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Detection of Linear Modulations in the Presence of
Strong Phase and Frequency Instabilities
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Abstract—Noncoherent sequence detection algorithms, recently
proposed by the authors, have a performance which approaches
that of coherent detectors and are robust to phase and frequency
instabilities. These schemes exhibit a negligible performance loss in
the presence of a frequency offset, provided this offset does not ex-
ceed an order of 1% of the signaling frequency. For higher values,
the performance rapidly degrades. In this paper, detection schemes
are proposed, characterized by high robustness to frequency offsets
and capable of tolerating offset values up to 10% of the signaling
frequency. More generally, these detection schemes are very robust
to rapidly varying phase and frequency instabilities. The general
case of coded linear modulations is addressed, with explicit refer-
ence to -ary phase shift keying and quadrature amplitude mod-
ulation.

Index Terms—Frequency estimation, maximum-likelihood de-
tection, noncoherent sequence detection.

I. INTRODUCTION

I N BURST-MODE transmissions, typical of future-genera-
tion wireless local loops, mobile to satellite, and cellular

mobile radio systems, a frequency offset is often present, pos-
sibly due to a Doppler shift or a mismatch in the frequency of
transmit and receive up- and down-conversion oscillators. In this
scenario, the use of efficient noncoherent detection or decoding
schemes is often considered (see [1]–[5] and references therein).
Noncoherent sequence detection (NSD) [1], [2] is a class of re-
cently proposed schemes which allow us to approach the perfor-
mance of optimal coherent receivers [1], [2], [6] for any coded
linear and continuous-phase modulation format.

The starting point in [1] and [2] is the optimal noncoherent re-
ceiver which operates in the presence of a random phase rotation
of the received signal, modeled as constant during the transmis-
sion, and additive white Gaussian noise (AWGN). Since optimal
sequence detection requires a search of a path in a tree diagram,
the required complexity increases exponentially with the dura-
tion of the transmission. In [1] and [2], suitable approximations
are proposed in order to reduce the problem to a search of a
path in a trellis diagram and realize simple suboptimal detection
schemes based on a Viterbi algorithm. Besides being realizable,
these suboptimal schemes have the convenient feature of al-
lowing us to remove the constant phase assumption and encom-
passing time-varying phase models. In fact, NSD schemes are
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very robust to oscillator instabilities, such as phase noise, and
do not require an acquisition period as in the case of coherent
detection schemes based on a phase-locked loop (PLL). Com-
pared to coherent schemes, they entail a negligible performance
degradation as long as the uncompensated frequency offset is,
at most, of the order of 1% of the signaling rate, whereas, for
higher values, the performance rapidly degrades.

In this paper, we propose new detection algorithms charac-
terized by high robustness to frequency offsets, practically lim-
ited by the suboptimality of the matched-filter front end only,
at the price of a possible moderate degradation with respect to
the performance exhibited by NSD schemes in the absence of
frequency offsets. Although a matched-filter front end is con-
ceptually suboptimal in the presence of a frequency offset, from
a practical point of view, offsets up to 10% of the symbol rate
can be tolerated.

We present detection schemes with high robustness to phase
and frequency instabilities. The first scheme is based on feedfor-
ward frequency estimation and per-survivor processing (PSP)
[7], embedded in an NSD algorithm. To this purpose, several fre-
quency estimation algorithms are considered (see [8]–[11] and
references therein). The other two detection strategies are totally
invariant to frequency offsets and are based onad hocsolutions.
All detection strategies are introduced for general coded linear
modulation formats. As they operate on the basis of short and
undelayed observation windows, they tolerate rapidly varying
phase and frequency instabilities. This is made possible by the
use of PSP-based frequency estimation, which is explicit in the
first proposed detection algorithm, and it is performed implic-
itly in the other proposed schemes.

In the next section, we review the assumed system model and
the basic likelihood function. The proposed schemes are de-
scribed in Sections III and IV. Specifically, in Section III, a de-
tection algorithm which incorporates PSP-based frequency esti-
mation is proposed. In Section IV, frequency-invariant detection
algorithms are derived in the case of equal-energy signals and
then extended to the case of nonequal-energy signals. In Sec-
tion V, numerical results are presented. Finally, conclusions are
drawn in Section VI.

