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Abstract—Early detection of ventricular fibrillation (VF) and
rapid ventricular tachycardia (VT) is crucial for the success of
the defibrillation therapy. A wide variety of detection algorithms
have been proposed based on temporal, spectral, or complexity
parameters extracted from the ECG. However, these algorithms
are mostly constructed by considering each parameter individu-
ally. In this study, we present a novel life-threatening arrhythmias
detection algorithm that combines a number of previously pro-
posed ECG parameters by using support vector machines clas-
sifiers. A total of 13 parameters were computed accounting for
temporal (morphological), spectral, and complexity features of the
ECG signal. A filter-type feature selection (FS) procedure was pro-
posed to analyze the relevance of the computed parameters and
how they affect the detection performance. The proposed method-
ology was evaluated in two different binary detection scenarios:
shockable (FV plus VT) versus nonshockable arrhythmias, and
VF versus nonVF rhythms, using the information contained in the
medical imaging technology database, the Creighton University
ventricular tachycardia database, and the ventricular arrhythmia
database. sensitivity (SE) and specificity (SP) analysis on the out
of sample test data showed values of SE = 95%, SP = 99%, and
SE = 92%, SP = 97% in the case of shockable and VF scenarios,
respectively. Our algorithm was benchmarked against individual
detection schemes, significantly improving their performance. Our
results demonstrate that the combination of ECG parameters us-
ing statistical learning algorithms improves the efficiency for the
detection of life-threatening arrhythmias.

Index Terms—Feature selection (FS), support vector machines
(SVM), ventricular fibrillation (VF) detection.

I. INTRODUCTION

S
UDDEN cardiac arrest (SCA) is a major health problem

that accounts approximately for six millions deaths in Eu-

rope and in the United States [1]. SCA is a sudden, abrupt

loss of heart function, most often caused by a rapid ventricu-

lar tachycardia (VT) that quickly degenerates into ventricular
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fibrillation (VF). Prompt detection of VT and VF episodes is

crucial to deliver an electric shock therapy and in this way in-

crease the probability of survival from a SCA incident. This has

impelled the development of automated external defibrillators

that analyze the surface electrocardiogram (ECG) signal and

advise/deliver and electric shock if either rapid VT or VF is

detected. However, though extensively tested and studied dur-

ing the last decades both by the industry and by the scientific

community, reliable detection of life-threatening arrhythmias

remains an open problem [2]–[5].

A wide variety of detection algorithms have been developed

based on temporal/morphological [4]–[8], spectral [9], [10], or

complexity parameters [11]–[14] extracted from the ECG sig-

nal. For each detector, different separation scenarios have been

considered [7], such as VF versus nonVF rhythms, VF plus

VT versus nonVTVF, or VF versus VT, making it difficult to

assess the real performance of the proposed algorithms. When

compared in a standardized way [4], their real performance is

reduced from the values presented in the original investigations.

The combination of ECG parameters using machine learning

techniques, such us neural networks [15]–[17], or support vec-

tor machines (SVM) [18]–[20], has been suggested as a useful

approach to improve the detection efficiency. This strategy, how-

ever, raises additional requirements to be considered. First, the

need of feature selection (FS) techniques to select those relevant

and informative parameters in order to increase the efficiency of

the learning task, to improve the performance of the detection

process, and to better understand how data affect the learning

process [18], [21]–[23]. And second, the evaluation and com-

parison of the proposed algorithms should be assessed over the

out of sample test set. Broadly, this task has been carried out

over the entire [12], [24] or the validation [20] datasets, making

it difficult to compare different detection strategies.

The present study aimed to build a high-performance life-

threatening arrhythmias detector by combining 13 previously

defined ECG parameters using SVM learning algorithms. In

this context, the objective is twofold: to assess the performance

of the proposed SVM detection algorithm over previously de-

fined methods by carrying out a comparative analysis on the

out of sample test data. The second aim was to examine the

discriminatory properties of each ECG parameter individually

and how, in combination, these affect the learning process. We

used a novel FS filter-type method based on combining three

different FS filter-type techniques into a single ranking score,

allowing us to determine the relevance of each ECG parameter.

