Equation (1) and for the rest of this paper, we set =h

-C 01 , i.e.,
we assume no prior on the lens model parameters.

Of particular importance is the prior on source pixel
parameters S. We denote that block within Cp as Cs, the
source prior covariance matrix, which gives a term T -S SCs

1 in
Equation (1). This matrix is often written as l=C Cs s

ˆ , where
λ is a scaling parameter (Suyu et al. 2006). We describe our
procedure for determining the strength of the source prior, λ, in
Section 2.1. In Equation (1) the parameter vector S is defined
without loss of generality so that the Gaussian prior is centered
at =S 0. More generally, if we define S so that the prior is
centered at some Sc, then we replace  -S S Sc in the second
to last term in Equation (1).

We note that the number of source parameters S is quite
large, and as noted in previous works (e.g., Suyu et al. 2006)
the source prior will act to regularize the reconstruction of the
source parameters and avoid overfitting the data. This Gaussian
prior, described by covariance matrix Cs, is discussed below in
Section 2.1. For visibility data, the noise covariance CN is
diagonal and its amplitude can be determined from the data
using a method described in detail in Section 4.

For ALMA observations, the data vector D consists of the
real and imaginary parts of complex visibilities. We can write
our model visibilities as

h f f h=M S SF BL, , , 2( ) ( ) ( ) ( )

where S is a vector of source pixel values, L is a lensing
operator that maps the brightness of each source pixel to the
image pixels (sky emission), B is a diagonal primary beam
operator that multiplies the sky emission with the primary
beam, and F is a dense Fourier operator whose ijth element is
equal to f f- + -e k ri i j l l1 2

( · ), corresponding to a visibility at uv-
coordinate ki from baseline l (composed of two antennas,
labeled l1 and l2) and an image pixel located at rj. Note that
rows of F with equal values of l have a common phase error
(e.g., visibilities from the same baseline within the segmenta-
tion time of the antenna phase corruption parameters). To
calculate L for a set of lens parameters h (e.g., mass and
ellipticity) we solve the nonlinear lensing equation using a ray-
tracing approach. Note that L, B, and F are all linear operators
and that S is a subset of the model parameter vector

h f=p S, ,{ }. Application of FB to a sky emission model
produces M , the vector of the model visibilities.

We treat the source parameters S (the source pixel
intensities) as nuisance parameters and marginalize over them.
Our goal is then to compute the lensing parameter posterior
described by Equation (1), marginalized over source para-
meters. Because the observables are linear in the source pixels
and  is quadratic in the observables, then the likelihood is a
Gaussian function of the source pixels. Since our assumed
source prior is also Gaussian, the posterior is Gaussian. This
allows us to analytically marginalize over the source nuisance
parameters using Gaussian integrals to determine the posterior
PDF for the remaining parameters.

The difference in marginalized log posterior between two
models is then

TD = D --B BA Alog det , 31[ ( [ ])] ( )

where T= +- -A FBL C FBL CN s
1 1( ) ( ) and T= -B DLBF CN

1( )

(Suyu & Halkola 2010). The source reconstruction that
maximizes the unmarginalized posterior (at a fixed lens model)
is also analytic and is given by (Warren & Dye 2003; Suyu
et al. 2006)

= -S BA . 41 ( )

We note that the above formalism is general to multi-
frequency data. Vectors D and S can be concatenations of
multiple data and reconstructed source vectors in different
frequencies, while matrices CN and Cs could be formed as
block diagonal matrices including the noise and source prior in
each channel. It is also possible to include regularization
between different frequencies by allowing non-zero elements in
Cs in off-block-diagonal elements.

2.1. Source Structural Prior

As Equation (1) makes explicit, the posterior PDF depends
on our choice of the source prior, Cs. Various forms of source
priors are explored in the literature, including so-called gradient
and curvature priors (Warren & Dye 2003; Suyu et al. 2006).
More generally, we can construct a source prior covariance that
is based on the expected statistical properties of the source
emission. For example, if the covariance is stationary (i.e.,
depends only on the distance between two pixels) then we can
describe the covariance matrix completely by an isotropic
correlation function, or equivalently, by a diagonal power
spectrum. The gradient and curvature priors, for example,
correspond to power-law power spectra P(k)∝k− n for appro-
priate n. We do not have to restrict ourselves to power-law
power spectra, however. For instance, we could employ more
physically motivated priors that are based on the expected
morphology of the specific sources under investigation.
The dust and molecular line morphologies of early star-

forming galaxies are expected to be well represented by a
number of star-forming clumps embedded in a larger structure
such as an exponential disk. One can use this structure to
construct a source prior by calculating the power spectrum and
covariance of such a clustered source model. Suppose that we
have Nc clumps in our source galaxy whose distribution within
the galaxy has profile Uc(r). We normalize Uc to have unit
integral, ò =U r d r 1c

2( ) . Its Fourier transform is Uc(k). Clump
i has luminosity Li and profile ui(r), normalized to have unit
integral, ò =u r d r 1i

2( ) . Then the power spectrum of the
source emission is proportional to

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

*å åµ +
¹

P k L u k L L U k u k u k . 5
i

N

i i

i j

Nc

i j c i jsrc
2 2 2

c

( ) ∣ ( )∣ ∣ ( )∣ ( ) ( ) ( )

The Fourier transform of this power spectrum gives the
correlation function of the source emission, and the source
covariance Cs is determined from this correlation function.
Note that the normalization of the power spectrum (and hence
the normalization of Cs) has not been specified. In principle we
could normalize Cs using the observed intensity, but this has
been magnified by an a priori unknown lensing magnification.
Instead we normalize Cs by maximizing the marginalized

likelihood (Bayesian evidence) for the fixed-parameter lens
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model, as discussed in Suyu et al. (2006). We can scale an
arbitrarily normalized source covariance matrix Cs

ˆ (which in
essence only defines the form of the prior) to get an
appropriately scaled matrix l=C Cs s

ˆ , where λ is a scaling
parameter which can be determined by solving

Tl l- + - =- -
S SN FL C C CTr 0, 6s s s s

1 1
([ ˆ ] ˆ ) ˆ ( )

where Ns is the number of source pixels and S is determined
using Equation (4). This equation can then be solved
nonlinearly.

3. SEARCHING FOR SUBHALOS

Equation (1) tells us how well any lens model fits the data.
That model can contain a smooth potential of the main lens and
a number of subhalos. As we add subhalos to the mass model,
the model parameter space grows considerably in dimension-
ality, and searching that high-dimensional parameter space can
become computationally expensive. In this section we describe
a simple approach toward expediting that search. Our method
relies on first making a linear approximation to the effect of
subhalos on the model predictions to identify promising points
in parameter space where subhalos could significantly improve
the fit. Once we have identified those promising parameter
values using the linearized search we then conduct searches
using the full nonlinear lens equations, starting at those points
in parameter space.

As discussed above, lens model predictions are in general
highly nonlinear functions of most of the lens parameters and
are linear only in the source parameters. In this section we
show that once a maximum posterior model is found using the
procedure described above, we can linearize the model
predictions in a small local neighborhood of these fiducial
parameters even when substructure is added to the mass model.
The key aspect of low-mass substructure that permits a
linearized treatment, even approximately, is that the effects of
substructure are perturbative when expanded in the deflection
angle.

For the purpose of our discussion below it will be useful to
separate the subhalo parameters psub from the rest of the
parameters p in our notation. The parameter set p therefore
consists of macrolens density parameters, background source
parameters, and other nuisance parameter (e.g., antenna
phases), while we reserve the subhalo parameters as psub.