II. SYSTEM MODEL AND LIKELIHOOD FUNCTION

The assumed system model is shown in Fig. 1. The in-
formation sequence , composed of independent and
identically distributed (i.i.d.) symbols belonging to an-ary
alphabet, is mapped into a code sequence by means of
some coding rule. This code sequence is further mapped by a
linear modulator into a time-continuous signal with complex
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Fig. 1. System model.

envelope , which depends on the information sequence
denoted by the vector. This signal undergoes a phase rotation

, and is affected by AWGN , which is the baseband
equivalent of bandpass noise with two-sided power spectral
density . The complex envelope of the received signal
may be expressed as

(1)

The phase is modeled as a random variable with uniform
distribution in the interval and the frequency offset is
assumed deterministic. Both parameters are initially assumed
constant during the entire transmission, whereas this assump-
tion will be relaxed later on. In the case of linearly modulated
signals, the information-bearing signal may be expressed as

(2)

where denotes the number of transmitted code symbols,is
the signaling interval, and is a properly normalized shaping
pulse.

Assuming perfect symbol synchronization and absence of
frequency offset, the output, sampled at time , of a
filter matched to the shaping pulse is a sufficient statistic
for this detection problem. If a moderate frequency offset is
present, this is not true in a strict sense; however, this sampled
output may still be considered as an approximate sufficient
statistic. This assumption is commonly used in the deriva-
tion of frequency estimation algorithms (see [10], [11] and
references therein).1 With the further assumption of absence
of intersymbol interference, i.e.,
where denoteconvolutionand is the Kronecker delta, it
is straightforward to show that the likelihood function for joint
data detection and frequency estimation reads

(3)

where is the code sequence uniquely associated with a hy-
pothetical information sequenceby the given coding rule,

denotes a trial value of the frequency offset, and
is the matched filter output, sampled at time

. In the following, samples will be referred to as “obser-
vations.” The likelihood function (3) is similar to that obtained
in [1] in the absence of frequency offsets. The likelihood func-
tion in [1] may be obtained by letting in (3).

A property of the likelihood function (3) which is of interest
in this paper is now described. Let us assume that two code

1For larger values of the frequency offset�, a different front end, possibly
based on oversampling techniques, could be used [12].

sequences, and , corresponding to distinct infor-
mation sequences, and , respectively, exist such that

, where is some frequency value and
is some phase rotation. The structure of the likelihood func-

tion (3) implies that

(4)

A consequence of this property is that if the coding rule admits
such sequences, a decoding strategy based on (3), directly or by
means of some approximations, will not be able to distinguish
the information sequences and .

For generality, the concept ofphase rotation of order may
be introduced. A time-varying phase rotationis said to be of
order if it may be expressed as

(5)

where are suitable constants. The above property
(4) may be reformulated in the following terms: two code se-
quences which differ for a phase rotation of thefirst order are
indistinguishable. For this reason, a code which admits code se-
quences that differ for a first-order phase shift iscatastrophic
when decoded by means of strategy (3). Note that this problem
resembles, in a higher-order sense, the usual characteristic of
noncoherent receivers of being unable to distinguish code se-
quences which differ for a phase rotation of zeroth order [1].
Although the usual differential encoding (DE) rule solves this
zeroth-order ambiguity, it is catastrophic in a first-order sense.
In fact, DE has the property that two code sequences which
differ for a zeroth-order phase rotation are associated with the
same information sequence, but code sequences which differ for
a first-order phase rotation may derive from different informa-
tion sequences.

These concepts can be generalized to phase rotations of
second or higher order. An example of a second-order phase
rotation is of interest in low-earth-orbit satellite systems
affected by time-varying Doppler shifts [13].