Using this score, we applied a backward selection procedure

with SVM classifiers to yield a robust classifier using a reduced

set of ECG parameters. Previous studies have used genetic
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algorithms (GA) [20] or discriminant analysis [24] as FS

methodology. In [20], a subset of nine features was selected us-

ing GA. However, this procedure did not provide a score metric,

and therefore, it required to analyze all possible combination of

a subset of selected features, which could be a heavily computa-

tionally expensive task, especially when the number of selected

features increases. On the other hand, the discriminant analysis

procedure [24] only accounts for linear relationships among fea-

tures and labels, thus, missing possible nonlinear information

that might be of relevance.

The proposed methodology is here applied in two differ-

ent binary detection scenarios: shockable (FV plus TV) versus

nonshockable arrhythmias, and VF versus nonVF rhythms. We

used the public databases medical imaging technology database

(MITDB) [25], the Creighton University Ventricular Tachy-

cardia Database (CUDB) [26], and the MIT-BIH Malignant

Ventricular Arrhythmia Database (VFDB) [27], to evaluate our

algorithms, showing that the results significantly outperform

individual detection schemes.

We note that a preliminary version of this paper appeared

in [19], showing the usefulness of SVM classification method-

ology for the detection of life-threatening arrhythmias. Here, we

present a much-extended version of this study that includes: 1)

two additional ECG parameters [5], [14]; 2) comparative anal-

ysis with previously defined detectors on the out of sample test

set; and 3) a novel FS procedure that provides with insights

about the relevance of each ECG parameter and the learning

process using SVM algorithms.

The paper is organized as follows. Section II shows the pre-

processing steps to build the dataset of computed parameters

from the ECG signal databases. Section III provides a brief

background on SVM classifiers and bootstrap resampling tech-

niques. In Section IV, the FS method used in this study, and

the algorithm combining FS and SVM classifiers are explained.

Then, the detection performance of the proposed methodology

is presented in Section V. Finally, discussion and conclusions

are drawn in Section VI.

II. FEATURE CONSTRUCTION

This section illustrates the process of building the input space

data to feed the SVM classifier from the ECG raw data signals.

A. ECG Collection

We used the complete ECG signal recording files from the

MITDB, the CUDB, and the VFDB, which are available at

the PhysioNet repository [28]. The MITDB contains 48 Holter

recording files of slightly over 30-min length, two channels per

file, sampled at 360 Hz. The MITDB includes 15 rhythm labels

differentiating between VT, ventricular fluter (VFL), normal

sinus rhythm (NSR), among other rhythms. The CUDB contains

35 Holter records of 8-min length from patients who experienced

episodes of sustained VT, VFL, and VF. Each record is sampled

at 250 Hz and includes only two rhythm annotations, namely,

VF and nonVF. The VFDB contains 22 files of 30-min length,

two channels per file, sampled at 250 Hz. As the CUDB, the

VFDB includes patients who experienced episodes of sustained

VT, VFL, and VF. In this database, annotation labels contain 15

different rhythms, including VT, VF, VFL, NSR, among other

rhythms.

B. Preprocessing

All ECG signals were preprocessed using the filtering process

proposed in [4], which works in four successive steps: 1) mean

subtraction; 2) five-order moving average filtering; 3) high-pass

filtering with fc = 1 Hz (drift suppression); and 4) low-pass

Butterworth filtering with fc = 30 Hz. Then, noise, asystole,

and low-quality (artifacts) episode segments were removed ac-

cording to the corresponding annotation labels. Finally, only the

first channel of the MITDB and the VFDB has been considered,

to avoid redundancy of samples during the learning process.

C. ECG Parameters

Each preprocessed ECG signal is divided in nonoverlapping

8-s segments. This window length has demonstrated to give the

best performance in a number of investigated detection algo-

rithms [4]. For each Le = 8 s segment, a set of 13 previously

defined parameters were computed. These can be broadly clas-

sified in three major categories (a detailed explanation of each

parameter can be found at the original manuscripts).

