
Detection of Malicious Applications on

Android OS

Francesco Di Cerbo1, Andrea Girardello2,
Florian Michahelles2, and Svetlana Voronkova1

1 Center for Applied Software Engineering, Free University of Bolzano-Bozen,
Bolzano-Bozen, Italy

{fdicerbo,svoronkova}@unibz.it
2 Information Management, ETH Zurich

Zurich, Switzerland
{agirardello,fmichahelles}@ethz.ch

Abstract. The paper presents a methodology for mobile forensics anal-
ysis, to detect “malicious” (or “malware”) applications, i.e., those that
deceive users hiding some of their functionalities. This methodology is
specifically targeted for the Android mobile operating system, and relies
on its security model features, namely the set of permissions exposed by
each application. The methodology has been trained on more than 13,000
applications hosted on the Android Market, collected with AppAware. A
case study is presented as a preliminary validation of the methodology.

Keywords: Mobile Forensics, Android OS, Security.

1 Introduction

The amount and the significance of personal data stored on cellular phones,
PDA’s and Smart Phones is equal to those carried by computers, due to the
use of numerous cloud synchronization services like Funambol [1], Microsoft
ActiveSync[2], Apple MobileMe[3]. This aspect is particularly relevant, as mo-
bile phones are also used when committing crimes: in many cases, for instance,
wiretapping gives valuable benefits to investigations. This results in a growing
attention on mobile devices involved in crimes, as a valuable source of infor-
mation. Thus, there is also a strong interest in the evolution of digital forensics
techniques. Mobile phones contain sensible data, that in a trial could be precious
to demonstrate innocence or guilt. With “sensible (or sensitive) data”, we refer
to a broad definition of information that are relating to race or ethnic origin,
political opinions, religious beliefs, physical/mental health, trade union member-
ship, sexual life or criminal activities. They include communications log, SMS,
MMS, contacts list, appointments, tasks and so on.

Evidence discovered during a mobile device analysis might have a vital impor-
tance for the case investigation. Here evidence is interpreted as information of
probative value that is stored or transmitted in binary form [4]. Digital forensics
is generally defined as a branch of e-discovery that examines how the extraction

H. Sako, K. Franke, and S. Saitoh (Eds.): IWCF 2010, LNCS 6540, pp. 138–149, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Detection of Malicious Applications on Android OS 139

of digital evidence can aid in crime investigations and identification of potential
suspects [5]. In some cases, as it happens on regular desktop systems, crimi-
nals may use mobile applications to conduct frauds, i.e., stealing home banking
and other sensible credentials from mobile phones: this kind of applications are
generally called “malware”. In those situations, some evidences and insights on
the crime are contained in an application, therefore it is necessary to identify it
precisely, in order to gather as much information as possible.

The methodology we propose is a mobile forensics technique, aimed at sup-
porting a forensics analyst to detect applications that deal with sensible data
in a way that could be defined as “suspicious”, i.e., not aligned with respect to
the trends of all other applications, that are part of a significant dataset of safe
applications.

In the following Sections 2 and 3 we will provide a short overview on mobile
forensics and on Android OS, especially on its key issues that are significant
for the mobile forensics science. In Section 4 it will be presented AppAware,
the application we used to collect data on Android applications, and finally
Section 5 and 6 will cover the proposed methodology, and a use case based on
real applications. Section 7 contains the final remarks and future perspectives.

2 Mobile Forensics

The mobile forensics science as a part of digital forensics focuses on recovering
digital evidence from a mobile phone under forensically sound conditions using
accepted methods [6]. The mobile forensics techniques and methodologies focus
mainly of 3 different areas [7]:

– SIM card forensics : it aims to extract the data stored on this physical item
and provide so called primary image of it.

– Digital data acquisition: extraction of data carried by flash memory of mobile
device using through filesystem

– Physical data acquisition: extraction of full memory image bit-by-bit.

Although the goals of computer forensics and mobile forensics are basically the
same, the examiners consider mobile forensics to be much more complicated.
The key issues that cause a trouble for investigators is the uniqueness of mobile
device and its pervasive nature. Each cell phone manufacturer sets up his own
standards, uses particular operating system, hardware and software [8]. There-
fore information acquisition from such devices in a forensically sound manner
becomes a real challenge. Digital forensics techniques are usually divided into
2 main groups [8]: post mortem analysis : when the device is switched off; live
analysis : techniques performed on the device that is turned on.

