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Abstract. A method of image analysis is proposed for detection of local
defects in materials with periodic regular texture. A general improvement
and enlargement of vision system capabilities for versatility, full automa-
tism, computational efficiency, and robustness in their application to the
industrial inspection of periodic textured materials is pursued. In the pro-
posed method, a multiscale and multiorientation Gabor filter scheme that
imitates the early human vision process is applied to the sample under
inspection. The designed algorithm automatically segments defects from
the regular texture. A variety of examples of fabric inspection are pre-
sented. In all of them defects are successfully segmented from the tex-
ture background. © 1998 Society of Photo-Optical Instrumentation Engineers.

[S0091-3286(98)01408-1]

Subject terms: Gabor functions; image analysis; web inspection; defect detection.

Paper 17107 received Oct. 15, 1997; revised manuscript received March 16,
1998; accepted for publication March 17, 1998. This paper is a revision of a
paper presented at the EUROPTO Conference on Lasers, Optics, and Vision for
Productivity in Manufacturing I, June 1996, Besançon, France. The paper
presented there appears (unrefereed) in Proc. SPIE Vol. 2785.

1 Introduction

The interest in reliable, automatic systems for visual in-
spection of industrial materials such as textile webs, paper,
or wood requires the development of image segmentation
techniques based on texture analysis. The surfaces of such
materials display complex patterns that appear visually
regular on a large scale. In a local analysis, however, the
texture components may vary in their intensity distribution,
pattern size, and pattern shape. These local variations make
inspection difficult.

Fourier-domain-based techniques are particularly suit-
able for materials that exhibit a high degree of periodicity
~e.g., most textile webs!. The angular and radial analysis of
the Fourier transform of a web image provide valuable in-
formation for characterizing carpet patterns1 or common
fabrics.2 Other related operations, such as autocorrelation
of a web image, have been proposed in Ref. 1 and used in
Ref. 2 to explore the yarn spacing in the weft and warp

directions. Ciamberlini et al.3 describe an optical method
using Fourier transform and spatial filtering to reveal de-
fects in textile materials in real time. Recently, Millán and
Escofet4 have proposed Fourier-domain-based angular cor-
relation for pattern recognition of quasiperiodic textures. It
has been applied to web inspection for pattern identification
and classification, and also for the detection and character-
ization of defects that cause an overall distortion of the
basic structure of the material, such as shrinking and abra-
sion.

When defects only alter a small area of the image of the
material under inspection, they are called local defects.
Fourier analysis does not provide, in general, enough infor-

mation to detect local defects. Methods that can localize
and analyze features in the spatial as well as in the fre-
quency domain are convenient for detecting local defects.
Wavelet transforms, used as multiresolution spectral filters,
provide both frequency and spatial local information about
an image. In fact, different wavelet bases have been used to
develop applications of image analysis to local-defect de-
tection in woven fabrics.5–7 In a preliminary work,7 we
evidenced the feasibility of using Gabor filters8 to the in-
spection of local defects in fabrics.

A Gabor filter consists of a sinusoid of a given fre-
quency and orientation, modulated by a Gaussian envelope.
This Gaussian envelope provides spatial localization. A
good reason for the use of Gabor filters is their relationship
with current models of early vision in primates; in addition
they have optimal localization in the space and frequency
domains9 with an efficient implementation in both
domains.10 The human eye is a highly efficient visual sys-
tem and a robust pattern and texture analyzer. Gabor and
related wavelets used in visual modeling have been suc-
cessfully applied to a large variety of early vision tasks.10

Specifically, the problem of detecting local defects in a
surface can be related to texture segmentation when either
the material, the defect, or both are textured, as in textile
webs. Several authors have proposed different approaches

based on Gabor filters for texture segmentation11–15 and for
object detection.16

Here we present a new method for automatic detection
of local defects in a regular texture, based on a multiscale
and multiorientation Gabor scheme. This scheme imitates
the visual coding in the early stages of the human visual
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system and was proposed as an image representation
model.17 Its usefulness has been demonstrated through a
variety of applications involving local multiscale process-
ing and texture analysis15 and synthesis.18 According to this
Gabor scheme, we build an algorithm that uses the filtered
images of the textured material under inspection in order to
locate and isolate their possible defects.

We have successfully applied the method to detect a
variety of typical defects in woven fabrics of different
structure. In this paper, we present and discuss some ex-
amples.

2 Method

In this section we briefly review the multiscale and multi-
orientation Gabor scheme for feature extraction, and then
describe the procedure designed to segment defects from
the background ~regular texture!.

