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Detection of Lines and Boundaries in Speckle
Images—Application to Medical Ultrasound

Richard N. Czerwinski, Member, IEEE, Douglas L. Jones, Senior Member, IEEE,
and William D. O’Brien, Jr.,* Fellow, IEEE

Abstract— This paper describes an approach to boundary
detection in ultrasound speckle based on an image enhancement
technique. The enhancement algorithm works by filtering the
image with “sticks,” short line segments which are varied in
orientation to achieve the maximum projected value at each point.
The statistical properties of this approach have been described
in an earlier paper; in this work we present three significant
extensions to improve the performance of the basic method. First,
we investigate the effect of varying the size and shape of the
sticks. We show that these variations affect the performance
of the algorithm in very fundamental ways, for example by
making it more or less sensitive to thinner or more tightly
curving boundaries. Second, we present a means of improving
the performance of this technique by estimating the distribution
function of the orientation of the line passing through each point.
Finally, we show that images can be “stained” for easier visual
interpretation by applying to each pixel a false color whose hue
is related to the orientation of the most prominent line segment
at that point. Examples are given to illustrate the performance
of the different settings on a single image.

Index Terms— Boundary detection, image enhancement,
speckle, ultrasound.

I. INTRODUCTION

M
EDICAL ultrasound is a pulse-echo imaging modality

capable of quickly producing high-resolution images of

soft tissue structures. Because commercial ultrasound systems

are used predominantly in real-time diagnostic situations,

the images they produce are generally optimized for visual

interpretation of qualitative information about the tissue being

scanned. Often, however, quantitative information about a

scan, such as the size of a macroscopic tissue structure, is

also of significant interest, as is the case in fetal maturity

estimation. In these cases, the speckle texture which provides

diagnostic information to the clinician may corrupt machine

estimates of the positions of the boundaries.
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The boundaries of interest in an ultrasound scan correspond

to discontinuities between tissue layers, which are large on the

scales of both the wavelength of interrogation and the scan line

spacing. In the two-dimensional (2-D) scan plane, these three-

dimensional (3-D) surfaces take on the appearance of bright

streaks against a darker, less densely reflecting background.

Features with this appearance are unlikely to occur randomly

in speckle noise; speckle’s correlation structure is more likely

to give rise to bright spots of characteristic size [1]. Con-

ventional edge detection procedures, e.g., Canny, Roberts, or

Sobel operators [2], [3] and related techniques such as [4], are

ill-suited to detect the boundaries because they are not well

modeled as step discontinuities in image intensity. In contrast,

we have had success with an approach designed to respond

preferentially to line processes [5], [6]. This approach results

in an operator that is sensitive even to thin edges, while still

providing for speckle reduction.

To formalize this idea, we have approached the problem of

boundary detection with the techniques of statistical decision

theory. This has led to a number of detection rules motivated

by a statistical model for the targets and noise. In [7], we

derived optimal boundary detection techniques, and tested

them in simulated speckle to establish performance bounds for

other detectors. We compared several suboptimal detectors of

varying complexity and power with the bounds, and showed

that a simple suboptimal detector based on the generalized

likelihood ratio test (GLRT) is extremely robust in the face

of an uncertain or inexactly modeled statistical environment.

Furthermore, we were able to quantify the performance lost in

using this detector, and identify circumstances in which that

loss was negligible [7]. The present work studies that detector

in more detail, focusing in part on a number of different

parameters which can be changed to alter its properties, such

as the length and thickness of the templates used to model the

boundaries.

This paper also addresses a weakness of the technique in

[7], the assumption that all orientation sticks are equally likely

at each point. In practice this is not the case, since B-mode

ultrasound is most sensitive to the surfaces of structures

normal to the beam. To improve upon the performance of

the basic technique, the image itself can be used to estimate a

distribution on the angle of the lines at each point in the image.

This prior information can help to reject unlikely hypotheses.

Finally, we discuss the use of false color as a visualization

tool to indicate the direction of the most prominent linear

image feature at each point. The color can be applied to

either the original or a processed image, and represents a
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Fig. 1. Original image, showing the longissimus muscle of a live pig.

way of displaying additional information on an image without

changing the image gray scale itself. This is an important

issue in medical ultrasound, where sonographers are skilled

in interpreting unprocessed gray level images.