However, both techniques differ in many aspects from the traditional methods
when it comes to the cell phone investigation. Post mortem analysis (also called
off-line analysis) of small scale device becomes more complex than computer ex-
amination, due to the fact that mobile devices contain an internal clock, which

140 F. Di Cerbo et al.

continuously changes data stored in the cell phone’s flash memory. Therefore,
it is impossible to reproduce a consistent bit-to-bit image of the entire memory.
Considering the live forensic, device connectivity plays a vital role [9]. It is
necessary to keep the device isolated from any networks during the analysis time,
otherwise it may lead to the loss of some information that could be beneficial
for the investigation. However, in the case of mobile devices, the preservation of
this requirement is more difficult, because of the expanded connectivity options
(i.e., the possibility to deal with cellular network, and through it with Internet
services).

3 Android OS

Android OS (referred as “Android”) delivers a complete set of software for mo-
bile devices: an operating system, middleware and key mobile applications [10].
It enables the developers to take advantage of all functionalities and features in-
cluded in the handset to create innovative and sophisticated mobile applications.
Each Android application runs in its own process on Dalvik, a custom virtual
machine designed for embedded use. Android relies on modified Linux Kernel
version 2.6 for core system services such as security, memory management, pro-
cess management, network stack, and driver model [11]. It also includes a set
of Java libraries that provide the functionalities available in standard Java Pro-
gramming Language, and C/C++ libraries such as SQLite relational database
management system, 3D libraries, Media Libraries etc.

3.1 Android Security Model - A Permission-Based Approach

Android’s security model combines the standard Linux OS features that control
the security at the process level and the permission based mechanism. The per-
mission [11] is a right that a developer has to declare in its application to be
able to interact with the system or access the components of other applications.
As each program is executed as a distinguished process, typically applications
neither read nor write each other’s data or code. Sharing data between applica-
tions must be done explicitly. However, after a permissions request, an applica-
tion has access to the protected features of Android to which each permission
refers. A permission is generally simple text string assigned to a predefined list
of functionalities of the system, i.e., ”INTERNET“ to connect to the Internet,
”READ SMS“ to read SMS messaging, and so on. Permissions have to be stati-
cally defined in the application package, so that during the deployment, a user
could grant them to the application, or abort the process. In Listing 1.1, it is
shown an example of a permission to write data to the SD card:

<permis s i on xmlns : android=
”http :// schemas . android . com/apk/ r e s / android ”

android :name=”com . i s e c p a r t n e r s . android .
WRITE EXTERNAL STORAGE”

Detection of Malicious Applications on Android OS 141

android : d e s c r i p t i o n=”@str ing / ac c e s s sd ca rd ”
android : p r o t e c t i onLev e l=”normal”
android : label=”@str ing / ac c e s s p e rm lab e l ”>

</ permis s i on>

Listing 1.1. An example of an Android OS security permission

Each permission contains the following attributes: name, description, label and
the protection level.

3.2 Android Threads

As an open source handset that relies on Linux Kernel, Android is considered to
be a secure platform. Despite the Android malware market is still in an infancy
stage, detection of some malfunction on Android Market had proven that it can
be easily exploited by attackers.

Recently, a report of SMobile [13] considering 48,694 applications, found 29 of
them to be possibly spyware available on the Android Market, while for other 383
it is possible to access authentication credentials stored on the mobile phone.
The cited analysis has some commonalities with the case study presented in
Section 6, as both of them use applications’ permissions as a privileged source
of information on mobile applications. The report confirms the urgency of devel-
oping anti-malware systems and checks, as well as forensics methodologies to be
used against those applications in a trial. In particular, in [13] it is proposed that
a number of specific permissions combinations can lead to declare applications
as notable, suspicious or spyware. SMobile methodology is not fully disclosed,
therefore a precise comparation with our approach cannot be developed. How-
ever, from what is disclosed, SMobile methodology seems different from the one
proposed here, even if the identification of ”notable permissions“ and their iden-
tification into Android applications (i.e. permissions that allow to access sensible
data stored on the phone) seems to be similar to the concept of sensible data
access profile, which is defined later.