III. PSP-BASED DETECTION ALGORITHM

In order to perform data detection, the method ofgeneralized
likelihood [14], i.e., the joint maximization of (3) with respect
to and , is equivalent to the maximization of the following
likelihood function:

(6)

where

(7)

may be interpreted as a PSP-based maximum-likelihood fre-
quency estimate [7].
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Some approximations are now introduced in order to realize
simple suboptimal detection schemes based on a Viterbi algo-
rithm. In (6), we use the standard approximation ,
valid for large values of the argument [1], [4]. On the correct
path, the longer the transmission length , the better the ap-
proximation quality for a given signal-to-noise ratio. Proceeding
as in [1], we may define the following partial sequence and in-
cremental metrics

(8)

(9)

where is the hypothetical information sequence up to dis-
crete time . As in [1], in order to limit the memory of the incre-
mental metric (9), a truncation is introduced to enable a search
of a trellis diagram by means of a Viterbi algorithm. To this pur-
pose, in (9) we may consider most recent observa-
tions and code symbols . In addition, we substitute the two
frequency estimates and , with a single estimate

based on the most recent observations and
code symbols . In analogy with [1], integers and rep-
resent the assumedphaseandfrequency memory, respectively.
After an initial transient period, i.e., for ,
the resulting branch metrics are2

(10)

Thanks to the introduced memory truncation, the initial assump-
tion of constant phase and frequency offset during the entire
transmission may be significantly relaxed. In fact, these channel
parameters must be approximately constant in an interval of

symbols, only. As shown in the numerical results,
practical values of and are rather small; hence, these channel
parameters are allowed to change rapidly with time.

The frequency estimate may be obtained from max-
imum-likelihood data-aided estimation based on the algorithm
by Rife and Boorstyn [8]. However, in general, a simpler data-
aided algorithm may be used. We consider some of the algo-
rithms described in [11], namely those by Kay [9] and Mengali
and Morelli [10]. In the technical literature, these algorithms
have been used for -ary phase shift keying ( -PSK) signals
[10], [11]. However, they may be easily extended to the general
case of nonequal-energy signals such as quadrature amplitude
modulation ( -QAM), as shown in the Appendix.

Memory truncation provides significant benefits in channels
with high dynamics, at the price of a reduced estimation accu-

2Forn < maxfN;Lg�1, the two summations in (10) and/or the frequency
estimate should be computed on a lower number of terms.

Fig. 2. Examples of indistinguishable sequence. (a) Noncoherent receiver
(zeroth order). (b) Proposed receiver (first order).

racy in channels with low dynamics. A quantitative evaluation
of the relevant degradation is performed in [8]–[11] for various
frequency estimation algorithms, in terms of variance of the es-
timation error for a static channel. When these algorithms are
used in conjunction with a noncoherent detection scheme, which
is extremely robust to phase jitter and frequency instabilities [1],
[2], a proper performance measure is the overall bit-error rate
(BER) penalty with respect to an ideal coherent receiver (which
perfectly knows the actual value of phase and frequency). In
fact, these noncoherent schemes may exhibit good performance
even with a rough estimation accuracy. In the numerical results,
it is shown that for rather small values of and , the perfor-
mance penalty is limited and a high robustness is achieved.

The proposed detector with branch metrics (10) may be af-
fected by the catastrophic property (4). In order to overcome this
problem, we propose two possible solutions which can be de-
rived by extending simple countermeasures for the zeroth-order
ambiguity problems of noncoherent receivers to the first-order
case. An example of indistinguishable sequences in a nonco-
herent receiver for uncoded quaternary PSK (QPSK) modula-
tion is shown in Fig. 2(a). Sequence is a rotation of se-
quence by and cannot be distinguished. However, if
the phase rotation is limited as , as in the case of se-
quence , the sequence can be correctly recovered. Al-
ternatively, differential encoding/decoding associates code se-
quences which differ for a constant phase shift with a same in-
formation sequence, eliminating this ambiguity. In Fig. 2(b), a
first-order analogy is shown. Sequence is a first-order ro-
tation of sequence with and cannot be distin-
guished.3 However, if the frequency offset is limited as

, as in the case of sequence , the ambiguity may be re-
solved. Alternatively,double differential encoding(DDE) with

3In (5), � = 2��.
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suitable differential decoding may be adopted [5], [15]. These
solutions are described in the following.