To infer the presence of subhalos we study the posterior PDF
for the subhalo parameters, psub, marginalized over all the rest
of the parameters p, and we compare with the marginalized
posterior PDFs in models with different numbers of subhalos.
In particular, the ratio of the marginalized posterior of a
subhalo model with mass Msub>0 to that of a model without
subhalos (or equivalently, with Msub= 0) provides a route to
the marginal posterior for the presence of the given subhalo.

In our approach we first find the maximum posterior smooth
model using the procedure described in Section 2. Next, we
consider the effect of subhalos. Note that the effects of low-
mass subhalos on the lensing deflection angles entering the
matrix L are quite small in general. More precisely, low-mass
substructure produces only a small perturbation to the
deflection angle at every location. This suggests a linearized
treatment of subhalos (Dalal & Kochanek 2002; Hezaveh
et al. 2013a). For a given subhalo (which could be
parameterized by its location and mass), we add the subhalo

deflections to the deflections arising from the best-fit smooth
lensing potential model. We write the marginalized posterior,
m, for the subhalo of that mass and that location as

  ò ò= µ -p p p p pd e d, 7m sub sub

1
2( ) ( ) ( )

where  is the joint posterior PDF and  is given by
Equation (1), which we rewrite as

T

T

 = - -

+

-

-

p p D M p p D M p p

p p

C

C

, , ,

, 8

N

p

sub sub
1

sub

1

( ) [ ( )] [ ( )]

( )

to make the dependence on psub explicit. Here, Cp is the prior
covariance matrix of all parameters p, and Cp contains the
block Cs as described in the previous section. Note that as in
Equation (1) our expression for  still includes a prior term so
that it does not solely reflect the goodness-of-fit. The integral in
Equation (7) is analytic when we can use a linearized treatment
of parameters, i.e., when subhalos are perturbative (Hezaveh
et al. 2014) (also known as the Laplace approximation). To
leading order, we can write

= + D = +
¶
¶
DM p p p M p

M

p
p 90 0( ) ( ) ( )

for some fiducial parameter set p0, which we take to be the
smooth model parameters from the maximum posterior model
without substructure. Substituting this expression for M into
 gives us a quadratic expression in the parameter shift Dp,

T T + D = + D + D D-p p p W p p R p, 2 , 100 sub 0
1( ) ( )

where

T T = D D +- -D D p pC C 11N p0
1

0
1

0 ( )

T⎡

⎣
⎢

⎤

⎦
⎥=

¶
¶

¶
¶

+- -
-

M

p

M

p
R C C 12N p

1 1

1

( )

T

=
¶
¶

D -- -W
M

p
D pC C 13N p

1 1
0 ( )

and D = -D D M p p,0 sub( ) consists of the residuals between
the data and the predictions of the unadjusted smooth model
plus the subhalo. Performing the integral in Equation (7) then
gives the likelihood for the subhalo parameters psub, margin-
alized over all nuisance parameters p,

T  µ º- - --
p e e eR , 14W W p

m
R

sub
1 m

1
2 0

1
2

1 1
2 sub( ) ∣ ∣ ( )( )

where we define an effective marginalized  pm sub( ) in terms of
the log of the marginalized likelihood,

T = - +W WR const. 15m 0 ( )

Again, -e 0.5 0 is proportional to the posterior if we assign
uniform priors to the subhalo parameters and we add a subhalo
to our best-fit smooth model without adjusting the parameters
(i.e., for =p p0): the

TW WR term accounts for the margin-
alization over the smooth model parameters p. Since R does
not depend on subhalo parameters psub, we can write the
difference of log posterior for two models as

  D º -p p 16m msub sub 0( ) ( ) ( )
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where m0 corresponds to the marginalized likelihood for the
model with no subhalos.

Because we parameterize the source emission using pixel
brightnesses on a fixed grid rather than using parameters like
the locations of source clumps that can freely move, one
subtlety that arises in the above expressions is that the matrix
¶ ¶M p must involve terms corresponding to the deflection
from the subhalo. Specifically, we evaluate the derivative
¶ ¶M p in Equation (9) using a deflection field that includes
deflection from the subhalo model under consideration. This
correction introduces certain nonlinear terms which naively
might appear to be small, but in practice we have found that
neglecting these terms can lead to significant errors in
estimating the ability of the smooth (macro) model to
compensate for the effects of substructure, in particular for
the most massive subhalos.

Using the procedure described above we can map out the
marginalized posterior of models as a function of the subhalo
parameters (e.g., location and mass). If we find any locations
within the substructure parameter space that appear to
significantly improve the fit, we then initiate an optimization
of the model parameters using the full nonlinear lens equations
starting from the most promising points found using the
linearized search.

It is worth stressing that the linearized lens model is very
accurate over most of the subhalo parameter space as long as
subhalo effects are small. The only locations where the
linearized model predictions noticeably differ from fully
nonlinear model predictions are where subhalos produce
significant changes to the posterior, i.e., where  D 20∣ ∣ ,
which in general only occurs within a small fraction of the
possible parameter space. Thanks to the high accuracy of the
linearized approximation, we can use the maps of m not only
to identify promising starting points for our nonlinear search
but also to exclude subhalos over much of the possible
parameter space where subhalos are ruled out. In other words,
we can use the maps of m to derive constraints on the presence
of subhalos and, in principle, derive constraints on the mean
abundance of subhalos. To derive bounds on the abundance,
we would similarly need to map out m for models that have
two subhalos, three subhalos, and so on for all possible subhalo
locations. However, because we are considering subhalos of
low mass, their effects on the observables are perturbative and
restricted to localized regions on the sky. We will argue below
that this allows us to derive approximate constraints on the
subhalo abundance from maps of m from models containing
one subhalo.

4. IMPLEMENTATION, SIMULATIONS, AND TESTS

Perhaps the most challenging aspect of this analysis is the
sheer volume of the visibility data provided by interferometers
such as ALMA. For ALMA long-baseline campaign observa-
tions of SDP.81 (ALMA Partnership et al. 2015a), visibilities
were typically recorded every 0.5 s for hundreds of baselines,
each with more than 1000 spectral channels. This results in
about 108 visibilities for a four-hour long observation. For a
reasonable pixel size, the size of the resulting Fourier operator
alone can exceed a few terabytes, and fitting many models to
such matrices is beyond the capabilities of medium-size
clusters. Fortunately, careful binning of the visibilities can
make the problem tractable. Because of the non-zero antenna
size, each visibility actually samples a range of spatial

frequencies around its nominal uv location and visibilities
within an antenna diameter of each other are highly correlated.
Binning visibilities within antenna-sized patches of the uv-
plane can reduce the size of the data dramatically (to fewer than
106 visibilities per spectral channel) without significantly
decreasing the information content of the data.
Even after binning this is still a computationally challenging

task: the matrices are still too large to fit in the memory of
single processors, but they can fit across distributed memory on
large clusters. This requires the use of distributed linear-algebra
libraries to store and manipulate these matrices. It is also
important to note that unlike the blurring matrices used in
analyzing CCD images of gravitational lenses, which are
extremely sparse, the Fourier operator here is fully dense and
does not permit the application of sparse libraries. For these
reasons, we take advantage of the “Elemental” dense linear
algebra library, which efficiently performs linear algebra
operations over distributed cores (Poulson et al. 2013a, 2013b).
Our pipeline includes a “pre-processing” part, in which the

visibilities are binned according to their position in the uv-plane
and the noise covariance matrixCN is determined. The result of
this pre-processing is a vector of binned visibilities which can
be modeled as described in Section 2.
The data sets provided by ALMA contain information about

the standard deviation of noise for each visibility which are
proportional to the system temperature Tsys. This information,
however, is intended to be used for weighting of the visibilities
for imaging purposes and is not adequately scaled to provide
accurate root mean square (rms) noise in appropriate units (e.g.,
Jy). The noise variance cannot be taken directly from the
visibilities because their variation contains a significant
contribution from the sky signal, which must be removed.
We achieve this by first grouping the visibilities into bins that
probe the same signal and then taking differences between
visibilities that null the sky within those groups, leaving only
noise. We can then either find the best overall scaling for the
provided system temperature, Tsys, to maximize the likelihood
of the observed noise or, alternatively, we can simply assume
that the variance in the subtracted visibilities is equal to twice
the noise variance. We try both methods and find that they
provide consistent results.
Explicitly, if we assume that the noise rms is proportional to