These issues are somewhat apart from simple detector

power. In [7], the detection scenario was carefully controlled

so that the target and noise statistics were known; here the

various tradeoffs will be quantified by showing the effect of

the different settings on the processing of a single real image.

This test image is given in Fig. 1, a scan of the longissimus

muscle of a live pig, imaged with a PIE medical ultrasound

scanning system and a Targa 16 Image Processing card. This

image shows the muscle and several subcutaneous fat layers

whose relative thicknesses are of interest. Each half of this

image shows three major fat boundaries near the top of the

image. These appear as bright streaks which grow fainted near

the right hand side, especially the second boundary from the

top, which appears to grow thinner as it fades out. The ability

of different algorithms to enhance this boundary is a good

criterion to use in comparing the performance of different

detectors.

The results of this work have application beyond the scope

of the particular problem the algorithms were designed to

solve. Orkisz et al. [8] have used a similar technique to

enhance visibility of small blood vessels in MR angiography.

Moreover, image processing in speckle is itself an area of

ongoing concern for many researchers. Notably, Chalana et

al. [9] and Mikic et al. [10] have approached the problem of

boundary detection in echo-cardiographic imaging by fitting

active contours to the boundaries. That work has met with

considerable success, however in both approaches, a human

operator is required to identify a starting position for the

contour. An algorithm such as that presented here may be

able to provide that starting position and more fully automate

those procedures.

II. STATISTICAL LINE DETECTION IN SPECKLE NOISE

Detection theory is the branch of communication theory

which deals with questions of how to optimally determine

the presence or absence of a target corrupted by noise. The

use of detection theory requires certain insights into the

situation at hand; in particular both the target and noise must

be well characterized statistically. In the case of ultrasound

speckle, the noise’s physical cause and statistical behavior are

reasonably well understood, and we propose a tractable model

for the appearance of the edges. With these statistical tools

in place, the detection of boundaries is posed as a composite

hypothesis problem which can be handled using techniques

found in [11] or [12].

The formulation and analysis of the various detection rules

of interest is covered in detail in [7]. To summarize that paper,

this section will discuss the statistical distribution of ultrasonic

speckle and the form of the composite hypotheses which

underlie our detection procedures, and describe the optimal

detection rule. In the general correlated speckle case, the opti-

mal rule is computationally intractable, and requires an exact

statistical characterization which is usually unavailable. Thus,

suboptimal techniques such as the ones described here and in

[5] and [7] become attractive because of their computational

simplicity.

A. Speckle Statistics

Imaging speckle is a phenomenon which occurs when a co-

herent source and noncoherent detector are used to interrogate

a medium which is rough on the scale of the wavelength. A so-

called “fully developed” speckle pattern is formed when each

resolution cell contains many point scatterers, none of which

produces a significant reflection by itself. The received signal

is the superposition of many small reflections whose phases

relative to the source are uniformly distributed between zero

and over the ensemble of reflections.

The sum of all reflections in each resolution cell can

be thought of in terms of a 2-D random walk [13], with

the reflection from each scatterer representing a step of a

random magnitude and direction. By a central limit theorem

argument, the resultant of the random walk can be viewed

as a complex Gaussian random variable with independent

and identically distributed real and imaginary components.

The noncoherent receiver retains only the magnitude of this

complex Gaussian variable, and discards the phase. An image

is formed by displaying the magnitude of the reflected signal

in each resolution cell as a pixel intensity; a fully developed

speckle pattern is thus the magnitude of a complex Gaussian

field with correlation structure dependent on the pulse shape,

the imaging optics, and the distances involved, resulting in a

Rayleigh distribution of pixel magnitudes. Notably, to a first

approximation, its statistics are independent of the medium

being imaged.

If a target is present within a resolution cell, the reflected

signal contains a strong coherent component, which provides

an offset to the random walk. The resulting pixel appears

brighter, and has a Rician distributed intensity. Higher order

statistics can be estimated for a speckle pattern by use of the

Gaussian moment theorem [14]. A more complete treatment

of the statistical properties of ultrasound speckle is found

in [7] which draws heavily on material from the classical

work of Goodman [13], Burckhardt [15], and Wagner et

al. [16].
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Fig. 2. Set of length five sticks.