1) Temporal/Morphological Parameters: are defined in the

time domain.
� Threshold crossing interval (TCI) [6] is the time interval

between consecutive pulses (threshold crossings) within

a 1-s ECG segments. TCI requires a 3-s window to be

computed. On a Le duration episode, TCI is evaluated by

averaging Le − 2 consecutive values.
� Threshold crossing sample count (TCSC) [5] refers to the

number of samples that cross a given threshold V0 within

a 3-s ECG interval. On a Le duration episode, TCSC is

evaluated by averaging Le − 2 consecutive TCSC values.
� Standard exponential (STE) [4] is calculated as the ratio

between the number of crossing points of the ECG signal

with a decreasing exponential curve centered at the time

instant where maximum amplitude value occurs, and the

time duration of the considered ECG segment Le .
� Modified exponential (MEA) [4] first adjusts a decreasing

exponential function positioned at the peak values of an

ECG segment. Then, MEA is computed as ratio between

the number of liftings, and the time duration of the consid-

ered ECG segment Le .
� Mean absolute value (MAV) [7] is the MAV of 2-s ECG

segments. On a Le duration episode, MAV is obtained by

averaging Le − 1 consecutive 2-s values.

2) Spectral parameters: are calculated in the frequency

domain.
� VF filter (VFleak) [10] is a measure of the residue after ap-

plying a narrowband elimination filter centered at the mean

signal frequency of the considered ECG signal segment.
� Spectral algorithm (M and A2 parameters) [9] analyzes the

energy content in different frequency bands by means of

Fourier analysis. Let F be the peak frequency (component

with largest amplitude) in the range of 0.5–9 Hz. Then, M
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measures of the frequency content between 0 and the min-

imum of (20 F, 100 Hz), while A2 measures the frequency

content between 0.7 and 1.4 F.
� Median frequency (FM) [29] is the central frequency of the

spectral mass contained in the power spectrum of the con-

sidered ECG signal segment. This parameter was defined to

estimate the duration of the cardiac arrest, and therefore it

has not been usually use for detection purposes. However,

since it provides information about the duration of the VF

episode, we included it here to analyze its discriminatory

properties.

3) Complexity parameters: provide with different measures

of the complexity of the ECG signal.
� Complexity measurement (CM) [11] is the normalized

value of the Lempel-Ziv complexity measure of a binary

sequence extracted from the ECG signal segment.
� Phase space reconstruction (PSR) [12] measures the spar-

sity of the phase plot representation when considering the

original ECG signal segment and a time-delayed version

of it.
� Hilbert transform (HILB) [13] measures the sparsity of the

phase plot representation when considering the original

ECG signal segment and its HILB signal.
� Sample entropy (SpEn) [14] is a measure of similarity

within an ECG signal segment. A lower value of SpEn

indicates more self-similarity. Thus, VF/VT rhythms are

characterized by higher values os SpEn.

After computing all the aforementioned parameters, labels

were assigned to each 8-s segments. In order to analyze the VF

versus nonVF, and the shockable versus nonshockable prob-

lems, we considered three types of rhythms labels: VF (includ-

ing VFL), VT, and other rhythms (O). Labels were assigned

according to the mode of the annotation samples within the an-

alyzed segment. For instance, in a transition ECG segment in

which 40% of samples are labeled as NSR and the remaining

samples are labeled as VF, then we labeled the whole segment

as a VF.

The parameterization of the ECG signal segments resulted

in a dataset of binary labeled data {(x1 , y1), . . . , (xN , yN )},

where xi ∈ R
d , with d = 13 (number of computed parame-

ters), N = 17 857 (number of 8-s segments), and labels yi ∈
{+1,−1}. Two binary detection scenarios were considered:

VF episodes versus nonVF, and shockable (VF plus VT) ver-

sus nonshockable rhythms. Both problems resulted in unbal-

anced datasets with the following prior probabilities: VF ver-

sus nonVF, (p+1 = 4.8%, p−1 = 95.2%); and shockable versus

nonshockable, (p+1 = 8.5%, p−1 = 91.5%). Before the clas-

sification process, each input feature example x(j ) ∈ R
N was

scaled so that 0 ≤ x(j ) ≤ 1.