Tsys, we can write T= AC T TN
2 , where T is a diagonal matrix

of system temperatures and A is an unknown scaling factor.
Assuming Gaussian noise gives

 = - - +N NA A A CT Tlog
1

2
log

1

2
, 17( ( )) (∣ ∣) ( )

where  A( ) is the likelihood of a certain value of A, N is the
vector of noise (the residual after subtracting half of visibilities
from the other half), and C is the sum of other terms that do not
depend on A. By solving ¶ ¶ =A Alog 0( ( )) for A we get the
most likely A,

=
N N

A
n

T
, 18( )

where n is the number of visibilities used to estimate A (half of
all visibilities, since one half is subtracted from the other to
remove the signal). We build the noise covariance matrix CN

by scaling the system temperatures with this scaling. With
appropriate variances in hand, we fit the visibilities with a
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smooth lens model, and search for subhalos perturbatively
using the procedure described in Section 3.

4.1. Mock Observations

We performed a large number of tests described below using
mock data to ensure that the pipeline provided accurate results.
We tested for errors in the noise estimation and for biases in the
smooth lens model. These simulations also quantify our false
positive detection rate and subhalo detection efficiency.

The mock observations for these tests were produced using a
fully independent code to reduce the chances of duplicating
errors. For each mock data set a complex background source
composed of tens to hundreds of smaller clumps was lensed
and the lensed images were used to simulate ALMA
observations using the Common Astronomy Software Applica-
tions package. The data pre-processing steps described above
(visibility binning and noise estimation) were applied to the
mock data and the binned visibilities were modeled to find a
best-fit smooth model.

The smooth density model is described by a singular
elliptical power-law surface density profile of the form

k µ + - a-x y x y, 12 2 2 2( ) [ ( ) ] where α is the radial
power-law index, and x and y are measured relative to the
lens centroid xlens, ylens (Barkana 1998). The lens centroid and
the subhalo positions are given relative to the ALMA phase
center. To explore the lens parameter space we implemented
the Markov chain Monte Carlo (MCMC) algorithm proposed
by Goodman & Weare (2010). We follow the procedure
described in Foreman-Mackey et al. (2013). Our implementa-
tion allows sampling the posterior in parallel over many cores,
taking advantage of the MPI message-passing system. On the
large computing resources that we used (e.g., Towns et al.
2014), this allowed much faster parameter explorations by
evaluating multiple models simultaneously on different cores.

Figure 1 shows the one- and two-dimensional marginal
posterior PDFs for all lens model parameters given a mock data
set. The gray shaded contours show the recovered posterior
when using a gradient covariance matrix as the source prior.
The red contours show the posterior for the same data, but
using a curvature prior on the source parameters. The black
dashed crosses show the true parameters that were used to
generate the mock data. As can be seen, in both cases we
successfully manage to recover the parameters with no
apparent biases.

However, in the course of our tests, we encountered two
issues that could have resulted in biased parameters. The first
resulted from using the power spectrum prior as defined in
Equation (5). Since the power spectrum does not diverge at
k→0, this prior tries to minimize the total emission of the
unlensed source, i.e., it biases against low magnification. This
bias toward high magnification favors shallow radial density

slopes. To fix this issue, we removed the DC mode from this
covariance matrix, which (similar to the gradient and curvature
priors) renders it insensitive to the total sum of source pixel
intensities. We can remove the zero mode of the covariance
matrix by replacing

T

T
= -- -

- -

-

a a

a a
C C

C C

C
, 19s s

s s

s

1 1
1 1

1
¯ ( )

which follows from the Sherman–Morrison theorem14
(Sher-

man & Morrison 1949). Here, a is a column vector containing
only ones (i.e., the zero mode) and Cs

¯ is the modified
covariance matrix with no DC sensitivity (i.e.,

T= + a aC Cs s
¯ ). Removing the zero mode removes the bias
toward high magnification and small source sizes.
Another potential source of bias was the choice of the area

covered by source pixels. For a given lens model, if an image
pixel is mapped outside the area covered by the source grid it
will automatically be assigned a value of zero. A model that
maps more image pixels to the defined source area may have
more freedom in fitting the data compared with a model with
fewer in-source-grid mappings. Therefore, under equal condi-
tions, lens models that map all image pixels to some source
pixel are preferred to models that do not. This can result in
significant biases in lensing parameters (e.g., ellipticity and
slope). To avoid this bias, the size of the source grid should be
large enough to cover the lensing models during the fitting
process (Suyu et al. 2006; Vegetti & Koopmans 2009).

4.2. Phase Corruption

Once a best-fit model is determined, we start the subhalo
search by mapping D over the subhalo parameter space
(position and mass). As mentioned earlier, in addition to lens
and source parameters, we marginalize over other nuisance
parameters in the linear subhalo finder, such as antenna phase
errors. This is similar to the procedure described in Hezaveh
et al. (2013b) with the addition of the possibility of imposing a
prior on the antenna phase errors and allowing for time-
segmented phase errors.
Figure 2 shows maps of D as a function of subhalo position

for various cases of simulated data. For a simulation with no
subhalo present (top left), the analysis correctly excludes the
presence of a subhalo over the region of sensitivity. In the
remaining panels the mocks contain a subhalo at the location of
the blue circled cross. The simulation for the top right panel
does not include phase errors in the measurements. The subhalo
is correctly detected at ∼5σ with no false positives. The mocks
for the two bottom panels include antenna phase errors. In the
bottom left panel we have not corrected for these phase errors,
resulting in numerous false positives. The bottom right panel
shows the results for the same mock data when phase errors are
marginalized over appropriately, resulting in the disappearance
of the false detections. All four panels have the same noise
realization.
This test illustrates one of the reasons why a careful analysis

of the visibilities is essential to search for substructure using
interferometric data. Given the challenges of analyzing large
interferometric data sets, one might be tempted to simply
analyze CLEAN images instead of visibilities. CLEAN images
fix the value of the antenna phases and do not allow them to be
marginalized over when comparing different models which, as
illustrated here, could result in spurious detections. In addition,

14 The Sherman–Morrison theorem states that for matrix Cs and vectors b and
c,

+ = -
+

- -
- -

-b c
b c

c b
C C

C C

C1
.T

T

Ts s
s s

s

1 1
1 1

1
( )

This can be verified by inspection, by multiplying the above equation by
T+ b cCs on either the left or the right. We wish to adjust the covarianceCs to

give infinite variance to modes with uniform brightness across all pixels. In our
notation this kind of zero mode is written as af , where a is a vector containing
all ones in its components and f is a scalar. To give infinite variance to these
modes, we set = =b c af in the Sherman–Morrison formula and take the
limit  ¥f , which results in Equation (19).
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CLEAN images are produced through a nonlinear deconvolu-
tion procedure whose effects on the data and the correlated
noise properties cannot be well quantified. It is worth stressing
that the effects of low-mass substructure on the lensed images
can be quite subtle, and so approximations and assumptions
which may not lead to serious errors in other contexts could
introduce significant errors for a substructure lensing analysis.
This is why we adopt the approach of explicitly modeling the
visibilities and marginalizing over the nuisance parameters.