B. The Use of “Sticks” in Ultrasound Boundary Detection

The targets of interest do not affect only a single pixel;

their effect is along curves which lie on the 3-D surface in

view. We have found [5], [6], [17] that a set of “sticks,” short

line segments of variable orientation, can effectively model

these targets in a statistical sense. Intuitively, this is a very

satisfying notion; large scale linear image features will line up

with a stick of sufficiently short length, while speckle will not

if the stick is sufficiently long. Fig. 2 shows a set of sticks

of length five. There are many possible discretizations of the

set of lines passing through a region; the square support of

the templates in Fig. 2 was selected because it can be easily

resized to larger or smaller scales. In the following sections,

the sticks will be used as templates in a composite hypothesis

test, the result of which will indicate which (if any) stick is

present passing through each point in an image.

The technique used here is related to the class of “rotating

kernel min–max transformation” investigated by Lee and

Rhodes [18]–[21] and Hou and Bamberger [22], [23], but to

our knowledge, our work is the first application of this idea

to medical imaging [5]. Other researchers have considered

detection issues in ultrasound and other speckle imaging

modalities, but have generally restricted their attention to

the identification of more generally shaped image regions of

contrasting statistical behavior [4], [24]–[26], and are thus less

appropriate for the problem of detecting the linear features

which characterize abrupt tissue discontinuities.

C. Optimal Detection

Optimal detection in the maximum-likelihood sense is the

formulation of a mathematical rule to indicate that a target

is present within a signal or that the signal is more likely

just noise. The rule is obtained by comparing the conditional

probability density functions (pdfs) under the active (signal

present) and null (noise only) hypotheses, to determine which

is the more likely state of nature underlying the observation.

For example, if signal is received, and

Prob Receive target present

Prob Receive no target present (1)

then it is statistically likely that a target is present. This test

is equivalent to computing a likelihood ratio of conditional

pdf’s, and comparing the resulting function to a threshold.

(a)

(b)

Fig. 3. (a) ROC curves for the Sticks detection rule in simulated correlated
speckle of three different power levels and (b) sample signal and noise
realizations at each signal level. The signal appears in each simulated image
as a thin diagonal line from upper left to lower right. These signal levels are
intended to represent, from left to right, high to low SNR relative to typical
medical ultrasound image quality. This figure is a composite of data which
appear in [7].

In some cases such as binary detection in Gaussian noise,

the likelihood ratio function can be simplified, leading to a

low-order optimal test.

In the multiple hypothesis case the likelihood ratio is more

complicated because the active hypothesis has several different

forms which leads to a sum of conditional pdfs, weighted by

the prior probability of each hypothesis

Prob Receive target present

Prob Receive no target present

Prob Receive th target present

Prob Receive no target present
(2)

where is the prior probability that hypothesis occurs. The

decomposition of the target present probability into the sum

in (2) follows from our premise that the stick orientations are

a mutually exclusive and exhaustive [27] representation of the

possible lines passing through each image pixel.

1) Linear Stick Detection: The optimal detection rule is

computationally infeasible and requires clairvoyant knowledge

of the noise statistics. As an alternative, we have developed

the Sticks technique, a simpler method which is more robust

in the face of imperfectly characterized noise, but whose

performance can approach the optimal in the case of minimally

correlated speckle (i.e., obtained from an underlying white
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Fig. 4. Composite of images processed with sticks of varying lengths and thicknesses. Length varies from seven to 15 to 23 from left to right; thickness
varies from one to three to five from top to bottom (image cropped to show detail).

complex Gaussian field). This technique is implemented by

overlaying each orientation stick above a point and adding

pixel which lie along the stick. The maximum value over all

orientations is retained as the test statistic for that point. This

approach is similar to the Hough transform [28], which is

widely used to detect lines in computer vision applications.

The Sticks technique is an implementation of the GLRT for

short line segments in an additive, white Gaussian noise field.

While this is clearly an incorrect statistical model for speckle

noise, it is reminiscent of Smith et al. [24] who use the sum of

values from independent correlation cells within a lesion as a

reasonable approximation to the solution of the exact detection

problem which requires the decomposition of the image into

uncorrelated components [13].