III. SVM CLASSIFIERS

We used two different SVM classifiers to discriminate VF ver-

sus nonVF rhythms, and shockable versus nonshockable (from

now on Shock versus nonShock) episodes by using the dataset

of parameters extracted from the ECG signals. This section

briefly reviews the SVM algorithm formulation and the boot-

strap resampling method to estimate the performance of the

SVM classifiers.

A. SVM Formulation

In recent years, SVM algorithms have been successfully used

in a wide number of practical classification problems [30],

due to their good generalization capability derived from the

structural risk minimization principle [31]. SVM binary clas-

sifiers are sampled-based statistical learning algorithms that

construct a maximum margin separating hyperplane. Given a

training dataset {(x1 , y1), . . . , (xN , yN )}, where xi ∈ R
d and

yi ∈ {−1,+1}, SVM solves a quadratic optimization problem

min
x,b,ξ i

1

2
‖w‖2 + C

N
∑

i=1

ξi ,

subject to yi (〈φ(xi),w〉 + b) − 1 + ξi ≥ 0,

ξi ≥ 0, i = 1, . . . , N (1)

where φ(xi) is a nonlinear transformation that maps training

data to a higher dimensional space, ξi represent the losses, and C

is a regularization parameter that represents a trade-off between

the margin and the losses. By using Lagrange multipliers, (1) can

be rewritten into its dual form, and then, the problem consists

of solving

max
α i

N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiyiαjyjK(xi ,xj ) (2)

constrained to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0, where αi are

the Lagrange multipliers corresponding to primal constraints,

and K(xi ,xj ) = 〈φ(xi), φ(xj )〉 is the kernel function, which

allows us to calculate the dot product of pairs of vectors trans-

formed by φ(·) without explicitly knowing neither the nonlinear

mapping nor the higher dimensional space. We used the Gaus-

sian kernel in our experiments

K(xi ,xj ) = exp
(

−γ‖xi − xj‖
2
)

. (3)

After obtaining the Lagrange multipliers, the SVM classifi-

cation for a new sample x is simply given by

y = sgn

(

N
∑

i=1

αiyiK(xi ,x) + b

)

. (4)

The free parameters of the SVM model γ and C have to be

settled a priori. Methods such as cross validation can be used

for this purpose.

B. Bootstrap Resampling

Bootstrap resampling is a computer-based method for

nonparametric estimation of the distribution of statistical

magnitudes, and it can be used to estimate the performance

of SVM classifiers [18]. Let V = {(x1 , y1), . . . , (xN , yN )} be

a set of data in a classification problem. A bootstrap resam-

ple V∗ = {(x∗
1 , y

∗
1), . . . , (x

∗
N , y∗

N )} is a new dataset drawn at

random with replacement from sample V. Let us consider a par-

tition of V in terms of the resample, given by V = (V∗
in ,V∗

out),
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being V∗
in and V∗

out the subsets of samples included and

excluded in the resample, respectively. For the resample r,

the SVM classifier can be trained with V∗
in and its perfor-

mance P ∗(r) can be estimated by using V∗
out , in terms of

a predefined metric such as the accuracy, or the error proba-

bility. Then, given a collection of R independent resamples,

{V∗(1),V∗(2), . . . ,V∗(R)}, the performance density function

can be estimated by the histogram built from replicates P ∗(r),
where r = 1, . . . , R. A typical choice for R is from 100 to 500

resamples.

IV. FEATURE SELECTION

Performance of supervised learning algorithms can be

strongly affected by the number and relevance of input vari-

ables. FS techniques aim to find the best describing subset of the

input variables, compared to the original set of features [32]. FS

techniques can be divided into three major categories, namely,

filter, wrapper, and embedded methods.