An example of Android malware is an application called ”DROID09”, that
was discovered on Android Market in January of 2010 [12]. The application
”pretended” to be a useful online banking utility, which was supposed to connect
the user to its bank web page and process the transactions. However, it turned
out that it was only facilitating a web browser connection and actually stealing
online banking credentials of the users. Indeed it is not known how exactly the
application was performing the fraud, how long it has been in Android Market
and how many users installed it, until this application was removed.

However, in order to develop efficient forensics tools there should be a clear
definition of what kind of applications should be considered as suspicious in
Android. Applications can be considered spyware if they have the ability to spy
the users sensitive data in a specific way by capturing them and transmitting it
outside the local system.

142 F. Di Cerbo et al.

4 AppAware

Today most mobile operating systems provide users with an application portal
where they can search for applications published by third-party developers. How-
ever, finding new apps is not an easy task. Application portals offer thousands
of applications and users often have to go through countless titles to find what
they are looking for. AppAware [14] is a mobile application that tries to solve
this issue by allowing users to discover mobile applications in a serendipitous
manner. AppAware captures and shares installations, updates, and removals of
Android programs in real-time. AppAware also offers statistics to discover the
top installed, updated or removed applications.

This service provides also a new way to let user implicitly rate applications
and thus define their acceptance. This acceptance is represented by a meter
colored from red to green. When the gauge points toward the green range the
acceptance is excellent, yellow range for good acceptance and red range if almost
no AppAware user is keeping the application installed. The assumption behind
this approach is that excellent/good applications are not removed once installed,
whereas applications that are removed from the device are not liked/ considered
useful according to users.

The AppAware system has a client-server architecture. The client compo-
nent is the Android mobile application, which represents AppAware’s graphical
user interface (GUI) and allows following installations, updates and removals
of applications shared by other users. The client application is also monitoring
the Android OS, thus being able to detect installations, updates and removals
of applications, even those not installed from the official Android Market. The
applications monitored are more than 42,000 at the time of writing.

5 The Methodology

The methodology we propose aims at the detection of suspicious applications,
using Android security permissions, especially those connected with personal
information: credentials, contacts, calendar events, email, SMS/MMS and so on.

As remarked in Section 3.2, each application needs to declare explicitly the
permissions it needs, with respect to the operating system or to other applica-
tions. This security constraint allows to discriminate exactly what data will be
accessed, as the Android security model will prevent any other access from be-
ing actually performed. We propose the definition of profiles related to sensible
data access, each of them distinguished by a specific set of permissions. Com-
paring the permissions requested by an application, with the reference model of
sensible data access profiles, it is possible to detect if an application has differ-
ent security requirements with respect to other applications in the same profile.
In this way, an analyst could detect unexpected anomalies. The method is not
going to clearly determine the maliciousness of a certain application, it simply
signals to the forensics analyst a situation that could require additional specific
investigations. In this way, it is possible to identify applications that hide their

Detection of Malicious Applications on Android OS 143

real features, pretending to be a game, for instance. The methodology could be
used also by standard users, to detect if an application permission request is
coherent with respect to those of direct competitors. However, this perspective
is still being considered and it is not part of this work.

A limitation of our approach is the impossibility to identify suspicious soft-
ware that exploits Android vulnerabilities, e.g., using Android native code. This
possibility has been recentely demonstrated by Oberheide [16], and as no per-
missions are needed to access internal Android API, no methodology based on
permission analysis can effectively identify the mentioned applications.

The method is composed by the following steps:

1. definition of a number of applications’ classification profiles, associated to
the manipulation of sensitive data types, managed on an Android mobile
phone;

2. assessment of the permissions declared by a significant set of applications
belonging to different classification profiles;

3. mining of association rules on the basis of the different classification profiles;
4. definition of a reference set of permissions for each classification profile.

To apply our method, we start with the definition of a set of classification pro-
files, to describe applications that manage or have access to sensible data. This
classification (shown in Table 1) is based on the analysis of the default set of An-
droid permissions, and takes into account features that are connected with each
sensible data category profile. To analyze an application, multiple profiles could
be considered, according to the specific functionalities offered by the application.