2.1 Multiscale and Multiorientation Gabor Scheme

We use the model proposed in Ref. 17, which seeks to
simulate schematically the early visual coding in humans

by applying a set of 434 Gabor filters to digital images.

This scheme performs a logarithmic-polar sampling of the
frequency spectrum of the image. The sampling yields four
frequency levels distributed in octaves and four orientations
~horizontal, vertical, and the two diagonals!. A low-pass
residual channel ~LPR channel!, at the center, covers the
very low frequencies around dc. The general description of
the model we consider is contained in Sec. 2 of Ref. 18. In
particular we recall that a 2-D Gabor function in the spatial

domain of coordinates (x ,y) is given by

g~x ,y !pq5expF2

p

ap
2 ~x2

1y2!G
3exp @ i2p f p~x cos uq1y sin uq!# , ~1!

where the first factor represents the Gaussian envelope with

bandwidth determined by the parameter ap , and the second

factor is a complex sinusoid. The parameters f p and uq ,

with p ,q51, . . . ,4, represent respectively the frequency

and the orientation of the pq channel. For an input image

i(x ,y) and a Gabor filter given by the complex function

gpq(x ,y) of Eq. ~1!, the magnitude of the filtered image,

uipq(x ,y)u, can be computed as

uipq~x ,y !u5$@gpq
e ~x ,y !*i~x ,y !#2

1@gpq
o ~x ,y !*i~x ,y !#2%1/2,

~2!

where the symbol * denotes a 2-D convolution, and gpq
e

and gpq
o represent the real ~even! and the imaginary ~odd!

parts, respectively, of the Gabor filter gpq(x ,y).

As described in Ref. 17, an appropriate filter design with
small convolution masks allows an efficient implementa-
tion of Gabor filters in the spatial domain. Moreover, the
pyramidal structure and the symmetries of the scheme sim-
plify its application by using self-similar Gabor wavelets.
Instead of scaling the wavelet, it is preferable to under-

sample the input i(x ,y) by a factor 242p corresponding to

the channel of frequency f p . The input is conveniently

convolved with a low-pass filter ~e.g., a cubic B spline19!
before subsampling in order to remove the high-frequency
terms and avoid aliasing artifacts. For the convolution in

the spatial domain, we use two masks of 939 pixels that

represent the even and the odd parts of the Gabor filter

gpq(x ,y). The magnitudes uipq(x ,y)u of the 434 channels

will constitute the input of the segmentation algorithm.

2.2 Segmentation

This section describes the procedure we propose for defect
detection in regular textures. There is an extensive litera-
ture suggesting that Gabor channels are good descriptors of

texture.7,10–12,14,15,18 A visible defect will cause a local
change of visual texture. If the proposed Gabor channels
are able to describe texture accurately, then we can exploit
this fact to segment the image automatically and detect rel-
evant defects visually. The presented method must meet
three requirements. Firstly, we have to enhance changes in
the descriptors, which may correspond to a fault in such a
way that a binarization makes possible the segmentation of
defective areas from the textured background. Secondly,
the process must integrate faults captured at different ori-
entations and resolution levels of the Gabor filters into a
single binary map with the locations of defects as the out-
put. Thirdly, the procedure must be automatic, robust, and
versatile, easily adaptable to a variety of regular textures of
different materials. This third aspect entails that we will not
introduce key parameters, which may require specific ad-
justments of parameters or procedures to a particular kind
of defect or texture. In this way, we will avoid problems of
overtraining or undertraining that frequently appear when
optimizing a given method with a limited, incomplete set of
training samples.

Figure 1~a! shows a schematic diagram of the procedure.

It starts with an image of the sample to inspect: t(x ,y). The

set of Gabor filters described in Sec. 2.1 is applied to the

input image t(x ,y) to give the moduli of the set of 434

filtered complex images, utpq(x ,y)u. The low-pass residual

image, tLPR(x ,y) is obtained by subsampling the input

t(x ,y) four times by a factor 2 ~including a convolution

with the low-pass filter cubic B spline before each subsam-
pling!.