The effect of summing correlated pixel (as we do here)

is studied in [7] where the Sticks detector is compared in

performance with a Sticks detector preceded by a prewhitening

operation. The whitening was shown to produce nearly optimal

performance in ROC analysis of Monte Carlo simulations,

however the estimation of the whitening filter in real images

has proven elusive. Nevertheless, when the stick size is sig-

nificantly larger than the speckle correlation length, we expect

that the support of each stick will include several independent

correlation cells, the sum over which will be related to the

sum over the independent correlation cells alone.

Fig. 3(a) shows a set of receiver operating characteristic

(ROC) curves corresponding to Sticks detection in correlated

speckle of three different power levels. A simulated ultrasound

scan showing a noise realization at each power level is shown

in Fig. 3(b). In each of these images, a simulated target is

found along the diagonal from upper left to lower right. This

figure is a composite of curves and images which appear in

[7]. An ROC study of performance of the Sticks algorithm

in real images is beyond the scope of this paper, but Fig. 3

gives an indication of the performance that might be expected

at different noise levels.

III. EFFECT OF STICK LENGTH AND THICKNESS

The implementation of the Sticks technique requires a

tradeoff between effective line enhancement and good speckle

reduction. To obtain good results, the sticks should be made
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longer than the correlation length of the noise, yet shorter than

the distance over which the boundaries appear to be straight

lines. A longer stick achieves greater speckle suppression at

the expense of a weaker match with more tightly curving

boundaries; similarly, “fatter” sticks are more sensitive than

thinner sticks to broad but dim boundaries.

Fig. 4 shows the effects of varying stick length between

seven, 15, and 23 pixels, and stick thickness between one,

three, and five pixels. The longer sticks have the effect of

blurring the speckle in the interior of the muscle, while more

clearly emphasizing the boundaries between fat layers and

the muscle. However, these effects come at the expense of

visibility of certain image features, such as the thin boundary

between the fat layers in the upper right corner of the image.

Increasing stick thickness has the effect of enhancing the

relative brightness of the broad boundaries, while introduc-

ing some blur in the transitions between boundary and off-

boundary pixel. More importantly, the use of thicker sticks

makes very thin boundaries less visible.

These effects can be more quantitatively studied by con-

sidering the statistics of the stick operator output. Ideally, we

hope to obtain a large valued, low variance output when a

target is present and a small valued, low variance output when

no target is present. The following index of performance is

maximized under these circumstances

(3)

where

(4)

The quantity is the projection of an idealized

image onto a size stick of normalized energy, i.e., one

containing points, each of value . The quantity

is the sum of pixel intensities from true target

points and pure noise points, corresponding to partial

overlap of a stick detection template with a target. Detection

with a stick perfectly fit to the target is indicated by ,

while the stick output under the null hypothesis is .

In additive white Gaussian noise, the quantity

can be interpreted as a signal-to-noise ratio (SNR), since it is

proportional to the square of the expected difference in stick

output under active and null hypotheses, and inversely pro-

portional to the variance under the active hypothesis. In fully

developed speckle, is still a reasonable performance

index because it requires only low-order moments which can

be reliably estimated [29]. Smith et al. [24] use a similar

measure which they call “optimal signal-to-noise ratio” to

derive a detector for image regions which are bright due to the

presence of lesions. This statistic is also related to deflection

[30], which is used as a criterion for the design of optimal

linear-quadratic detection rules for use in ultrasound speckle

in [7], and also to the “contrast” [13] of the speckle pattern,

which has been used in ultrasound tissue characterization (for

example, in [31] and [32]).

Brown et al. [33] have shown that the use of SNR statistics

such as (3) may be an unreliable indicator of detector power

for non-Gaussian noise, especially in instances of high signal

strength. This index must thus be validated for the noise dis-

tribution in question. Results in [7] indicate that in simulated

speckle deriving from an uncorrelated Gaussian distribution,

the Sticks detector is nearly equal in performance to the

optimal detector, and that in correlated speckle, a prewhitening

operation allows Sticks to perform close to optimally. These

are essentially matched filter techniques, which are optimal

in Gaussian noise because they maximize SNR; their success

in detecting lines in non-Gaussian simulated speckle leads us

to believe that SNR measures such as (3) may accurately be

used in this context to quantify detector power, in spite of their

general suboptimality for this purpose.