In this study, we estimated the relevance of the computed

parameters by applying a combination of filter-type FS pro-

cedures. From here on, we will use the terms parameters and

features indistinctly. Filter methods are general FS procedures

that rank the features according to a predefined evaluation cri-

terion, which is independent of the machine learning classifier.

Examples of filter methods include correlation criteria, classi-

cal test statistics (χ2-test, F-test, t-test), principal/independent

component analysis, mutual information techniques, classifica-

tion trees, self-organizing trees, or fuzzy clustering.

A. Combined Filter Methods Procedure

Following a similar approach as in [33], we considered a

combined strategy of filter methods, accounting for correlation-

based methods (correlation criterion and the maximum separa-

bility Fisher criterion), and mutual information methods (mini-

mal redundancy maximal relevance -mRMR- criterion [34]).

1) Correlation criterion: asses the degree of dependence of

individual parameters with the outcome. For the jth feature x(j )

with labels y, the linear correlation coefficient is defined as

ρ(j) =

∑N
i=1(x

(j )
i − µj )(yi − ȳ)

√

∑

i(x
(j )
i − µj )2

∑

i(yi − ȳ)2

(5)

where µj represents the mean value for samples of feature x(j ) ,

and ȳ is the average of outcomes. Note that −1 ≤ ρ ≤ 1. Larger

absolute values of ρ indicate higher linear correlation between

x(j ) and y, whereas they are uncorrelated if ρ approaches to

zero.

2) Fisher criterion: measures the ability of the jth feature to

separate between two sets of labeled data (positive and negatives

instances) by computing the F-score as

F (j) =
µ(y+ )2 + µ(y−)2

σ2(y+ ) + σ2(y−)
(6)

where µ(y±) = µj,± − µj represents the difference between the

average of the jth feature for the positive/negative classes µj,±

and the whole set of samples µj . In the denominator, σ2(y±) is

the sample variance of the positives/negative instances and can

be calculated as σ2(y±) = 1
n±−1

∑n±

i=1(x
(j )
i,± − µj,±)2 , being n±

the number of positive/negative samples. The larger the value

of F (j), the more likely this feature is discriminative.

3) mRMR Criterion: both correlation and Fisher criteria are

computationally easy and fast, but they do not reveal mu-

tual information among features (apart from linear correlation).

Therefore, we also applied the mRMR criterion, which aims at

maximizing the mutual information between the outcomes and

the feature distribution while minimizing the redundancy be-

tween features, according to the following expression:

max
x( j )

{

1

|S|

∑

x( j )∈S

MI(x(j ) ,y)−

1

|S|2

∑

x( j ) ,x(k )∈S

MI(x(j ) ,x(k))

}

(7)

where MI(x, y) accounts for the mutual information among

variables x and y, and |S| represents the size of the feature set.

Fig. 1(a) represents the normalized absolute value of the

scores provided by the three filter methods under considera-

tion, for both the VF versus nonVF (black bars), and the Shock

versus nonSchock (white bars) problems. The closer to one the

score is, the more relevant the feature is considered. The correla-

tion criterion showed a number of parameters as relevant, while

F-score and mRMR are more conservative standing TCSC out as

the most relevant feature. This result is emphasized in Fig. 1(b),

in which the scores of individual filter methods are combined

to provide a single score for each parameter. This combined

score is calculated as the normalized absolute value of the ele-

ment multiplication of the individual scores. According to the

combined score, TCSC is clearly more relevant than the rest of

parameters. Besides TCSC, SpEn and VFleak are also likely to

be highly relevant features. The final score and ranking of the

ECG parameters is presented in Table I.

B. FS With SVM Classifiers

Following a similar approach as in [35] and [36], we com-

bined the above mentioned filter FS procedure and SVM al-

gorithms in order to build a high-performance classifier. The

list of ranked features presented in Table I provided with an

estimate of how valuable an ECG feature is for the detection

problems under analysis. We applied a backward selection pro-

cedure: starting from the completed dataset, we progressively

eliminated the less relevant feature according to Table I, and then

estimated the performance of the SVM classifier using bootstrap

resampling (we set R = 500). The FS-SVM procedure is sum-

marized in Algorithm 1. Using this algorithm, the performance

of the SVM classifier for different subsets of ranked features

can be estimated.
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Fig. 1. Normalized feature ranking weights using (a) individual scores criteria: correlation, Fisher, mRMR; and (b) combination of individual scores. Black bars
correspond to the VF detection problem, whereas white bars represent the shockable rhythms detection scenario.