In the second step, our texture descriptors are obtained

by expressing the filtered images utpq(x ,y)u in contrast

units. This can be accomplished by dividing every filtered

image utpq(x ,y)u, p ,q51, . . . ,4, by the low-pass residual

image tLPR . Thus, the set $p ,q% of features Tpq(x ,y) is

given for each pixel (x ,y) by the expression

Tpq~x ,y !5

utpq~x ,y !u

tLPR~x8,y8!
, ~3!

with ~see Fig. 2!

x8511IS x21

2p D , y8511IS y21

2p D , ~4!

where function I(z) means the integer part of the argument

z .
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Before analyzing the texture to be tested, we first apply
the same procedure to a prototype defect-free sample

r(x ,y) and store the mean and standard deviation of the

histograms of each feature @the block on the left in Fig.
1~a!, sketched in detail in Figure 1~b!#. We assume that

both the image t(x ,y) of the texture under inspection and

the image r(x ,y) of the faultless reference texture are ac-

quired under the same experimental conditions of scale,
orientation, and resolution. In Fig. 1~b!, the filtered images

in absolute value, urpq(x ,y)u, are again converted to con-

trast units, by dividing by the corresponding LPR image

rLPR(x8,y8):

Rpq~x ,y !5

urpq~x ,y !u

rLPR~x8,y8!
, ~5!

in the same way as in Eq. ~3!. The mean value ~over all the

pixels! of each Rpq and the standard deviation spq are cal-

culated by the standard expressions

R̄pq5

1

Np
2 (

x51

Np

(
y51

Np

Rpq~x ,y !, ~6!

Fig. 1 Schematic diagram of the segmentation procedure: (a) main diagram; (b) detail of the part of
the procedure applied to a faultless sample (prototype), which provides the reference entry to the main
diagram (a) (on the left).
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spq5H (
x51

Np (
y51

Np @Rpq~x ,y !2R̄pq#2

Np
2 J 1/2

, ~7!

where Np
2 is the number of pixels of the filtered image at

the resolution level p . The two sets of sixteen (434) val-

ues $R̄pq% and $spq% are the reference entry to the main

procedure on the left of the scheme in Fig. 1~a!.
The next step is to compare, for each pixel or location,

the features of the sample under study with those of the
reference. The closer the values, the higher the likelihood
of the sample coinciding with the prototype, and con-
versely, the larger the difference, the higher the probability

of there being a defect. Thus, we calculate, for each level p

and orientation q , the magnitude of the difference between

features of the sample under analysis and the mean of the
prototype

dpq~x ,y !5uTpq~x ,y !2R̄pqu. ~8!

In order to reduce noise, for each pixel we set to zero those

differences dpq(x ,y) below a threshold, i.e., for those val-

ues of the sample with a high likelihood of being like the
prototype. We consider a standard thresholding operation
given by the expression

Spq~x ,y !5H dpq~x ,y ! if dpq~x ,y !>tspq ,

0 otherwise,
~9!

where the threshold is proportional to the standard devia-

tion spq calculated from the reference feature array

Rpq(x ,y). We take a fairly standard constant value t53

according to a low-risk criterion: only points with differ-
ences above three times the standard deviation are eligible

as defects, which strongly reduces the probability of mis-
classifying points of the background ~regular texture! as
faulty areas. The resulting array of the thresholded feature

differences is represented by Spq(x ,y) in the diagram in

Fig. 1~a!.
For each scale level p and for every pixel (x ,y), a vec-

tor of four components, Sp
xy

5$(Sp
xy)q% with q51, . . . ,4,

can be built. Each component of the vector Sp
xy is defined

by (Sp
xy)q[Spq(x ,y) and coincides with the thresholded

feature difference of pixel (x ,y) at the scale level p and

orientation q . In the next stage an array Kp(x ,y) is calcu-

lated for each scale level p with the norm of vectors Sp
xy ,

that is,

Kp~x ,y !5iSp
xyi5H (

q51

4

@Spq~x ,y !#2J 1/2

. ~10!

The definition of Kp , i.e., the norm of the feature-

difference vector, is a common metric used in standard
clustering algorithms for segmentation. According to Eq.

~10!, the array Kp(x ,y) concentrates the information on the

likely defective areas obtained in the four orientations

q51, . . . ,4 in a single array for the scale level p . Thus, the

result of this stage is a set of four images Kp(x ,y) with

p51, . . . ,4.

In the next two stages we combine the information com-

ing from the four different resolution levels p . To this end

the decompressed version of each array Kp(x ,y) is pre-

pared. In order to avoid false alarms, we consider that a
defect must appear in at least two adjacent resolution lev-
els. As a simple way to implement a logic ‘‘and,’’ assum-

ing that Kp(x ,y) is proportional to the probability of there

being a defect, we then calculate the geometric means of
every pair of adjacent levels by the formulas:

K12~x ,y !5@K1~x ,y !K2~x ,y !#1/2,

K23~x ,y !5@K2~x ,y !K3~x ,y !#1/2, ~11!