Finally, we note that although in the two right panels of
Figure 2 we only observe a single region with significant
negative D (where the subhalo is detected), subhalos with
larger masses can result in multiple islands. Figure 3 shows a
mock generated using a simulation with a subhalo of mass

= M M10sub
9 . The left panel shows the D map when

searching for this subhalo. As can be seen, there are multiple
islands where a subhalo can produce a better fit; however, the
true position of the subhalo corresponds to the lowest D . The
right panel of Figure 3 shows the D map when the detected
subhalo is added to the macro parameters and a search for an
additional subhalo is performed, showing that all correspond-
ing islands disappear.

5. RESULTS FOR SDP.81

We use the recent ALMA Science Verification observations
of the strongly lensed system SDP.81 (ALMA Partnership et al.
2015b) to illustrate the application of this method to real data.
The system is comprised of a foreground galaxy (z= 0.299),
lensing a background dusty, star-forming galaxy (z= 3.042).
Figure 4 shows the lensing galaxy observed by the HST
(grayscale) superimposed on the lensed arcs observed by
ALMA. Our analysis shows that this data set is highly sensitive
to the effects of low-mass subhalos. In the analysis presented
here, we used only the calibrated continuum data from bands 6
and 7. In future work we will present our analysis of the full
data set, including CO line data.
We estimate the noise variance for each visibility using the

procedure described above and bin the visibilities in 12 m cells.
However, we only bin visibilities that share the same baseline
and are taken within a short (20 minutes) observing period.
This allows us to assign a separate antenna phase error to each
baseline at different time intervals (the phase errors could
slowly change during the course of an observation). This
results in ∼0.5 million binned visibilities, a factor of ∼20 fewer
than the original ∼10 million. We note that the shorter (2 km)

baselines in the binned visibilities have significantly higher

Figure 1. Posterior PDF for the lens model parameters for a mock data set of a 2 hr long observation of a 50 mJy source with an antenna configuration with maximum
baselines of ∼2 km. The different colors correspond to different regularization schemes: the gray contours are for a gradient prior, and the red contours are for a
curvature prior (Warren & Dye 2003). We see no evidence of systematic biases in the reconstructed parameters. The results shown here are typical of the mocks we
simulated.
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signal-to-noise compared to the longer baselines because (a) for
resolved sources, the signal diminishes on the longest baselines
and (b) the visibilities are sampled more densely on short
baselines, meaning that the short-baseline bins contain a larger
number of visibilities. This allows us to speed up our search for
the best-fitting parameters using the following approach. We
first use only the subset of baselines shorter than 2 km in our
initial MCMC analysis to localize the neighborhood of the best
fit. This approach greatly expedites our MCMC optimization,
as many evaluations of the likelihood are required to fully
search the highly multidimensional parameter space of our
smooth model. Once this initial localization has been achieved,
we can use the full data set. We note, however, that the
observations of SDP.81 are performed on various dates which
span many weeks with significantly variable observational
conditions, giving rise to a large range in noise properties. We

therefore decide to model binned visibilities with noise lower
than 5.0 and 5.5 mJy in bands 6 and 7, respectively, which
contain about 40% of the total number of unbinned visibilities.
In addition to the parameters described in Section 4.1, we

allow for low-order angular multipoles in the main lens, of the
form k f f f= + a-r A m B m r r, cos sinm m m s( ) [ ( ) ( )]( ) for
m=3, 4, where = r 1s . Note that the same radial slope α

and centroid (xlens, ylens) are used for the multipoles and for the
ellipsoidal piece. We also allow for external shear, parameter-
ized by the usual components γ1 and γ2. To avoid degeneracy
of the orientation angle when ellipticity is close to zero, we use
fitting parameters òx and òy, defined so that   = +x y

2 2 1 2( )

and the orientation angle is given by the arctangent of these
components. Overall, therefore, our primary lens model
contains 12 freely adjustable parameters.

Figure 2. Maps of D (Equation (16)) as a function of location for a subhalo of mass = ´ M M4 108 , using simulated data. Positive D corresponds to subhalos
excluded at that location while negative D corresponds to subhalos improving the log posterior. The mock data for the top left panel are for a simulation without any
substructure and our analysis excludes the presence of subhalos of this mass over the area of sensitivity. The simulated arcs have been overlaid with white contours. In
the remaining panels, the mocks contain a subhalo at the location of the blue circled cross. The simulation for the top right panel does not include phase errors in the
measurements. The lower left panel includes such errors but does not compensate for them and the lower right panel includes phase errors and marginalizes over them.
All four panels have the same noise realization and a model subhalo mass of M=4×108Me.
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5.1. Initial Subhalo Search

Once a smooth model is obtained, we use the best-fit
parameters to perform a linearized search for subhalos. As we
have mentioned above, these lens parameters, source para-
meters, antenna parameters, etc., all become nuisance para-
meters that we marginalize over for every different model when
we search for subhalos. We follow Hezaveh et al. (2013a) and
model the subhalo deflection field using a truncated isothermal
surface density profile, also called a pseudo-Jaffe profile
(Muñoz et al. 2001). This profile is characterized by a velocity

dispersion σv and truncation radius rt, and the total mass of the
subhalo is given by ps=M r Gv tsub

2 . To reduce the dimen-
sionality of the subhalo parameter space, we assume that rt is
related to σv by s s=r r2t v G E( ) , where σG is the velocity
dispersion of the main lens, determined from its observed
Einstein radius rE. We search for subhalos over a range of
subhalo masses, over a 8×8 arcsec area around the lens
center. Figure 5 shows the results of our initial search. The
figure plots D , twice the difference in marginalized log
posterior between a model with a subhalo compared to our
smooth model, as a function of subhalo location for a subhalo
mass = M M108.6 . As the figure indicates, there are several
locations where adding a subhalo improves the posterior
considerably, with the most significant having D = -22.2.
As discussed above in Section 4, improper modeling of

systematics and unknown errors can lead to spurious detections
of substructure. We have attempted to mitigate these effects by
marginalizing over many potential systematics, including time-
varying antenna phase errors. Nevertheless, it is possible that
the apparent detection of substructure indicated in Figure 5
could be due to an unknown interferometric data corruption
such as visibility decorrelation or rapidly varying antenna
phase errors. Given that such errors are temporally variable, an
analysis of multiple data sets observed at different times can
reveal if our analysis is affected by them. As a test of this, we
analyzed bands 6 and 7 data separately, noting that they were
obtained on different dates. Our analysis reveals a consistent
pattern between the two bands (see Figure 5), giving us
confidence that the level of unknown systematics from such
effects is below our statistical uncertainties. Figure 6 illustrates
the difference between our best-fitting model without sub-
structure and the best-fitting model with substructure for bands
6 and 7. As expected, the subhalo’(s) effect is largely localized
to its immediate vicinity and the counter-images of that region.
Based on the results of this initial linearized search, we then

expanded our lens model to include a subhalo with three

Figure 3. D maps for mock data including a massive (Msub = 109Me) subhalo showing multiple islands where the addition of a subhalo could produce a better fit.
We find that the island producing the lowest D corresponds to the true position of the subhalo (the blue cross). After adding the detected subhalo to the macro model
and searching for a second subhalo the other islands disappear, confirming that they arise from the inability of the smooth model to fit perturbed observations at
various locations on the arc. The position of the subhalo is marked with a circled cross. The mock data was not corrupted with phase errors, but phase errors have been
marginalized.