TABLE I

SCORE AND RANKING ANALYSIS OF ECG PARAMETERS

V. RESULTS

A. Individual Parameters Performance

First, we studied the discrimination ability of the calculated

ECG parameter by analyzing their corresponding receiver oper-

ating characteristics (ROC) curve obtained by using the entire

dataset. The performances of the detection parameters were as-

sessed in terms of the area under the ROC curve (AUC) and by

evaluating the sensitivity (SE), i.e., the proportion of correctly

detected VF/Shockable observations, and the specificity (SP),

i.e., the proportion of correctly identified nonFV/nonShockable

samples. SE and SP are calculated as

SE =
TP

TP + FN
(8)

SP =
TN

TN + FP
(9)

where TP represents the number of true-positive decisions, FN

the number of false-negative decisions, TN the number of true-

negative decisions, and FP the number of false-positive deci-

sions. The results of the ROC analysis are presented in Ta-

ble II. For both VF versus nonVF and Shock versus nonShock

problems, the TCSC parameter obtained the best performance,

hence supporting the original study [5]. Also, VFleak and SpEn

showed high values of SE and SP. The performances of PSR and

HILB are quite acceptable. However, this result differs from the

original investigations [12], [13], but it is similar to other stud-

ies [5]. Note that the performance results presented in Table II

are highly correlated with the scores and ranking shown in

Table I, thus demonstrating that the proposed FS procedure is

an interesting method for evaluating the individual performance

of a set of ECG parameters.

B. SVM Performance

In this experiment, we aimed to analyze the performance

of the SVM algorithm when using the complete set of ECG
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Fig. 2. ROC curves calculated on the out of sample test set for the (a) VF versus nonVF problem, and (b) shockable versus nonshockable scenario.

TABLE II

ROC ANALYSIS FOR THE COMPUTED PARAMETERS USING

THE COMPLETE DATASET

parameters. Thus, the complete dataset was used as the input to

the SVM detector. A random subset of the input space (70%)

was used for training while the remaining data were used as test

set. Given that the datasets associated with the two problems

under analysis were unbalanced, weights were assigned to each

class. In addition, we used the balanced error rate (BER) [32]

as the metric to set the free parameters (C,γ) of the SVM by

following a fivefold cross-validation strategy over the training

set. The performance of the SVM detector was assessed using

the ROC analysis in terms of SE, SP, AUC and of the positive

predictivity (PP), the accuracy (ACC) and the BER calculated

over the test set as

PP =
TP

TP + FP
(10)

ACC =
TN + TN

PC + NC
(11)

BER =
1

2

(

FN

PC
+

FP

NC

)

(12)

where PC = TP + FN and NC = TN + FP.

The performance of the SVM was benchmarked against the

TCSC, SpEn, and VFleak parameters, as shown in Table III.

Both in the VF and the shockable rhythms scenarios, the SVM

classifier outperformed individual detectors in all analyzed met-

rics. The McNemar’s test showed that these differences in per-

formance were statistically significant (p-value < 0.001). A

complete perspective of the performance of the SVM algorithm

can be seen in Fig. 2, which represents the ROC curves for the

SVM algorithm, and the TCSC, SpEn, and VFleak parameters

for both the VF versus nonVF [panel (a)] and the Shock versus

nonSchock scenarios [panel (b)].