As second step, we conducted an assessment of the permissions requested by
the most common applications. In order to perform this step, we used AppAware.
In this way, at present we collected information on 13,098 selected applications
(on over 42,000). We selected the dataset among application not reported to be
malicious in users’comments, and from which we had permissions data. Both
features are provided by the AppAware features. Moreover, the considered ap-
plications are distributed worldwide, and of almost any category available on
the Android Market. This allows us to state that the sample considered is het-
erogeneous enough for our purposes.

For each application, we recorded the permissions that were declared at the
installation on the device of AppAware users.

The third step was to analyze the dataset with the Apriori algorithm [17]
(using the tool Weka[15]), with different parameters, in order to group the ap-
plications according to their similarity of requested permissions. Apriori is a
technique used in association rules mining, and it is a process of discovering fre-
quent patterns, associations and correlations between sets of items in database.
The rule mining process has two main steps:

a. find all frequent itemsets. A frequent itemset is an itemset whose support is
greater than the minimum support. The support of an itemset is a measure
of how often the itemset occurs in a given set of transactions;

144 F. Di Cerbo et al.

b. generate the association rules that have high confidence, from the frequent
itemsets identified in the first step. Confidence is a measure of how often
items Y appear in transaction that contain items X.

The Apriori algorithm performs these 2 steps using a ”bottom up“ approach,
where frequent subsets are extended one item at a time, and groups of candidates
are tested against the data. The result of the Apriori analysis is a list of itemsets,
grouped by the number of simultaneous features. See the following Section 6 for
an exemplification.

The fourth step is the identification of the most relevant clusters of applica-
tions, on the basis of the support. From this, it is also possible to consider the
set of rules that depends directly on the selected clusters. It is possible to state
that the clusters represent a typical configuration for applications that deal with
the particular sensitive data profile in consideration.

6 Case Study

In order to show a use case of the described forensics analysis methodology, we
consider two applications, MobileSpy and MobileStealth, known to be spyware
by design [12]. Both applications access sensible information on an Android
device, and are able to send to a criminal the data collected. Table 2 shows the
capabilities possessed by MobileSpy and MobileStealth, while their permissions
are shown in Table 3.

The features of MobileSpy and MobileStealth are absolutely peculiar, and
cases of users that intentionally wish to expose all their private data to others
are considered very rare by the authors.

Our case study assumes that both applications have been found on a mobile
device: data gathered through them might have been used to commit a crime,
such as a non-legitimate bank transfer, and a forensics analyst has to identify
the source of the information leak.

The analyst, having created a forensics copy of the device, will start her
activities retrieving the list of all application deployed on the mobile phone,
together with all permissions requested for each application. To this purpose,
we developed an application, called AForensics: it is an Android application
that looks up for third-party applications installed on a device, and retrieves
their permission information. AForensics gathers permissions that third-party
applications request from Android, and permissions declared by applications.
Moreover, it also collects complementary information, like services, broadcast
receivers and content providers that each application defined.

Once executing AForensics, the analyst shall receive an XML file, that con-
tains, among data about other applications, the node shown in Listing 1.2.

<app l i c a t i on name=”MobileSpy” package=”x . y . z”
v e r s i on=” j . k . l ”>

<requested−permis s i on permis s i on=”android . pe rmis s i on .
ACCESS FINE LOCATION” />

Detection of Malicious Applications on Android OS 145

<requested−permis s i on permis s i on=”android . pe rmis s i on .
READ CONTACTS” />

<requested−permis s i on permis s i on=”android . pe rmis s i on .
READ SMS” />

<requested−permis s i on permis s i on=”android . pe rmis s i on .
WRITE SECURE SETTINGS” />

<requested−permis s i on permis s i on=”android . pe rmis s i on .
READ PHONE STATE” />

. . . .
</ app l i c a t i on>

Listing 1.2. The XML snippet representing an excerpt of permission requested by the
MobileSpy application

Table 1. Secure information profiles and relative permissions

Category Android Permissions

Contacts WRITE SYNC SETTINGS, WRITE CONTACTS, READ CONTACTS,
MANAGE ACCOUNTS, GET ACCOUNTS, ACCOUNT MANAGER

SMS-
MMS
messages

WRITE SYNC SETTINGS, WRITE SMS, VIBRATE,
SET ORIENTATION, SEND SMS, RECEIVE SMS, RECEIVE MMS,
READ SMS, FLASHLIGHT, BROADCAST SMS