Figure 4. SDP.81 system. The grayscale shows HST/WFC3 F160W data,
while the red contours show ALMA continuum emission in band 6.
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adjustable parameters: mass Msub, and 2D location xsub. We
then re-fit the joint data set, re-optimizing all the parameters
fully nonlinearly. We find that a model with a subhalo of mass
= M M108.96 improves the marginalized log posterior fit by
D = -47.3 in the joint fit (note that the initial linear search

was performed at Msub= 108.6Me). Based on this result, we
conclude that the ALMA Science Verification observations of
SDP.81 detect a subhalo in the projected mass distribution.
Having found the best-fit parameters for the detected subhalo,
we then sample the full parameter space (smooth lens and

Figure 5. Initial subhalo search using ALMA Science Verification observations of SDP.81. Depicted are maps of linearized D from Equation (16) showing twice the
difference in log marginalized posterior probability density between a smooth model without substructure and a model with a subhalo of mass M=108.6Me, as a
function of location of that subhalo. The three panels correspond to analysis of Band 6 only (left), Band 7 only (middle), and joint Bands 6 and 7 (right). Based on the
significant improvement to the fit provided by substructure (as indicated by the map), we subsequently added one subhalo to our lens model and re-optimized the
model parameters (see Table 1). The contours in the insets show the 1-, 2-, and 3-σ confidence regions for the position of the subhalo from a nonlinear joint fit to
the data.

Figure 6. Top left: the sky emission model in band 6 for the best-fit smooth lens parameters for the SDP.81 data. Top middle: the same for the perturbed model. Top
right: the difference between the two models. The bottom panels show the same for band 7. The bright feature in the difference plots is mainly caused by the
astrometric anomaly of the arc. In each row, the images have been scaled to the peak flux of the smooth model.

10

The Astrophysical Journal, 823:37 (19pp), 2016 May 20 Hezaveh et al.



subhalo parameters) nonlinearly using our MCMC sampler.
Figure 7 shows the error covariance of the reconstructed lens
parameters for the joint fit to bands 6 and 7. We do not find
evidence for significant degeneracies between the subhalo
parameters and the parameters of the smooth lens model,
including low-order multipoles in the gravitational potential.
This confirms findings that such multipoles cannot mimic the
effects of small-scale substructure for lenses with high-quality
arcs (Kochanek & Dalal 2004).

The full set of best-fit lens model parameters are presented in
Table 1. Many previous works have modeled the lens potential
in SDP.81 using HST data (Dye et al. 2014), Submillimeter
Array data (Bussmann et al. 2013), and ALMA data (Dye et al.
2015; Hatsukade et al. 2015; Rybak et al. 2015a, 2015b;
Tamura et al. 2015; Wong et al. 2015). Our smooth model has a
larger ellipticity compared with these models. We note,
however, that our model has more degrees of freedom (e.g.,
angular multipoles) and phase errors, and that the degeneracy
of some of these additional parameters with ellipticity may shift

its value. We do find that models with parameters given by
these authors produce reasonable fits to the data. We also
performed the linear subhalo search for these parameters,
finding that they produce similar results and that the conclusion
of the presence of the subhalo is robust against these variations.
Figure 8 shows the reconstructed source using this model with
pixel size of 10 mas in band 6 (top panel) and band 7 (bottom
panel).
This model appears to be a good fit to the data when we fit

the entire data set. The full data set, however, includes emission
unrelated to SDP.81. The ALMA primary beam covers
approximately ∼25″, of which only the central few arcseconds
are relevant for strong lens modeling. If we model the sky
emission only over a 5×5 arcsec area centered on the lens,
our model obtains χ2=2×105 for 1.7×105 degrees of
freedom, suggesting that not all of the signals in the data have
been modeled. However, if we expand our source-plane image
to cover the entire primary beam, additional flux is indicated
away from the lensed galaxy and the χ2 decreases to

Figure 7. Contours show the 1-, 2-, and 3-σ (68.3, 95.5, and 99.7%) confidence regions for the parameters in our lens model for a joint analysis of bands 6 and 7 data.
The red dashed lines show the maximum posterior smooth model parameters (in the absence of a subhalo in the model).
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1.7×105. Because this emission originates from regions well
separated from the lensed images (far beyond the correlation
length of the dirty beam), it has no model covariance with the
lens parameters and we therefore neglect it in the remainder of
our analysis.

5.2. Search for Additional Substructure

The ALMA observations of SDP.81 allow us to search for
additional substructure besides the subhalo detected in the
previous subsection. Given our lens model (including one

subhalo of Msub= 108.96Me), we next searched for additional
substructure using the linearized treatment discussed in
Section 3. We repeated our search for a second subhalo, by
linearly expanding about a smooth model now containing a
subhalo of mass Msub=108.96Me. As before, we marginalize
over all parameters of the smooth model, including the mass
and location of the detected subhalo discussed above.
The inclusion of the subhalo in our main lens model removes

any improvement to the marginalized posterior from additional
subhalos of mass  M M10sub

8.6 , as illustrated in top panel of
Figure 9. Instead, additional subhalos of this mass are excluded
from occurring near the observed arcs. For lower subhalo
masses, however, we find that there are certain locations where
the addition of a second subhalo can improve the marginalized
posterior. The lower panel of Figure 9 illustrates this for
M=108Me. The red regions in the map depict the locations
where a subhalo of this mass can improve the marginalized
posterior. Based on the improvement suggested in this figure,

Figure 8. Reconstructed source continuum emission from Band 6 (top panel)
and Band 7 (bottom panel) data on a 10 mas pixel grid. The white dashed curve
shows the tangential caustic predicted by our best-fit smooth model.

Figure 9. Search for additional substructure. The top panel shows a map of
linearized D for a second subhalo of mass M=108.6Me, following the
inclusion of one subhalo of massM≈109Me at the location of the blue circled
cross, using a joint analysis of bands 6 and 7. After adding the subhalo to the
main lens model, no additional subhalos of this mass are found. The bottom
panel shows a similar analysis for a lower mass subhalo, showing a marginal
improvement of  at another point near the first detection.
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we attempted adding a second subhalo to our main lens model.
Our nonlinear fit found that a subhalo of mass M≈108Me
could improve the fit marginally, with D » -22, compared
with the 1-subhalo model.

We are hesitant to consider this a detection of a second
object, however. First, the detection is marginal (<5σ). Also,
the second object is spatially near the Msub=108.96Me
subhalo. This suggests that the second object may possibly
be an artifact of our modeling. We have assumed an extremely
simple mass profile for the subhalos—a spherical tidally
truncated pseudo-Jaffe model—which is unlikely to describe
realistic subhalos in great detail. Small deviations in the actual
mass profile compared to our model could show up as residuals
that could be fitted by lower mass substructure. On the other
hand, this object could be real. The close proximity to the first
subhalo might arise simply because our area of sensitivity to
detecting subhalos is relatively narrow. Given these ambi-
guities, we do not label the second object as a detection;
however, we do include it in our main lens model. Inclusion of
additional data, in particular the CO lines which we have not
used in this analysis, may be able to determine conclusively
whether a lower mass subhalo is present. To avoid biases
arising from assuming a specific subhalo profile, it may be
advantageous to reconstruct the substructure density field with
more flexible models. For example, a pixelated substructure
map (e.g., Vegetti & Koopmans 2009) would allow more
freedom in the inferred substructure density field. Given the
quality of the ALMA SDP.81 data set, such an approach may
be warranted.

Following the inclusion of this second subhalo in our lens
model, no significant evidence for additional substructure is
found in the data set (see Figure 10).