K34~x ,y !5@K3~x ,y !K4~x ,y !#1/2.

This operation reduces false alarms yet preserves most of
the defective areas. Now we combine the resulting

K12(x ,y), K23(x ,y), and K34(x ,y) in a logic ‘‘or,’’ simply

as the arithmetic mean, to allow for defects detected at
different scales:

K~x ,y !5
1
3 @K12~x ,y !1K23~x ,y !1K34~x ,y !# . ~12!

The array K(x ,y) contains the joint contribution of the six-

teen pq channels.

The last stage is the binarization of K(x ,y) to provide an

image B(x ,y) where local defects ~objects! appear seg-

mented from the regular texture ~background!. This is

achieved by thresholding K(x ,y). Values below the thresh-

old are considered as belonging to the background, and
values above the threshold are considered as belonging to
defective areas.

Fig. 2 Partial representation of the pyramid distribution used to ex-
press the filtered images utpq(x,y)u in contrast units by dividing by
the low-pass residual tLPR .
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This threshold value is not critical and can be estimated
in different ways. One possible way is to calibrate the sys-
tem at the beginning of the process by applying the proce-
dure to an additional piece of faultless texture whose image

would be the input image t0(x ,y). In this case the obtained

array K0(x ,y) should contain very low values. An estima-

tion of the threshold U as U5K̄01rs0 , with K̄0 being the

mean value of K0(x ,y), s0 its standard deviation, and r a

standard constant of value r53, provides an appropriate

threshold value for binarization. Alternatively, a simpler

way is to calculate U5(r/16)(p(qspq , which is propor-

tional to the mean value of the sixteen standard deviations

spq with a constant of proportionality equal to a standard

value, for example, r53. An opening operation with a

small mask of 333 pixels helps to remove the remaining

isolated noisy points from the binary output image B(x ,y).

3 Results

We have applied the process described in Sec. 2 to a variety
of textile webs with different structures ~plain, twill, etc.!
and with yarns of different colors affected by common lo-
cal defects. These defects are caused by missing or broken
yarns or by changes in tension during production in the
loom. The defects display a variety of shapes: line, spot,
band, ladder, hole, etc. In this section we show the results
with representative examples chosen from among those
mentioned. The examples shown below were carried out
using a Pulnix TM-765 camera and a MVP-AT Matrox
framegrabber for image acquisition in a Pentium PC envi-
ronment. The implementation of the algorithm involved
Matlab tools.

For industrial application the inspection unit should
adapt to the conditions of each particular case. The imaging
hardware may consist of either one moving camera or sev-
eral systems working in parallel for time saving, depending
on the surface to be inspected and the speed requirements.
In practice, needs can be very different. After the loom, the
fabric usually passes through a checking machine where is
inspected visually. When a defect is detected, a person de-
cides either to mend it manually ~if possible!, or to record
its location on a form, or even to cut the fabric from side to
side, depending on how severe the defect is. The quality
criteria applied in this checking machine are strongly de-
pendent on the type of fabric, the manufacturer’s standards,
etc., and therefore the time taken at the checking machine
also varies. We consider that there is generally enough
spare time to apply our method of defect detection between
the loom and the checking machine.

Before applying the algorithm, it is important to fix the
acquisition conditions, not only in terms of uniformity but
also in terms of scale and resolution. We consider the maxi-

mum frequency f max5f451/4 yarn/pixel. This means that a

woven yarn is digitized into four pixels on average. If the
yarns in the weft and warp directions are of different thick-
ness, the camera is adjusted to fit the thinner yarn to four
pixels. In our experiments this adjustment was made manu-
ally. Adjustment of lightness and scale is reasonably easy
and only needs to be done once unless we change the web.

The images of the textile samples we analyzed are 256

3256 pixels in size.

Figure 3~a! shows a sample of twill fabric containing
some faults. The yarns in the warp are of a different color
from the yarns in the weft. The defect appears as aligned
spots, although some isolated spots can also be found. Our
algorithm for defect detection is applied to the image in

Fig. 3~a!, which is taken as the entry t(x ,y). Figures 3~b! to

3~e! show the decompressed versions of the arrays Kp(x ,y)

for resolution levels p54, . . . ,1. Figure 3~f! is the image

K(x , y) with the joint contribution of all the pq channels,

and Fig. 3~g! is the binary image B(x ,y), which is the

thresholded binary version of K(x ,y) and constitutes the

output image. It can be seen that both the aligned and the
isolated defective spots are correctly segmented from the
background in Fig. 3~g!.