Call Log VIBRATE, PROCESS OUTGOING CALLS, FLASHLIGHT,
CALL PHONE, CALL PRIVILEGED

Audio &
Video

WRITE EXTERNAL STORAGE, SET ORIENTATION,
RECORD AUDIO, MODIFY AUDIO SETTINGS, GLOBAL SEARCH,
FLASHLIGHT, BLUETOOTH, BLUETOOTH ADMIN, CAMERA

Tasks &
Calendar

WRITE CALENDAR, REORDER TASKS, READ CALENDAR,
GLOBAL SEARCH, GET TASKS, BLUETOOTH ADMIN

Browser
History

WRITE SYNC SETTINGS, WRITE HISTORY BOOKMARKS,
READ HISTORY BOOKMARKS

Images WRITE EXTERNAL STORAGE, SET WALLPAPER HINTS,
SET WALLPAPER, SET ORIENTATION, READ FRAME BUFFER,
GLOBAL SEARCH, FLASHLIGHT, BLUETOOTH, BLUE-
TOOTH ADMIN, CAMERA

Phone
Settings

WRITE SYNC SETTINGS, WRITE SECURE SETTINGS,
WRITE GSERVICES, WRITE APN SETTINGS, SET WALLPAPER,
SET WALLPAPER HINTS, SET ORIENTATION,
READ SYNC STATS, READ SYNC SETTINGS,
READ PHONE STATE, MODIFY AUDIO SETTINGS, FLASHLIGHT,
ACCESS CHECKIN PROPERTIES, CHANGE CONFIGURATION,
DEVICE POWER

Email &
services
related to
web

WRITE SYNC SETTINGS, WRITE GSERVICES,
USE CREDENTIALS, SET ORIENTATION, MANAGE ACCOUNTS,
GLOBAL SEARCH, GET ACCOUNTS, FLASHLIGHT, AC-
CESS COARSE LOCATION, ACCESS FINE LOCATION,
ACCESS NETWORK STATE, ACCESS WIFI STATE, AC-
COUNT MANAGER, CHANGE NETWORK STATE, INTERNET

146 F. Di Cerbo et al.

Table 2. Functionalities of MobileSpy and MobileStealth applications

MobileSpy MobileStealth

monitor SMS messages recording of surrounding

view inbound and outbound call de-
tails

SMS logging

access GPS location contact details

view all websites visited from the
device

picture logging

expose a web interface to view and
manage the captured logs

GPS Tracking

Table 3. Permissions for applications MobileSpy and MobileStealth. All permissions
belong to the android.permission package, except for * HISTORY BOOKMARKS,
part of com.android.browser.permission.

MobileSpy MobileStealth

RECEIVE SMS RECEIVE BOOT COMPLETED
SEND SMS READ CONTACTS

READ CONTACTS RECEIVE SMS
INTERNET INJECT EVENTS

READ PHONE STATE PROCESS OUTGOING CALLS
ACCESS FINE LOCATION READ SMS

READ CALENDAR CHANGE WIFI STATE
RECEIVE BOOT COMPLETED WRITE SETTINGS

READ SMS READ PHONE STATE
WRITE SMS READ LOGS

WRITE CONTACTS ACCESS FINE LOCATION
ACCESS NETWORK STATE DISABLE KEYGUARD

MODIFY PHONE STATE INTERNET
ACCESS COARSE LOCATION ACCESS NETWORK STATE

WRITE CALENDAR ACCESS WIFI STATE
READ HISTORY BOOKMARKS WRITE SECURE SETTINGS

WRITE HISTORY BOOKMARKS

The analyst should now compare the application permissions listed in Table 3
obtained with AForensics, with the reference models of application permissions
discussed in Section 5.