5.3. Bounds on the Subhalo Mass Function

Our modeling of the mass distribution around SDP.81 tells
us where subhalos appear to be present as well as where
subhalos appear to be excluded, and by combining those two
constraints we can derive bounds on the mean abundance n(M)

of DM subhalos in the vicinity of SDP.81. Specifically, we use
our nonlinear mass model to tell us the number and masses of
the detected subhalos as well as the area over which those
subhalos are found, and we use our linearized D maps to
determine the area on the sky where subhalos are excluded.
Each piece (detections and exclusions) gives a likelihood for
the mean number density of subhalos, P[n(M)], and by
multiplying the likelihoods derived from the detections and
from exclusions we derive our full constraints on the mass
function.
Calculation of the constraints from significantly detected

subhalos is a straightforward application of Poisson statistics.
The constraints from non-detections are slightly more compli-
cated due to our spatially varying sensitivity. If we had a well-
defined area over which subhalos were definitively excluded,
then computing the Poisson statistics from that area would be
straightforward. Instead, our sensitivity to substructure varies
considerably over the area of interest. There are many pixels in
our D maps that slightly disfavor the presence of subhalos,
and collectively those weak constraints over many pixels can

Figure 10. Maps of D for a 3rd subhalo. When two subhalos are included in our main lens model, no significant evidence for any additional substructure is found in
the joint band 6 and 7 analysis.
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combine to permit interesting bounds on the abundance. Below
we describe the method we use to determine upper limits on the
subhalo abundance from our linearized D maps.

We assume that the incidence of subhalos is a Poisson
process with a mean projected number density n(M) that is
spatially uniform across the region over which we are sensitive
to the effects of subhalos. In principle this allows us to use
Bayes’ theorem to derive the likelihood of abundance n(M)

given our observed data, µP n P ndata data( ∣ ) ( ∣ ). To estimate
P ndata( ∣ ), we can sum over all possible realizations of subhalo
positions and masses, weighted by the Poisson probabilities for
realizing each possible configuration. For clarity we will first
derive the likelihood of density n(M) for indistinguishable
subhalos of a single mass M; we subsequently show how our
expressions generalize for a spectrum of subhalo masses.

The likelihood to observe the measured data for abundance
of subhalos in a narrow mass bin, n=dn/dM×dM, is given
by

=
+
+
+ ¼

P n P P n

P P n

P P n

data data 0 subhalos 0 subhalos

data 1 subhalo 1 subhalo

data 2 subhalos 2 subhalos

20

( ∣ ) ( ∣ ) ( ∣ )

( ∣ ) ( ∣ )

( ∣ ) ( ∣ )

( )

Each term in this sum represents an integral over the relevant
parameter space for 0 subhalos, 1 subhalo, and so on. The 0
subhalo term is simply the marginalized posterior of our
smooth model. The 1 subhalo term is

ò=
P P n

P x y
dP

dA
x y n dxdy

data 1 subhalo 1 subhalo

data , , . 21

( ∣ ) ( ∣ )

( ∣ ) ( ∣ ) ( )

The two factors in the integrand on the right-hand side are
given by the marginalized posterior and by Poisson statistics,
respectively. The first factor, representing the marginalized
posterior for a subhalo at position x, y, is

= -DP x y P x ydata , data 0 subhalos exp , 2( ∣ ) ( ∣ ) ( ( ) ). The

second factor, x y n dxdy,
dP

dA
( ∣ ) represents the Poisson prob-

ability to find 1 subhalo within area dxdy at position x, y, and is
independent of x, y because we assume Poisson statistics with
uniform mean density. Indeed, the Poisson probability of
finding 1 subhalo at location x, y, given mean number density
n, is n n= -P n1 exp( ∣ ) ( ) , where the expected number
ν=n dxdy. The Poisson likelihood to observe 0 subhalos
instead is n= -P n0 exp( ∣ ) ( ), so that =P n P n n dxdy1 0( ∣ ) ( ∣ ) .
Therefore, we see that

⎜ ⎟
⎛

⎝

⎞

⎠
ò

=

´ - D x x

P P n P P n

n d

data 1 1 data 0 0

exp
1

2
, 22

( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )

( ) ( )

where D x( ) is given by Equation (16) and represents the
improvement in log posterior between a model with a subhalo
at location x and a model with no subhalos.

To compute the 1 subhalo, 2 subhalos, and higher terms in
Equation (20), we need analogous D maps for all possible
configurations and masses of two subhalos, three subhalos, and
so on. This is an onerous calculation, and typically such
integrals are performed using Monte Carlo. However, since our
1-subhalo maps do not reveal any significant detections (by
construction), we can use the 1-subhalo maps to approximate

the higher-order terms. Specifically, we assume that each
subhalo makes only a perturbative correction to the fit, i.e.,
 D  0, so that the D from each subhalo adds linearly to

the D from any other subhalos. For example, we assume

  D » D + Dx x x xM M M M, ; , , , . 231 1 2 2 1 1 2 2( ) ( ) ( ) ( )

This assumption of linear addition means that we can
approximate the N-subhalo term in Equation (20) using an N-
fold integral of our 1-subhalo  maps. More precisely, the
assumption that each subhalo just adds linearly to  means that
every pixel in our  map is assumed to be independent of every
other pixel, which implies that we can construct the total
likelihood for number density n by multiplying together the
individual constraints on n from all the separate pixels. For a
pixel of area dA with D from one subhalo, the constraint on n

is







å
µ + + ¼
=

= -

- -D

- -D

-D

P n e n dA e

e n dA e N

n dA e
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exp 1 . 24
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n dA

N
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Multiplying all the pixels, we obtain

⎡

⎣
⎢

⎤

⎦
⎥å= --DP n P n dA eexp 1 . 25

i

0
2i( ) ( ) ( )

We use Equation (25) to determine the constraints on the
subhalo abundance from non-detections of subhalos in our D
maps. The assumption of linearity underlying this equation
clearly becomes invalid in the limit of large numbers of
subhalos that in combination can produce  D ~ 0, or where
subhalos overlap with each other. Because our 1-subhalo maps
do not reveal any significant detections of subhalos, such
configurations are probabilistically disfavored, and hence
should not lead to significant errors in our approximation. In
cases where subhalos do overlap, our tests indicate that our
assumption of linear addition tends to underestimate the
decrease in posterior probability density, suggesting that our
bounds below are (slightly) conservative.
So far, our discussion has focused on constraining the

number density of identical subhalos in a narrow mass bin dM.
It is straightforward to generalize Equation (25) to allow for
distinguishable subhalos of different masses. Repeating the
same argument used to derive Equation (25) when there are
subhalos of varying masses, it is straightforward to see that the
likelihood for a mass function dn/dM factorizes into a product
of terms from each mass bin,
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where i runs over angular pixels on the sky, j runs over subhalo
mass bins, and we have written the number density of subhalos
in bin j as =n dn dM M dMj j( ) .
To summarize, Equation (26) tells us the effective area over

which subhalos are excluded. Our main lens model tells us the
number of subhalos that were detected and the area over which
they were found to occur. Combining those two measurements,

14

The Astrophysical Journal, 823:37 (19pp), 2016 May 20 Hezaveh et al.



we derive Poisson constraints on the underlying subhalo
abundance.

Figure 11 shows the resulting constraints on the differential
subhalo mass function, dn d M Mlog sub( ), derived from the
maps of D shown in Figure 10. In mass bins where no
subhalos were detected, the downward arrows indicate 95%
upper limits. For the mass bin atMsub=109Me where we have
a detected subhalo, the central 95% confidence region is 0.012
arcsec−2<n<0.2 arcsec−2. If we instead define the
confidence region in terms of levels of equal posterior
encompassing 95% of the posterior, we obtain 0.003
arcsec−2<n<0.1806 arcsec−2. The reason these two ranges
are somewhat different is that the likelihood is asymmetric.