The first solution (method 1) consists of a limitation of the
frequency offset range and estimation interval. Let us denote by

the angle of invariance of the considered constellation. In
the case of -PSK signals, , whereas, in the case
of square -QAM, . Being the phase rota-
tion introduced by the channel in one signaling interval, when

, this phase rotation does not yield am-
biguities. At the same time, this condition should be also satis-
fied by the estimate . To this purpose, each estimate such
that may be replaced by the closest value
in the allowed interval. This method may be applied for limited
values of the frequency offset only. In fact, for QPSK, the condi-
tion must be satisfied, whereas the allowed
interval reduces to for 16-PSK constellations.
To avoid zeroth-order ambiguities, DE can be used.

An alternative solution (method 2) consists in the use of DDE,
possibly followed by a code invariant to first-order rotations.4

As a consequence, unlike the previous case in which a limita-
tion of the estimation interval must be imposed at the receiver,
this solution does not require any modifications of the receiver
operation (except for the fact that the new encoding rule must
be taken into account). DDE is described for-PSK modula-
tions in Chapter 8 of [5] and [15]. In this case, symbols be-
longing to an -PSK alphabet are derived from symbols ,
belonging to the same alphabet, by means of the DDE rule

(11)

In the case of -QAM signals, quadrant [1] DDE may
be used. Expressing the generic information symbol of an

-QAM constellation as , where belongs to the
first quadrant and , the encoded symbol is
given by , where are defined by the
DDE rule for QPSK modulations applied to symbols , i.e.,
according to the rule

(12)

IV. FREQUENCY-INVARIANT DETECTIONALGORITHMS

In this section, some detection schemes invariant with respect
to the frequency offset are described. We explicitly consider the
cases of equal-energy signals, such as-PSK, and nonequal-
energy signals, such as -QAM.

A. -PSK Signals

In the case of equal-energy signals, discarding irrelevant
terms, the joint likelihood function (3) becomes

(13)

4These codes may be viewed as an extension of the usualrotationally in-
variant codes [16] and are beyond the scope of this paper.

where the expression denotes that and are mono-
tonically related quantities. In this sum, each term such that

is independent of. Retaining only these terms,
we obtain a simplified likelihood function which is invariant
with respect to the parameter. Observing that for each term
in this quadruple summation there exists a complex conjugate
term, and discarding terms independent of the code sequence

, we obtain the following equivalent simplified likelihood
function:

(14)

which may be recursively computed using the following incre-
mental metric:

(15)

A truncated-memory branch metric may be defined by a proce-
dure similar to that used to derive (10). For generality, we intro-
duce two parameters, and , in order to perform a different
truncation in the two summations in (15). As an example, for

, we obtain

(16)

Note that raising the original likelihood function to the fourth
power yields several terms. Some of these terms are then dis-
carded. The effect of this approximation isa priori unknown
and may be evaluated only by numerically simulating the per-
formance of the derived suboptimal detection algorithm.

An interpretation of this branch metric is the following. Under
the assumption of sufficiently small values of, a coherent re-
ceiver for coded -PSK selects the sequence which max-
imizes the sum of the branch metrics ,
in which and are the correct channel phase and frequency
offset. Extending the interpretations in [1], in (16) the inner sum
(over index ) and the double summation may be interpreted
as implicit PSP-based estimates of the phasors and

, respectively, except for a normalization factor.
Based on this remark, and can be interpreted as phase and
frequency memory parameters, in analogy with the previous al-
gorithm described in Section III. Similarly to the previous al-
gorithm, in order to avoid a catastrophic behavior, the implicit
frequency estimate must be limited within a suitable interval or
DDE must be employed. We verified by computer simulation
that the condition for the validity of (16) is of interest in
practice, because the implicit estimation of the frequency offset
is typically more critical than that of the phase.
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A less complex detection algorithm may be obtained by a
different heuristic manipulation of the joint likelihood function
(3). This likelihood function may be equivalently expressed as