If the speckle is assumed to be described by Rayleigh/Rician

statistics, the mean and second moment of are given

by

(5)

and

(6)

where and are the mean and variance of target points in

the image, and , and are the mean and variance of noise-

only points. These statistics can be calculated by application

of the Gaussian moment theorem in terms of the underlying

Gaussian random field statistics.
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The variance of is then

(7)

Note that because

(8)

for all positive , which simplifies the denominator of (3)

(9)

For a given target size, increases linearly with

increasing stick length, reaching a maximum value when the

stick exactly matches the target. When the stick is larger than

the target, increases in stick size can only extend the operator

to include pure noise. This results in an increase in , and a

constant value of , leading to a decrease in . The

value of is plotted for targets of varying length in

5.2 dB noise in Fig. 5. The figure shows the costs of under-

or over-estimating the target size when selecting a stick length

and thickness. While the costs of under-estimation appear more

significant, the penalty for over-estimation still must not be

ignored. Since stick length and thickness are generally set

once for an entire image, care must be taken to ensure that

an appropriate value is selected. The potential exists for an

adaptive size stick or sequential detection at multiple scales,

however these topics are beyond the scope of the present paper.

IV. DECISION-DIRECTED STICKS

Implicitly, the techniques described above have assumed

that the boundaries are uniformly distributed in their orienta-

tion. For the case of medical ultrasound, this is an unwarranted

simplification, because the modality is physically incapable of

imaging structures which lie parallel to the interrogating sound

beam. In fact, almost all the boundaries in an acoustic image

will be oriented nearly perpendicular to the beam direction.

Inclusion of a set of prior probabilities for the line ori-

entation in the detection rule can greatly improve on the

performance of the GLRT. The GLRT is similar to a likelihood

Fig. 5. D(N; M) for targets of indicated length in 5.2-dB simulated
speckle. As stick size increases up to the target length, D(N; M) increases
linearly; when stick size is larger than the target size, D(N; M) decreases,
indicating optimal performance when the stick is well matched to the target.

(a)

(b)

Fig. 6. Original image processed with: (a) length seven, thickness one sticks
and (b) length seven, thickness one decision-directed sticks procedure.

ratio test (2), except that the numerator

LRT Prob Receive th target present (10)
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is replaced with conditional pdf for the maximum likelihood

hypothesis

GLRT Prob Receive th target present (11)

It is most useful when the prior are unknown. If the priors

are known or can be estimated, however, we can replace the

maximum likelihood estimate in (11) with a more powerful

maximum a posteriori estimate. We call the resulting test the

decision-directed Sticks detector

DDS Prob Receive th target present

(12)

The new test can be implemented by thresholds

(13)

where denotes an inner product, denotes the th target,

and is the variance of the noise, assumed to be white

and Gaussian, and , a constant

with respect to , since all the sticks are the same length and

have equal energy. Note that since , it is known

that ; thus the prior term in (13) is a penalty on

less probable orientations. Furthermore, the penalty is possibly

quite stiff, since .

The division of the projection value by the noise variance

has an additional interpretation: the prior information attains

greater significance in higher noise levels when the projection

is highly noisy. Conversely, when the noise level is lower, the

projection information is given more weight. In the case of

very high SNR, the test reduces to the original Sticks algo-

rithm. If has values zero or , as in the formulation

we have used for line detection, (13) reduces to the selection

of the line sum with the maximum value after a penalty has

been applied to terms unlikely to be true lines. The original

Sticks algorithm is obtained as a special case by assuming

equal priors, or when the SNR is very high.

Even though ultrasound is most sensitive to targets oriented

perpendicular to the beam axis, the exact reflection coefficient

as a function of incidence angle can not be known a priori.

Thus, it is not possible to infer a set of prior probabilities

from scanning geometry alone. This is especially true if the

image is composed from scans taken from different locations

averaged to reduce speckle intensity. Furthermore, in more

general imaging problems, for example in MR angiography

[8], the scanning geometry may not produce any preferred

line orientation at all.