Combining the bounds from the different mass bins, we can
derive constraints on the subhalo mass function using
Equation (26). We describe the mass function using a simple
parametrization, = h-dn d M A M Mlog pivot( ) , and show in
Figure 12 the constraints on these parameters. In the next
section we compare these constraints to the amount of
substructure expected for lens galaxies like SDP.81 in ΛCDM
cosmologies.

6. COMPARISON TO ΛCDM PREDICTIONS

In this section, we compare the constraints on the subhalo
abundance in SDP.81 found above, with predictions from
ΛCDM simulations, and also discuss the neighboring environ-
ment of this system. To predict the subhalo mass function
down to the small masses probed while fully accounting for the
halo-to-halo scatter, we follow the methodology presented in
Mao et al. (2015), which captures the dominant source of the
halo-to-halo scatter by considering both mass and concentra-
tion of host halos. The model is able to reproduce the subhalo
abundance found in high-resolution zoom-in simulations(e.g.,
Xu et al. 2015) as well as larger statistical samples of halos.

We assume the cumulative subhalo mass function has the
form of

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟á > ñ = -

h h- -

n M
M

M

M

M
, 27sub

sub

0

host

0

( ) ( )

where Mhost is the host halo mass, M0 and η are the
normalization and the log–log slope, respectively, of the
subhalo mass function. We then use ΛCDM simulations to
calibrate the relation between the parameter M0 and the mass
and concentration of the host halo. To calibrate this relation, we
use the same set of high-resolution zoom-in simulations
described in Mao et al. (2015) with the addition of a very
high-resolution cosmological box, (40963 particles in a
400Mpc/h box, ds14_i) from the Dark Sky Simulations(S-
killman et al. 2014).15 This calibration is done by: (1) assuming
a constant log–log slope (η); (2) then finding the best-fit M0 for
each host halo in the simulations; and (3) finally, finding the
best-fit values of (α, β, γ) for all host halos in

a= b gM M c . 280 host host ( )

With this model we can then predict the subhalo mass function
given the host halo mass and concentration and the log–log
slope.
The subhalo abundance predicted in the procedure described

above is for all subhalos within the virial radius of the host
halo. To convert our prediction to the relevant quantity probed

Figure 11. Error bars indicate the 95% confidence limits on the projected
differential number density of subhalos around SDP.81 derived using the non-
detection regions shown in Figure 10 and the detection of the 109 Me subhalo.
For comparison, the shaded band shows the 90% confidence region from Dalal
& Kochanek (2002).

Figure 12. Limits on the normalization (A) and slope (η) of the mass function
= h-dn d M A M Mlog pivot( ) using the bounds in Figure 11. Here we use

Mpivot=109Me. The gray contours show constraints derived using Equa-
tion (26), while the red contours show how the constraints change if we neglect
the marginally detected subhalo with M≈108Me. The top panel shows the
probability at η=0.9. The red and black curves simply show a slice of the
probability of the lower panel at η=0.9. For comparison, the histograms show
the distribution of A using assumptions based on ΛCDM simulations assuming
two different values of csubs/chost, which are intended to be representative.
These values assume η=0.9 and a distribution of host halo masses and
concentrations given by abundance matching. See Section 6 for details.

15 http://darksky.slac.stanford.edu
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by strong lensing measurements, we need to assume a spatial
distribution for the subhalos. Here we make three simplifying
assumptions: (1) the subhalo spatial distribution is independent
from the subhalo mass function (i.e., subhalos of different mass
halos have the same spatial distribution); (2) the angular
distribution of subhalos is isotropic (see, however, Nierenberg
et al. 2011); and (3) the radial distribution of subhalos within
their host halos follows an NFW profile with a characteristic
concentration csubs. In other words, we assume the subhalo
abundance factorizes into a mass dependence and radial
dependence, n(M, r)=n(M) f (r), where the radial dependence
f (r) is an NFW profile of concentration csubs.

To predict the projected abundance of substructure, our
model requires a prescription for the concentration of the
subhalo distribution, csubs. In ΛCDM simulations, generally the
radial distribution of subhalos is less centrally concentrated
than the DM distribution of the host halo (i.e., csubs/
chost< 1)(e.g., Nagai & Kravtsov 2005; Gao et al. 2012),
and at small radii the subhalo distribution may become
shallower than an NFW profile(e.g., Xu et al. 2015). Observa-
tional results for real galaxies are less clear: some are consistent
with csubs/chost;1 (e.g., Guo et al. 2012; Yniguez
et al. 2014), while others imply that galaxies are less
concentrated(e.g., Hansen et al. 2005) than the total mass
distribution in their hosts. Also note that our assumption of
spherical symmetry might lead us to underestimate the average
substructure abundance around lenses, since strong lenses are
preferentially viewed along the major axis of their host halos
(Hennawi et al. 2007; Rozo et al. 2007).

Given the uncertainty in predictions for csubs, we treat it as a
free parameter along with other parameters describing the lens
halo: the host halo mass and concentration (Mhost, chost), and
the log–log slope (η) of the subhalo mass function. Using these
model ingredients, we can predict dn d Mlog projected at the
Einstein radius. The histograms in the top panel of Figure 12
show an example, the distribution of A, i.e., dn d Mlog at
M=109Me computed with this model. For this figure we
assume the mass function slope is η=0.9 and we show two
possible values for the subhalo concentration, csubs/chost=0.2
and 1.0, which should span the range of uncertainty described
above. For the other two parameters we marginalize over
possible values of the host halo mass and concentration using
the following prior. We first assign galaxy luminosity to DM
halos and subhalos with the abundance matching
technique(e.g., Conroy et al. 2006; Reddick et al. 2013), and
find that the joint distribution of mass and concentration
corresponding to the luminosity of the lens galaxy, which is
Mr=−21.88±0.015 using the SDSS DR10 magnitudes, k-
corrected to z=0.1 using a red galaxy template. For the
abundance matching procedure, we assume the AGES
luminosity function(Kochanek et al. 2012) and use the
maximal circular velocity (vmax) of the halo at its peak value
along its trajectory as the matching proxy and also apply a
constant scatter of 0.2 dex on the luminosity. This gives us the
allowed spread of halo mass and concentration typical for
galaxies of luminosity similar to the lensing galaxy in SDP.81.
The typical halo mass we found with this procedure is roughly
8.7×1012Me h−1 with an approximate uncertainty of a factor
of 3.5.