(17)

in which the metric has been expressed as a sum of all the
elements of a Hermitian matrix with elements

. The first sum in (17) is independent
of the code sequence because . Thus, an equivalent
sequence metric is

(18)

in which

(19)

It is easy to verify that, in the absence of noise and for
, i.e., considering the transmitted code sequence, the generic

term is equal to .5 Hence, for all the cosine
factors in (18) are unitary. This fact suggests that the following
approximate metric, asymptotically exact when the signal-to-
noise ratio is high, can be used:

(20)

Proceeding as in Section III, we may define a partial sequence
metric as

(21)

and an incremental metric .
The corresponding truncated-memory branch metric is

(22)

where the parameters and have been introduced.

B. -QAM Signals

In the case of nonequal-energy signals, it is not possible to
directly apply the approximations of metric (3) described in the
previous section. For this reason, as a starting point we use a
noncoherent strategy recently derived under the assumption of
Rayleigh fading and high signal-to-noise ratio, which, however,
exhibits a very good performance in the case of Rice fading
and AWGN channels as well [17]. The relevant likelihood func-
tion, extended to the case of an unknown frequency offset as
described in Section II, is shown in (23) at the bottom of the
page, where manipulations similar to those previously used in
the case of equal-energy signals have been performed. As in
the previous section, we consider the terms of the numerator
with , which are independent of the fre-
quency offset , and the corresponding terms in the denomi-
nator for proper normalization. The resulting simplified likeli-
hood function may be expressed as shown in (24) at the bottom
of the next page. Proceeding as in Section III, we may define

5Therefore,� (x; ~c)=iT may be interpreted as an estimate of� based on PSP
[7].

(23)
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a partial sequence metric and an incremental metric
. The corresponding truncated-memory

branch metric is shown in (25) at the bottom of the page, for
.

The second heuristic approach, used in the previous section,
may also be used for nonequal-energy signals, leading to a less
complex detection algorithm with only slightly worse perfor-
mance. The joint likelihood function (23) may be expressed as
shown in (26) at the bottom of the page. Proceeding as in Section
IV-A by assuming all the cosine factors in (26) unitary, we may
choose to maximize the sequence metric shown in (27) at the
bottom of the page. Defining a partial sequence metric and an
incremental metric, the corresponding branch metric becomes
as shown in (28) at the bottom of the page.

V. NUMERICAL RESULTS

The performance of the proposed detection algorithms is as-
sessed by means of computer simulation in terms of BER versus

, being the average received signal energy per infor-
mation bit.

As in [1], the state complexity of the proposed detection
schemes may be limited by reduced-state sequence detection
(RSSD) [18], [19]. This technique allows us to choose inde-
pendently the parameters and from the number of states

of the Viterbi algorithm. Hence, the number of states may
be limited, retaining sufficiently large values for and . In
order to compute the branch metrics (10), (16), (22), (25), or
(28) in a reduced trellis, the necessary symbols not included or
not completely specified in the state definition are found in the
survivor history according to PSP [7].

The performance of the receiver based on branch metrics
(10) for QPSK with differential encoding (DQPSK), ,

, various values of , and limitation of the estimation
interval (method 1), is shown in Fig. 3. The algorithm by Kay
[9] has been used for frequency estimation, but no differences
were observed using more complex algorithms such as those in
[8] and [10]. The optimal coherent receiver and an NSD receiver
with and are also considered for comparison.
The frequency offset is . It may be observed that, for
increasing values of , the performance of the NSD receiver

(24)

(25)

(26)

(27)

(28)
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Fig. 3. BER of the proposed receiver based on (10) (white marks) for DQPSK
and comparison with NSD (black marks) and coherent receivers. The frequency
offset is� = 0.

Fig. 4. BER of the proposed receiver based on (10) (white marks) for DQPSK,
N = 7, L = 12, andS = 16. The performance of an NSD receiver (black
marks) withN = 7 andS = 16 is also shown for comparison.

may be closely approached at high signal-to-noise ratio. For
, a loss of about 1 dB is exhibited at a BER of .