Table IV shows the performance of the analyzed algorithms

per arrhythmia type. Besides ventricular arrhythmias (VT, VFL,

VF) and NSR, supraventricular rhythms have been included in

the table since they might produce misclassification when dis-

criminating ventricular rhythms. In almost all types of rhythms

and in both detection problems, the SVM surpass (if possi-

ble) the individual detectors. Note that in the VF detection

scenario, VT is poorly classified by all algorithms showing

that the separability of VT and VF/VFL rhythms is difficult

to achieve. With respect to individual detectors, TCSC be-

haves moderately well to detect shockable rhythms but fails

to discriminate VT and VF. VFleak is able to detect shock-

able rhythms very accurately, but does not discriminate VT

and VF and behaves poorly with supraventricular arrhythmias.

SpEn discriminates VT and VF better that TCSC and VFleak,

but shows inferior performance when classifying shockable

rhythms.
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TABLE III

COMPARATIVE ANALYSIS (METRICS IN %) OF THE SVM DETECTOR (TEST SET)

TABLE IV

SVM PERFORMANCE (ACCURACY IN %) PER ARRHYTHMIA TYPE
† (TEST SET)

Fig. 3. BER metric (in %) analysis with respect to the number of features:
mean (central line), and 95% confidence interval (gray area).

C. SVM Performance Using FS

Given that it might be possible that not all the computed pa-

rameters are relevant for detection purposes, we studied the use-

fulness of the calculated ECG features to construct a simplified

and robust detector. For doing this, we combined FS techniques

with SVM classifiers by following Algorithm1. Fig. 3 shows the

mean (red central line) and the 95% confidence interval (gray

area) of the estimated SVM performance, in terms of the BER

TABLE V

ANALYSIS (METRICS IN %) OF THE FS+SVM DETECTOR (TEST SET) FOR THE

SHOCK VERSUS NONSHOCK SCENARIO

metric (y-axis), using M ranked features (x-axis) for the two

detection problems under consideration.

In the case of VF detection, the BER improves as the number

of features increases, showing that the SVM classifier requires

the information of all features due to the complexity of the

problem. Thus, the classification model could not be simpli-

fied if the performance is to be maximized. On the other hand,

in the shockable classification scenario, the mean BER value

slightly increases from 13 to 9 features, from which the perfor-

mance more rapidly decreases as the number of features reduces.

Hence, we set M = 9 features to build a simplified SVM detec-

tion model, whose performance over the test set is summarized

in Table V. Selected feature were: TCSC, SpEn, VFleak, PSR,

M, MEA, HILB, STE, and FM. The McNemar’s test showed

no statistical differences in performance between the completed

and the reduced models.

VI. DISCUSSION AND CONCLUSIONS

In this study, a novel detection algorithm that combines ECG

parameters with SVM to identify VF/shockable arrhythmias has
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been presented. Together with this algorithm, a FS procedure

has been used to further analyze the discriminatory properties

of the extracted ECG parameters. Given that, in general, par-

simonious detection models provide better prediction, the pro-

posed FS method has been combined to the SVM algorithm to

provide a robust classifier using a reduced set of ECG param-

eters (for shockable rhythms). The detection performance of

the developed methodology is remarkable, and it significantly

outperforms previous proposed detection algorithms.

We used the complete records of the MITDB, CUDB, and the

VFDB. No preselection of episodes was made. In the prepro-

cessing task, noise, and asystole segments were removed from

the classification procedure, as done in other studies [7], [8],

[37]. For this purpose, we used the information contained in

the annotation files. Nevertheless, usual signal processing al-

gorithms could be applied instead. Noise can be detected by

examining the slew rate of the ECG signal [8], while asystole

intervals can be identified by amplitude and signal power anal-

ysis [37].

A total of 13 ECG parameters have been computed to char-

acterize VF and shockable rhythms. These include widely an-

alyzed parameters, such us TCI, CM, PSR, HILB, STE, A2,

M, and VFLeak and relatively recent proposals, namely TCSC,

SpEn, MEA, MAV, and FM (for detection purposes). The over-

all detection performances, when considering each parameter

individually, are in agreement with previous studies [4], [5], [7],

[13], [14], [38], demonstrating that TCSC, SpEn, and VFleak

provide the best diagnostic properties, followed by HILB and

PSR, while TCI, CM, and STE perform poorly.