Comparing the lines and the histograms in the top panel of
Figure 12, we can see that substructure limits from SDP.81 are
currently consistent with theoretical predictions. The result

does hint at a lower normalization of dn d Mlog , or
equivalently, a smaller value of csubs/chost. However, the four
parameters used here are highly degenerate because all of them
affect the normalization of the projected central density in
similar fashions. Figure 13 illustrates this degeneracy by
varying only one of the four parameters in the model at a time
and shows how each of these four parameters affects the
predicted projected density over reasonable ranges in para-
meters space. Given this degeneracy, at this stage it is difficult
to jointly constrain these parameters from the observed limits.
The comparison shown in Figure 13 also demonstrates,
however, that the bounds from this Science Verification data
set are already in an interesting regime that can rule out some
portion of the parameter space. We also note that our estimates
for substructure around strong lensing galaxies appear to be
consistent with independent estimates from other high-resolu-
tion simulations (Fiacconi et al. 2016).
The environment of the host halo can also affect the subhalo

population. Fortuitously, SDP.81 is in the SDSS footprint,
allowing us to examine its immediate environment. This
system appears to be in close proximity to a massive galaxy
cluster in the SDSS DR8 RedMaPPer cluster catalog(Rykoff
et al. 2014). Here we use RedMaPPer v6.3 (Rykoff et al 2016,
in preparation). In the RedMaPPer catalog, this galaxy is a
member (with 87% probability) of a more massive system, with
richness λ=32, where λ corresponds to the number of red
sequence galaxies brighter than 0.4Lå. Assuming the mass–
richness relationship of Rykoff et al. (2014), this corresponds to
a mass of ∼2.6×1014Me. According to the cluster catalog,
SDP.81 is a member galaxy of this system, 640kpch−1 away
from the most likely central galaxy (in projection).
The proximity of SDP.81 to a galaxy cluster has the potential

to cloud our predictions for its abundance of substructure. In
principle, small subhalos unbound to SDP.81 but within the
cluster could project into the strong lensing region. For the
current configuration, we have calculated the expected number
of subhalos from such a cluster at the measured distance (using
the same model described in the previous section) and find that
these subhalos are subdominant to those expected from the halo
of SDP.81. However, this underscores the importance of
determining reliable estimates of lens halo masses and nearby
environments before deriving any bounds on cosmological
models from observed lensing systems.

7. DISCUSSION

In this paper, we present a method to analyze interferometric
measurements of strong gravitational lenses to constrain the
abundance of DM substructure. We apply this method to the
ALMA Science Verification observations of the lens system
SDP.81 and we report the detection of a subhalo with mass
Msub≈10

9Me. We also find hints for additional substructure
at lower mass, but defer a detailed analysis of additional
substructure for future work. We compare our measurements of
substructure abundance with previous measurements and to
theoretical predictions from CDM, and find that our results are
consistent with both.
Although the subhalo analysis presented in this paper only

used the continuum data, the method is directly applicable to
observations of molecular lines. For example, in this work our
joint analysis of bands 6 and 7 treats the two bands as two
distinct frequency channels. The analysis of molecular lines,
therefore, only differs in the larger number of frequency
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channels used. The computational cost of such an analysis,
however, would be higher. Given the strong hints of lower
mass substructure that we find in the continuum data, an
analysis of the line data would appear to be quite worthwhile.

The simulations and the analysis of independently generated
mock data show that our pipeline can successfully quantify the
lensing effects of 107 Me subhalos in an interesting regime
where CDM and some of the most popular WDM models have
significantly different predictions (Li et al. 2015). This
framework is designed to be able to marginalize over many
nuisance parameters to avoid false detections. We studied the
effects of complex source morphologies, source priors,
visibility binning, antenna phase errors, pixel sizes, and grid
width, finding that the current pipeline is a reliable tool to
quantify the lensing effects of these subhalos, with systematic
errors that are below our current statistical uncertainties. As we
push to lower the subhalo masses and lower significance
detection or non-detection regimes, however, we will need to
quantify more subtle systematic effects. In particular, more
detailed studies of weaker interferometric data corruption
effects should be carefully studied. The effects of decorrelation,
visibility smearing due to frequency averaging, choice of
parameterization for antenna phase error corrections, and
antenna amplitude errors are among these effects.

In this work we have used a singular elliptical power-law
surface density profile for the macrolens. In SDP.81, as in
many (but not all) strong lenses, the lensed images of

background sources span a narrow range in radius from the
center of the lens and hence are only sensitive to the local
amplitude and radial slope of the density as opposed to the full
radial dependence. For this reason, this system can safely be
modeled as a power law even though on larger scales or smaller
scales there might be deviations from single power-law
behavior. For example, the addition of a constant mass sheet
breaks power-law behavior, but it would not necessarily be
detectable from this lensing data, and if modeled would be
degenerate with the radial slope of the macro model (e.g.,
Schneider & Sluse 2013). This mass-sheet degeneracy has been
shown not to affect the inference of the presence of density
perturbations (Dobler & Keeton 2006), however the inferred
masses of the subhalos could be affected by this degeneracy by
a fractional uncertainty of order κsheet. In standard CDM
cosmologies external mass sheets on arcsecond scales are
expected to contribute at few percent levels (Dalal et al. 2003),
below the statistical uncertainties on our derived mass.
Similarly, as noted above, SDP.81 appears to occur relatively
near a massive galaxy cluster which should generate a smooth
convergence and shear at the location of the lensed images, but
once again our estimates for this external convergence from the
cluster fall well below the fractional uncertainty in the derived
subhalo mass.
As Figures 10 and 11 illustrate, the SDP.81 data set loses

sensitivity for detecting individual subhalos at masses
107Me. Large numbers of subhalos at low masses are

Figure 13. Comparison between the 95% confidence limits (the black squares) on the projected density of substructures, dn d Mlog , and the predictions (the lines) for
various properties of the host halo and its substructure distribution. The thick line in each panel assumes = -

M M h10host
13 1, a median halo concentration for that

mass (chost = 6.615), a typical log–log slope (η = 0.9) for the subhalo mass function, and that the radial distribution of subhalos matches that of dark matter (csubs/
chost = 1). Each panel varies only one of the four assumptions listed above. The varying assumption is shown on the upper right corner of each panel.
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expected in all CDM cosmologies and the deflections from this
population of objects combine to form an effectively stochastic
field. Even though the objects generating this random field
cannot be individually detected, the collective effects of the
population may be significantly detected. For example,
Hezaveh et al. (2014) showed that the power spectrum of
density fluctuations of low-mass substructure may be accu-
rately measured using observations of lenses like SDP.81,
allowing us to probe the subhalo mass function below our
nominal detection limits for individual subhalos.

Recently, Inoue et al. (2016) published an independent
substructure lensing analysis of SDP.81, and it is interesting to
compare their conclusions to ours. Inoue et al. analyze CLEAN
images from continuum band 7 as well as CO 8-7 line data
from band 6, and report evidence for substructure at a similar
location to our reported detection. However, the properties of
the substructure reported by Inoue et al. are significantly
different than what we find. In particular, it appears that their
results require the presence of a compact, highly underdense
region next to one of the arcs. Underdensities are rarely
compact in standard cosmologies, so this result appears
puzzling. Our analysis does not confirm this finding: we find
that compact regions of overdensity explain the SDP.81 data
far better than adding compact regions of underdensity (or
negative density). One possible origin for the discrepancy, as
noted in Section 4, is that analyses of CLEANed images are
subject to systematic biases arising from phase errors, which
can lead to a host of spurious artifacts in substructure
reconstructions (see Figure 2). Given the subtlety of the
lensing effects of low-mass subhalos, we recommend that
substructure analyses operate on the visibilities and thereby
fully extract the information encoded in the interferometric
measurements.

In summary, the Science Verification observations of
SDP.81 demonstrate the potential of ALMA for probing DM
structures. Our joint analysis of the bands 6 and 7 data detects a
M=108.96±0.12Me subhalo with a significance of 6.9σ and
produces substructure bounds that are consistent with previous
lensing measurements of other systems (Dalal & Kocha-
nek 2002; Vegetti et al. 2014) and also consistent with
theoretical expectations as described in Section 6. However, the
constraints from this one single lens are already interesting,
near the abundances expected for halos of this mass. More
importantly, the analysis shows that the ALMA data are
sensitive to low-mass substructure in a regime that can
constrain the properties of DM models. Larger samples of
similar lenses have the potential to put tight constraints on the
mass function of DM substructures. Fortunately, large samples
of similar lenses are already known from existing submillimeter
surveys, suggesting that future ALMA observations have the
potential to significantly advance our understanding of the
abundance of DM substructure.
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