(a)

(b)

(c)

Fig. 7. (a) Vertical cross sections of the original image, (b) the processed
images in Fig. 6: length seven, thickness one sticks, and (c) length seven,
thickness one decision directed sticks. Both processing algorithms are effec-
tive at reducing noise and making boundary peaks more easily detectable,
especially the decision-directed approach in (c).

For these reasons, it is desirable to estimate the prior from

the image itself. In [34], we presented the following method of

performing this estimation. First, the Sticks algorithm is used

to determine the angle of the most prominent line segment

passing through each point. Next, a histogram is formed of

the angles near each pixel (e.g., within the support of the

stick operators). This histogram is normalized to unit volume

and used as a prior distribution on line segments passing

through the point. This technique is inspired by the treatment

of maximum a posteriori probability estimation in [35].

The decision-directed Sticks algorithm can thus be written

in three steps [34]: the determination of the most probable line

direction at each point, the computation of a prior probability

for each angle at each point, and the computation of the final

test statistic

(14)

(15)

(16)

where is the original image and denotes

the output test statistic, denotes the most probable

line orientation at point , is a stick at the

orientation, is a mask function which is unit valued

on the union of the support of the sticks and zero-valued
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(a)

(b)

Fig. 8. Original image with false color applied to indicate the direction of the most prominent stick at each point. The hue applied is obtained from the
direction of the most prominent length 15, thickness one sticks at each point. The colored circle visible in the image was superimposed on the raw image and
processed along with the rest of the image; its color at various points on its diameter indicates the hue assigned to boundaries at corresponding orientations.
The image shows a range of hues along curving lines, such as the fat boundaries near the top of the image. Image (a) is obtained by distributing hues evenly
about the color circle and (b) is the result of warping the color map to show a full spectrum along the broad boundary at the top of the image.

elsewhere, is the computed probability of a line at

orientation at point , and is the indicator

function, equal to one, if is true; zero, if false.

Fig. 6(a) shows the image from Fig. 1 processed with a

length seven, thickness one decision-directed sticks proce-

dure. Note the thin boundary between the two layers of

subcutaneous fat which is emphasized even though it is

only a few pixel wide. This is characteristic of the ability

of all the sticks techniques to connect image lines while

rejecting the darker areas between the lines. This tendency

can be seen in the processed text, where connections are

made between letters and between unconnected parts of letters.

This is not a serious limitation in medical imaging where

tightly curving features such as lettering are uncommon.

The lettering does, however, provide a convenient means

to demonstrate the improvement of decision directed sticks

over sticks projection [Fig. 6(b)]: in addition to yielding more

sharply defined boundaries and greater noise suppression, the

artifacts surrounding the lettering are far less pronounced in

Fig. 6(a) than in (b).

A vertical slice of each of these images is shown in

Fig. 7, which shows the improvement in peak detectability

and noise rejection of the sticks and decision directed sticks

procedures. In Fig. 7(b) and (c) the boundaries are marked

by narrower peaks, and the nonboundary points by lower

intensity, especially in the decision-directed Sticks image slice,

Fig. 7(c).
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V. IMAGE ENHANCEMENT WITH FALSE COLOR

False color is frequently used in computed imaging systems

as a means of supplementing the information content of a

gray-scale display, for example in Doppler ultrasonics to

display direction and velocity of blood flow. In the techniques

described thus far, output images have been displayed in gray-

scale only. In this section, we propose to use false color

to display the orientation of the stick which produced the

maximum projection, in addition to the maximum projection

value itself. This can be accomplished by assigning each pixel

an orientation dependent hue, and should result in improved

visibility of boundaries.

The idea of applying false color to an ultrasound image was

used in [36] to display statistical properties of the backscatter

at each point. We feel the notion has broad applicability in

ultrasound image enhancement, and in particular that false

color can significantly improve the detectability of weak

features by providing image detail that otherwise would not

be seen. As was the case with the orientation estimation in

the decision directed Sticks procedure, the use of false color

to display angle information can be used in conjunction with

any Sticks or similar technique.

The problem of displaying angle and intensity as a color

is one of displaying a hue, saturation, and intensity (HSV)

color space. This is complicated, because while HSV is a

natural space for describing perceptible colors, not every HSV

triplet can be made up out of the red, green, and blue (RGB)

components which compose standard computer displays. Thus,

the mapping from HSV to RGB space is not exact or unique.