In this study, it has been shown that the use of SVM algorithms

combining ECG features significantly improves the efficiency

for the detection of life-threatening arrhythmias. SVM classi-

fiers have been extensively used with the ECG signal in the

context of wave delineation, beat detection, general arrhythmia

discrimination, and in other application, such as heart rate vari-

ability or detection of ischemia (see [39] for a comprehensive

review). However, the proposed utilization of SVM algorithms

to detect VF/shockable episodes using a number of well-known

ECG features has not been widely explored. In [40], a VF detec-

tion algorithm based on SVM algorithm combining the Hurst

index and the PSR parameter was proposed, showing a better

performance than VFleak, TCI, CM, PSR, M, and A2 param-

eters, and thus emphasizing the efficacy of combining ECG

parameters with robust machine learning algorithms. More re-

cently, in [20] a total 14 ECG parameters were computed and a

selection of nine were used with SVM classifiers. Compared to

the present study, Li et al. [20] used a different window size (5 s),

a different set parameters and different databases (they included

the American Heart Association database). They reported val-

ues of SE = 90.2, SP = 99.6, and AUC = 99.7 on the test set.

Differences in performance between this and the present study

emphasize the need for building a public ECG signal database

divided into a training and a test datasets, in order to compare

machine learning strategies.

The use of machine learning algorithms requires to set the

free parameters using a training set of examples. In the case of

unbalanced datasets, this step is crucial to assess a good gen-

eralization performance. Under these circumstances, the BER

metric in SVM algorithms represents as a suitable figure of merit

to jointly maximize the values of SE and SP. Besides the BER,

other metrics taking into account the imbalanced nature of the

detection problem [41], such as the F-measure or the AUC could

be of interest to guide the classification model and set the free

parameters.

Combining the information from a number of features to per-

form a given learning tasks requires FS methods to analyze the

relevance of those features, in order to eliminate unnecessary

or redundant information, and this way to construct a robust

and well-performed machine learning algorithm. In this study,

the relevance of 13 well-known ECG parameters to detect life-

threatening arrhythmias has been studied using FS methods. We

used a filter-type approach, combining the correlation, Fisher,

and the mRMR criteria scores to take into account both linear

and nonlinear relationship among features and the class label.

The proposed FS methodology was consistent with the detection

performance of the analyzed parameters, demonstrating that this

procedure is an interesting method for evaluating the discrimi-

nation ability of a set of ECG parameters. Using this combined

score ranking, parameters as TCI, A2, and CM, which have been

extensively used in the literature, have shown not to be relevant

features for arrhythmia discrimination.

It is also important to determine which parameters are relevant

to the classification process, and how they affect the learning

process. This has been evaluated by a backward selection pro-

cedure defined in Algorithm 1. Comparative analysis between

the VF and the shockable detection scenarios (see Fig. 3), sug-

gests that in the VF classification problem the SVM algorithm

is suffering from high variance (wider confident interval area)

and high bias (higher BER metric), thus indicating that there

is still possibility to improve the performance if more train-

ing examples and features/parameters are incorporated into the

SVM model. This again raises the need of having large public

databases to evaluate VT/VF detection algorithms. Also, the FS

analysis showed that features need to be combined in order to

provide highly accurate results. The individual discriminative

power of a variable is not sufficient to build a robust detec-

tor. The relationships with others and with the classifier have

to be taken into account. In this context, more elaborated FS

approaches (wrapper or embedded methods) and/or or different

classifiers could be of interest. However, this implementation

exceeds the purpose of this study.

In conclusion, the present study has shown that the use of

SVM learning algorithms can improve the efficiency for the de-

tection of life-threatening arrhythmias. In this scenario, FS tech-

niques might help to better understand the data and to provide

valuable insights to build highly accurate detection algorithms.

Also, in the case of SVM classifiers using unbalanced datasets,

which constitute the standard case in arrhythmia detection prob-

lems, the BER metric is an interesting magnitude to set the free

parameters of the algorithm.
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