An interesting case is shown in Fig. 4. A sample of twill
fabric contains a faulty band in the central part of the image
@Fig. 4~a!#. The defect is called a thin place, and is caused
by a lower density of filling yarns in this band. Figures 4~b!
to 4~e! are again the decompressed Kp(x ,y) with

p54, . . . ,1. Figure 4~f! is the array K(x ,y) with the joint

contribution of channels, and Fig. 4~g! is the final binarized

image B(x ,y). Although the faulty band is clearly seg-

mented in the final result, in this case the single resolution

level p53 @Fig. 4~c!# alone provides a better intermediate

result. In this example, channel p53 clearly provides the

best tuning of the defect among the four resolution chan-
nels. The later operations ~multiplication and addition!, de-
signed for the sake of automatism and robustness of
method, to reduce noise and to integrate information from
the four resolution channels, have the drawback of mixing
channels that are very well tuned with the defect with oth-
ers having no information. As a result, the quality of the
segmentation is not so good as it could be if we chose the
best channel alone. However, with this mixing procedure
we gain robustness. The benefits of high robustness and
automatism, regardless of the type of web or defect, are
much more important than a perfect segmentation.

In the remaining figures we present ~a! the input image

of a fabric to inspect t(x ,y), together with ~b! an image of

the joint contribution channels K(x ,y) and ~c! the final out-

put image B(x ,y). Figures 5 and 6 correspond to twill fab-

rics with defects along a line: a missing yarn ~mispick! and
a double yarn, respectively. In both cases the output images
contain the defects correctly discriminated from the back-
ground. Figures 7 and 8 correspond to twill samples with
defects in a dotted distribution: several broken yarns and a
down heddle defect respectively. The broken yarns are cor-
rectly segmented in Fig. 7~b!. The small size of the defects
in the down heddle defect makes for difficulty in detecting
some dots and discriminating them from the background.

Careful observation of the array K(x ,y) with the joint con-

tribution of channels in Fig. 8~b! allows us to locate all the
faults. The result of the final opening operation is, in this
case, that some points are removed @Fig. 8~c!#. However,
more than 50% of point defects ~8 out of 15! are detected
by applying the general method.

The plain fabric in Fig. 9~a! has two spots of very dif-
ferent intensity. The spots are quite big in comparison with
previous dotted defects. Both spots are successfully seg-
mented in Fig. 9~b! and 9~c!.
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Fig. 3 (a) Faulty twill fabric (multiple threads broken); (b) to (e) decompressed versions of the arrays
Kp(x,y) for the resolution levels p54, . . . ,1, respectively; (f) array K(x,y) with the joint contribution of
all the pq channels; (g) binary output image B(x,y).
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Fig. 4 (a) Thin-place effect in a twill fabric; (b) to (e) decompressed versions of the arrays Kp(x,y) for
the resolution levels p54, . . . ,1, respectively; (f) array K(x,y) with the joint contribution of all the pq
channels; (g) binary output image B(x,y).
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Finally, Fig. 10 contains a fabric with yarns of the same
color. The defect is due to the crossed breaking of some
yarns in both the warp and weft directions. After process-
ing, the defect in the two perpendicular directions is cor-
rectly segmented @Figs. 10~b! and 10~c!#.

4 Conclusions

The method proposed for local-defect detection has been
shown to be a useful tool for inspecting industrial materials

with periodic regular texture. The method is based on a
multiscale and multiorientation Gabor filter scheme that
roughly imitates the early human vision process.

As we intended, a general improvement and enlarge-
ment of the vision system capabilities can be achieved by
using the proposed algorithm to detect local defects in
regular textures. Versatility, full automatism, computational
efficiency, robustness, and industrial applicability were the
pursued properties of the method, and we have demon-

Fig. 5 (a) Twill fabric with missing yarn (mispick); (b) K(x,y); (c)
output image B(x,y).

Fig. 6 (a) Twill fabric with double yarn defect; (b) K(x,y); (c) output
image B(x,y).
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strated them through a selection of results obtained from
textile inspection.

We have built an algorithm for the automatic application
of the method to an input image of the sample under
inspection. The algorithm applies the Gabor filter scheme
in the spatial domain following a fast pyramid implemen-
tation for computational efficiency. An image with the joint
contribution of the complete set of multiresolution and
multi-orientation channels is binarized. In the binary output

image local defects appear segmented from the back-
ground.