Fig. 8 was produced using the procedure shown in Fig. 9.

Example images resulting from enhancement with false

color are shown in Figs. 8 and 10. These figures show the

original image and the Sticks output image in false color

obtained by coding the orientation of length 15, thickness

one sticks as a hue. Note that the uncolored images can

be obtained from the colored ones by summing red, green

and blue components and normalizing to suit the display’s

dynamic range. In clinical applications, the ability to display

additional information without “corrupting” the original image

is important because the expertise of the ultrasound sonogra-

phers is highly specialized in analyzing images with standard

appearance.

Figs. 8(a) and 10(a) show the raw false color images, where

hue is equally distributed over all angles. Figs. 8(b) and 10(b)

show the same images, but with a color map which shows

almost a full spectrum of color in the range of angles which

describe the fat boundaries near the top of the image. The

colored circle visible in the image was superimposed on the

raw image and processed along with the rest of the image;

its color at various points on its diameter indicates the hue

assigned to boundaries at corresponding orientations.

The colored images, especially the (b) images, show clearly

that the outermost fat boundary is in actuality two separate

boundaries, a fact which is much more visually apparent

than in the corresponding gray-scale images. The visibility

of the boundaries is further improved by the fact that the area

between boundaries is assigned a contrasting color. This is

Notes:
h is an angle between 0 and 360 .
s is the saturation value set to some constant between zero and one (unused in this
application).
Value is normalized to lie between zero and one.
Outputs r, g, and b all fall between zero and one.

Fig. 9. Conversion from (H, S, V) to (R, G, B) color space. Adapted from
[37].

because sticks oriented perpendicular to the boundaries are

selected in this region in an attempt by the algorithm to capture

boundary energy to display at these points. In a gray-scale

display, some of these points might erroneously appear to

be part of the boundaries; with false color, their distinctness

is clear.

We believe that the use of false color is a very promising

technique with potential to significantly improve the capa-

bility of diagnostic imaging devices. False color allows two

additional degrees of freedom in the display (only one of

which is used here), which can be used to supply additional

information to the user. Most importantly, the additional

information can be introduced into the display or switched

off without qualitatively changing the appearance of the scan.

Further research is required to determine the best quantities to

encode using false color.

VI. CONCLUSION

This paper has discussed the use of the Sticks algorithm

to enhance images for boundary detection. The technique

operates by applying a set of templates as a filter bank,

and retaining the largest filter output at each point as a test

statistic. It has been shown that by modifying the length

and thickness of the templates, the technique can be made

more sensitive to thicker lines, or achieve a different trade off

between speckle suppression and the ability to follow tightly

curving boundaries. We have also demonstrated a technique
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(a)

(b)

Fig. 10. Sticks image with false color applied to indicate the direction of the most prominent stick at each point. The hue applied is obtained from the
direction of the most prominent length 15, thickness one sticks at each point. The colored circle visible in the image was superimposed on the raw image and
processed along with the rest of the image; its color at various points on its diameter indicates the hue assigned to boundaries at corresponding orientations.
The image shows a range of hues along curving lines, such as the fat boundaries near the top of the image. Image (a) is obtained by distributing hues evenly
about the color circle and (b) is the result of warping the color map to show a full spectrum along the broad boundary at the top of the image.

for using the image itself to estimate the prior probability of

a line of any orientation passing through each point, which

results in greater speckle rejection and better performance

of the detection procedure. Finally, we have presented a

means of displaying the angle information at each point as

a false color. This is an extremely promising idea because it

allows for entirely new information to be incorporated into an

image without affecting the gray level value of the original

image.

Note that the class of rotating kernel detectors to which these

algorithms belong is far broader than that which can be sur-

veyed here. Lee and Rhodes [18]–[21] and Hou and Bamberger

[22], [23] have experimented with similar approaches. In our

own work, we have used the median operation [6] in place of

a sum, and obtained results similar to those produced by the

Sticks algorithm. These methods have applicability in medical

ultrasound imaging because of their ability to enhance the

linear image features which correspond to tissue boundaries.

They also may find applicability in other forms of coher-

ent imaging, such as microwave synthetic aperture imaging,

because of the statistical and physical analogy between the

speckle noise in these two imaging modalities.
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