This power loss reduces to 0.2 dB for and is negligible
for .

In Fig. 4, the performance of the proposed receiver based on
branch metrics (10) under dynamic channel conditions is com-
pared with that of an NSD receiver in order to assess its ro-
bustness. The modulation format and the considered receiver
are those in the previous figure with . The transmit
and receive filters have square-root raised-cosine frequency re-
sponse with roll-off 0.5.6 In addition to a frequency offset, a
phase noise is considered, modeled as a time-continuous Wiener

6Under dynamic channel conditions, this specification is necessary as well.

Fig. 5. BER at a signal-to-noise ratio of 10 dB versus the normalized frequency
offset of the proposed receiver based on (10) for QPSK andN = 7,L = 7, and
S = 16. Method 1 (black marks) based on a limitation of the estimation interval
and method 2 (white marks) based on DDE are considered. The performance of
an NSD receiver withN = 7 andS = 16 is also shown for comparison.

process with incremental standard deviation over a signaling in-
terval equal to . The performance of the NSD receiver rapidly
degrades for values of normalized frequency offset greater than

, whereas the proposed receiver is practically unaffected
by frequency offset up to and phase noise up to 5. As al-
ready mentioned, in the case of DQPSK, the limiting value of

is 0.125 (method 1). On the other hand, for higher values
of , the receiver performance would be limited, in any case,
by the front-end suboptimality and the intersymbol interference
generated by the resulting mismatch. As previously noted, the
algorithm used for frequency estimation is irrelevant. It has been
verified that this conclusion holds for trellis-coded modulations
as well, in which lower values of the signal-to-noise ratio are
used.

In the previous figures, receivers based on branch metrics (10)
and limitation of the estimation interval (method 1) for DQPSK
were considered. Alternatively, method 2 could be used, but in
this case DDE has to be employed. The different behavior of the
receivers based on the two methods as well as the robustness of
the proposed schemes is emphasized in Fig. 5, in which the BER
versus the normalized frequency offset for a signal-to-noise
ratio dB is shown for two receivers. The modula-
tion format, the transmit and the receive filters are those of the
previous figure. The curve with black marks corresponds to the
performance of the proposed receiver based on branch metrics
(10) with , , and for DQPSK with limita-
tion of the estimation interval (method 1). The curve with white
marks corresponds to a receiver based on the same branch met-
rics, the same values of , , and , and using DDE (method
2). Frequency offset values up to 10% of the symbol rate do
not affect the receiver performance. We can also note that the
performance of a receiver based on method 1 rapidly degrades
when the normalized frequency offset exceeds the limiting value
which, for QPSK, is 0.125. On the contrary, the receiver based
on method 2 has a performance which slowly degrades with the
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TABLE I
COMPUTATIONAL LOAD OF THE PROPOSEDALGORITHMS FORM -PSK MODULATIONS AND L � N

Fig. 6. BER of the proposed receiver based on (16) for DBPSK and various
values ofL,N , andS. The frequency offset is� = 0.

frequency offset due to the front-end suboptimality. The perfor-
mance of the NSD receiver rapidly degrades already forequal
to 1% of the signaling frequency.

The performance of the algorithm based on branch metrics
(16) is shown in Fig. 6 for binary PSK with DDE (DBPSK)
and various values of , , and . As in the previous case, for
increasing complexity the performance rapidly approaches that
of coherent detection. For high signal-to-noise ratio, a perfor-
mance very close to that of a coherent detector can be attained
for acceptable values of phase and frequency memory parame-
ters.

The performance of the receiver based on (28) is shown in
Fig. 7 for 16-QAM with quadrant DDE (16-DQAM). Curves
labeled with white marks are relative to the case of absence
of phase noise and frequency offset. The performance of the
receiver with various values of , , and , possibly in the
presence of phase and frequency instabilities, is considered.
In the absence of instabilities (curves with white marks), the
performanceapproaches thatof coherentdetection for increasing
complexity and high signal-to-noise ratio. For
and , a negligible power loss is exhibited for BER of

. For these same values of, , and , the performance
in the presence of phase and frequency instabilities (curves
with black marks) is shown, confirming the high robustness of
the proposed detection schemes. In fact, it may be observed
that for a normalized frequency offset of and a phase
noise standard deviation of 3, the loss is only 0.6 dB at a
BER of .