One of the most important advantages of the method is
that it is multipurpose without requiring any adjustment.
The only considerations that require attention are optical
conditions such as lightness and scale to guarantee optimal
performance, and a preliminary analysis of a prototype
defect-free sample to extract the mean and standard devia-
tion of its texture descriptors. We have avoided the use of

Fig. 7 (a) Twill fabric with broken yarns; (b) K(x,y); (c) output im-
age B(x,y).

Fig. 8 (a) Twill fabric with down heddle defect; (b) K(x,y); (c) out-
put image B(x,y).
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adjustable weighting functions or parameters that might
make the inspection process too dependent on adjustment
to a particular reduced set of textures or defects. The
method is robust. It is resistant to common input variations
such as changes of illumination. It works with contrast
rather than luminance units, and therefore it should work
well under reasonable changes of brightness level. Further-
more, it can be applied to composite patterns with elements
of different brightness without any particular adaptation. In

addition, there is no preferred orientation in which the tex-
ture has to be fixed before applying the method.

In this paper, we have applied this multipurpose method
to web inspection and noted its capabilities in detecting
common local defects in woven fabrics. Although Jasper
et al.6 did not rely on the capability of Gabor filters to
detect local defects, we have demonstrated in this work that
they actually can. This fact confirms our preliminary results
previously reported.7

Fig. 9 (a) Large defects of different colors in a plain fabric with black
and white threads; (b) K(x,y); (c) output image B(x,y).

Fig. 10 (a) White twill fabric with crossed break of multiple threads;
(b) K(x,y); (c) output image B(x,y).
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We have tested the proposed method on a wide variety
of defective fabric samples, obtaining, in general, very
good results. We have presented several representative
cases where different shapes, structures, colors, sizes, etc.
of defects and textured background have been correctly
segmented.

The versatility of the method has been demonstrated not
only by its applicability to different regular textures but
also, for a given texture, by its detecting a variety of de-
fects. The method does not need human supervision or pre-
vious knowledge about the texture or defect. In fabric in-
spection, for example, it does not need information on the
repeat pattern, in contrast with the method proposed in Ref.
6.

The results of defect detection in fabrics shown and dis-
cussed in this paper lead—as a first application—to textile
inspection. Except for minor adaptations to each particular
case, the method is ready to be used in an on-line industrial
inspection system.
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with Gabor wavelets and its applications,’’ in Advances in Imaging
and Electronic Physics, Vol. 97, P. Hawkes, Ed., Academic Press
~1996!.

11. M. R. Turner, ‘‘Texture discrimination by Gabor functions,’’ Biol.
Cybern. 55, 71–82 ~1986!.

12. I. Fogel and D. Sagi, ‘‘Gabor filters as texture discriminator,’’ Biol.
Cybern. 61, 103–113 ~1989!.

13. T. Randen and J. Hakon-Husoy, ‘‘Multichannel filtering for image
texture segmentation,’’ Opt. Eng. 33~8!, 2617–2625 ~1994!.

14. T. P. Weldon, W. E. Higgins, and D. F. Dunn, ‘‘Gabor filter design
for multiple texture segmentation,’’ Opt. Eng. 35~10!, 2852–2863
~1996!.

15. O. Nestares, R. Navarro, J. Portilla, and A. Tabernero, ‘‘Automatic
computation of the area irradiated by ultrashort laser pulses in Sb
materials through texture segmentation of TEM images,’’ Ultrami-
croscopy 66, 101–115 ~1996!.

16. D. P. Casasent, J. S. Smokelin, and A. Ye, ‘‘Wavelet and Gabor
transforms for detection,’’ Opt. Eng. 31~9!, 1893–1898 ~1992!.

17. R. Navarro and A. Tabernero, ‘‘Gaussian wavelet transform: two al-
ternative fast implementations for images,’’ Multidim. Syst. Signal
Proc. 2, 421–436 ~1991!.

18. J. Portilla, R. Navarro, and O. Nestares, ‘‘Texture synthesis-by-
analysis method based on a multiscale early-vision model,’’ Opt. Eng.
35~8!, 2403–2417 ~1996!.

19. W. K. Pratt, Digital Image Processing, Wiley-Interscience, p. 443
~1991!.

Jaume Escofet received his MS degree in 1980 from the Univer-
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de Catalunya. Her fields of research involve pattern recognition,
color, texture analysis, optical processing, and image processing.
She is member of the Sociedad Española de Optica, the European
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