To perform this comparison, the analyst could use the full AppAware dataset,
or extract a subset of applications that belongs to the same or similar sensible data
profiles. In this case, a subset could be generated considering applications that
request READ SMS, READ CONTACTS and READ PHONE STATE permis-
sions. If the second option is chosen, this leads to the creation of a subset, com-
posed by 140 applications. The subset analysis gives a set of tables, containing the
typical profiles of applications that manage user contacts. The full result presents
11 tables, considering itemsets that request from 1 to 11 permissions at the same

Detection of Malicious Applications on Android OS 147

Table 4. Most relevant itemsets at the L7 of Apriori algorithm

Itemsets

RECEIVE SMS, READ CONTACTS, READ SMS, INTERNET,
READ PHONE STATE, SEND SMS, WRITE SMS

RECEIVE SMS, READ CONTACTS, READ SMS, INTERNET,
READ PHONE STATE, CALL PHONE, WRITE SMS

READ CONTACTS, READ SMS, INTERNET, READ PHONE STATE,
CALL PHONE, WRITE CONTACTS, WRITE SMS

RECEIVE SMS, READ CONTACTS, READ SMS, INTERNET,
READ PHONE STATE, WRITE CONTACTS, WRITE SMS

READ CONTACTS, READ SMS, INTERNET, READ PHONE STATE,
CALL PHONE, SEND SMS, WRITE SMS

READ CONTACTS, READ SMS, INTERNET, VIBRATE,
READ PHONE STATE, SEND SMS, WRITE SMS

RECEIVE BOOT COMPLETED, RECEIVE SMS, READ CONTACTS,
READ SMS, INTERNET, READ PHONE STATE, WRITE SMS

time (identified as ”L1“ to ”L11“). The number of elements in each itemset varies
from 4 (L11) to 3702 (L5). An excerpt of one of these tables resulting from the
Apriori analysis is shown in Table 4, representing L7 itemset. Each row in Table
4 represents a group of 7 permissions.

It is clear that the permission sets of MobileSpy and MobileStealth do not
appear in Table 3, and the authors have checked that such a permission set does
not appear in any of the sets generated in the full analysis output.

In the cases of MobileSpy and MobileStealth, however, to declare the appli-
cations as suspicious it is sufficient to notice that, for instance, the pair READ
CONTACS and INJECT EVENTS is present only once on the whole dataset, by
a software development library. The difference between MobileStealth/MobileSpy
and a software library corroborates a legitimate suspicion on the application; more-
over, considering any other requested permission, the number of similar applica-
tions decreases to 0.

7 Conclusions

We presented a methodology for the detection of malicious applications in a foren-
sics analysis. Malicious applications in this context are those that have access ca-
pabilities to sensible data, and transmission capabilities as well, at the same time
deceiving the users, by pretending to offer services that typically do not require
such capabilities, or to make a legitimate use of them. The methodology relies
on the comparison of the Android security permission of each application, with a
set of reference models, for applications that manage sensitive data. An extensive
validation of the methodology is in progress, but we are facing difficulties due to
limited information and data publicly available so far. In this research we only con-
sidered a rather simple analysis technique, namely association rules. Association
rules are easy to apply and provide a first understanding of the problem at hand.

148 F. Di Cerbo et al.

Some authors however report problems with their use, among them the potentially
large number of groups and rules obtained, which may confuse the interpretation.

While there are solutions to some of these issues [18] in our future work we
plan to investigate further data mining methods, for example classification and
clustering algorithms. Classification is useful for predicting to which class an
application with a given feature vector belongs, given that we can define our
classes beforehand. Clustering of similar feature vectors could be used for defin-
ing classes as a first step. In the future, we plan to apply standard data mining
and pattern recognition techniques (for instance [19]) to simplify the analysis
process for the analyst. Particular attention will be devoted to the identifica-
tion of the ”best” learners for predicting the classification membership of new
applications (see for example [20]).

Our ultimate objective is to implement a general model for an automated
or semi-automated forensics system, which could detect application with ab-
normal permission requests, such as the previous case study of MobileSpy/Mo-
bileStealth. Such a system should be periodically re-trained (by performing the
above steps) and therefore it shall be able to evolve over time. We are also con-
sidering to include the outcome of the research directly into AppAware, in order
to warn all Android end users about suspicious software before installing it.