Fig. 7. BER of the proposed receiver based on (28), for 16-DQAM and
various values ofL,N , andS, in the absence (white marks) or in the presence
(black marks) of frequency offset and phase noise.

Finally, we address the computational complexity of the pro-
posed detection algorithms. These algorithms may be applied
when a strong robustness to phase and frequency instabilities
is required. These instabilities represent a problem for low bit
rates. As an example, the lower the bit rate, the greater the
normalized frequency offset for a given Doppler shift. Conse-
quently, the implementation of these algorithms in low bit-rate
systems is not prohibitive. In Table I, for -PSK modulations,
we compare the proposed algorithms with branch metrics (10),
(16), or (22) in terms of number of products and additions of two
complex numbers and accesses to a read-only memory (ROM),
necessary to compute a single branch metric. In fact, we assume
that the computation of an exponential with imaginary argu-
ment, the modulus of a complex number or its argument are
performed using a ROM. For the branch metric (10), the Kay
algorithm is employed to compute the frequency estimate and

is assumed in all cases. We also assume that the re-
ceiver has states and RSSD is employed. As a consequence,
for each state, symbols have to be found in the
survivor history. Note that in a trellis step, when all the branch
metrics are computed, some simplifications may be performed.
As an example, the branch metrics departing from a given state
are quite similar and, therefore, may be computed in an appro-
priate way to reduce the overall computational burden. In order
to provide a numerical example, Table II shows the number of
products, additions, and ROM accesses in the case and

.



COLAVOLPE AND RAHELI: DETECTION OF LINEAR MODULATIONS 1625

TABLE II
COMPUTATIONAL LOAD OF THE PROPOSEDALGORITHMS FORM -PSK

MODULATIONS, L = 12, AND N = 7

VI. CONCLUSION

Starting from the recently proposed class of NSD algorithms,
this paper presents detection schemes characterized by high
robustness with respect to time-varying phase and frequency
instabilities. The first scheme uses PSP-based feedforward fre-
quency estimation, whereas the other ones, based on heuristic
approaches, are completely invariant to frequency offsets.
Equal- and nonequal-energy signals are considered.

To resolve the inherent ambiguities of the detection schemes
to phase rotations, two methods are described. The first method
is based on a limitation of the allowed frequency range and es-
timation interval. The second method is based on the use of
DDE and renders the detection strategy totally insensitive to the
value of the frequency offset, except for the limitation due to the
front-end suboptimality.

A performance analysis of the proposed schemes has demon-
strated that strong phase noise and frequency offset are well tol-
erated, at the price of moderate degradations with respect to the
performance exhibited by more conventional detection schemes
for lower channel dynamics.

APPENDIX

An extension of the data-aided frequency estimation algo-
rithms considered in this paper to the case of-QAM signals is
rather straightforward. The Rife and Boorstyn algorithm [8] is
general for linear modulations, and may be directly applied to
nonequal-energy signals. However, the algorithms by Kay [9]
and Mengali and Morelli [10] were derived for equal-energy
signals. In order to extend these algorithms to nonequal-energy
signals, we can divide the observationby obtaining, under
the assumption of limited values of frequency offset

(A1)

where

(A2)

and . Denoting by the variance of
, are independent noise samples with zero mean and

variance .

The algorithm by Kay is based on samples
which, under the assumptions described in [11], may be approx-
imated as

(A3)

where denotes the imaginary part of and denotes
a modulo- operation. As in the original algorithm by Kay
for -PSK signals, the least-square method may now be used
with the only care of taking into account the fact that the noise
samples have a variance which depends on the transmitted
symbol . As a consequence, the weighting factors of the re-
sulting linear estimator depend on the amplitude of the trans-
mitted sequence. Similar considerations also hold for the algo-
rithm by Mengali and Morelli.
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