References

1. Funambol inc.: Funambol Open Source Mobile Cloud Sync and Push Email,
http://www.funambol.com

2. Microsoft: ActiveSync, Windows Phone Synchronization,
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/

device-synch.mspx

3. Apple inc.: Apple - MobileMe, http://www.apple.com/mobileme/
4. Scientific Working Groups on Digital Evidence and Imaging Technology: Combined

Master Glossary of Terms (retrieved on July 2, 2010)
5. Robbins, J.: An Explanation of Computer Forensics, PC Software Forensics,

http://www.computerforensics.net/forensics.htm (retrieved on July 2, 2010)
6. Jansen, W., Ayers, R.: Guidelines on Cell Phone Forensics. NIST Special Publica-

tion 800-101 (2007),
http://csrc.nist.gov/publications/nistpubs/800-101/SP800-101.pdf

(retrieved on July 2, 2010)
7. Kim, K., Hong, D., Chung, K., Ryou, J.: Data Acquisition from Cell Phone using

Logical Approach. Proceedings of the World Academy of Science, Engineering and
Technology 26 (2007)

8. Rizwan, A., Dharaskar, R.V.: Mobile Forensics: an Overview, Tools,
Future trendsand Challenges from Law Enforcement perspective,
http://www.iceg.net/2008/books/2/34_312-323.pdf (retrieved on July 2,
2010)

9. Carrier, B.D.: Risks of live digital forensic analysis. Commun. ACM. 49, 56–61
(2006)

10. Open Handset Alliance: Android, http://www.openhandsetalliance.com/

android overview.html (retrieved on July 2, 2010)

http://www.funambol.com
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.apple.com/mobileme/
http://www.computerforensics.net/forensics.htm
http://csrc.nist.gov/publications/nistpubs/800-101/SP800-101.pdf
http://www.iceg.net/2008/books/2/34_312-323.pdf
http://www.openhandsetalliance.com/android_overview.html
http://www.openhandsetalliance.com/android_overview.html

Detection of Malicious Applications on Android OS 149

11. Android Community: What is Android?, http://developer.android.com/guide/
basics/what-is-android.html (retrieved on July 2, 2010)

12. Vennon, T.: Android Malware, A Study of Known and Potential Malware Threats,
http://threatcenter.smobilesystems.com/wp-content/plugins/download-

monitor/download.php?id=6

(published February 24, 2010)
13. Vennon, T., Stroop, D.: Android Malware, A Study of Known and Potential

Malware Threats, June 21 (2010),
http://threatcenter.smobilesystems.com/wp-content/uploads/2010/06/

Android-Market-Threat-Analysis-6-22-10-v1.pdf (published June 21, 2010)
14. Girardello, A., Michahelles, F.: Explicit and Implicit Ratings for Mobile Applica-

tions. In: 3. Workshop Digitale Soziale Netze and der 40. Jahrestagung der Gesell-
shaft fr Informatik, Leipzig (September 2010)

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11, 110–118
(2009)

16. Oberheide, J.: Remote Kill and Install on Google Android,
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-

google-android/ (retrieved on July 2, 2010)
17. Orlando, S., Palmerini, P., Perego, R.: Enhancing the apriori algorithm for frequent

set counting. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK
2001. LNCS, vol. 2114, pp. 71–82. Springer, Heidelberg (2001)

18. Garca, E., Romero, C.: Drawbacks and solutions of applying association rule mining
in learning management systems. In: Proceedings of the International Workshop
on Applying Data Mining in e-Learning (ADML 2007), pp. 14–22 (2007)

19. Duda, R.O., Hart, P.E., et al.: Pattern classification. Wiley-Interscience, Hoboken
(2001)

20. Moser, R., Pedrycz, W., et al.: A comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction. In: Proceedings of the 30th
International Conference on Software Engineering, pp. 181–190 (2008)

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://threatcenter.smobilesystems.com/wp-content/plugins/download-monitor/download.php?id=6
http://threatcenter.smobilesystems.com/wp-content/plugins/download-monitor/download.php?id=6
http://threatcenter.smobilesystems.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://threatcenter.smobilesystems.com/wp-content/uploads/2010/06/Android-Market-Threat-Analysis-6-22-10-v1.pdf
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/
http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-install-on-google-android/

	Detection of Malicious Applications on Android OS
	Introduction
	Mobile Forensics
	Android OS
	Android Security Model - A Permission-Based Approach
	Android Threads

	AppAware
	The Methodology
	Case Study
	Conclusions
	References

