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Abstract— Mobile technology is opening a wide range 

of opportunities for transforming the standard of care for 

chronic disorders. Using smartphones as tools for longitu-

dinally tracking symptoms could enable personalization of 

drug regimens and improve patient monitoring. Parkinson's 

disease (PD) is an ideal candidate for these tools. At present, 

evaluation of PD signs requires trained experts to quantify 

motor impairment in the clinic, limiting the frequency and 

quality of the information available for understanding the 

status and progression of the disease. Mobile technology 

can help clinical decision making by completing the infor-

mation of motor status between hospital visits. This paper 

presents an algorithm to detect PD by analyzing the typ-

ing activity on smartphones independently of the content 

of the typed text. We propose a set of touchscreen typing 

T. Arroyo-Gallego is with the Institute for Medical Engineering and Sci-
ence, Massachusetts Institute of Technology, Cambridge, MA, USA, with 
the Biomedical Image Technologies, Universidad Politécnica de Madrid, 
and also with CIBER-BBN, Madrid, Spain. 

M. J. Ledesma-Carbayo is with the the Biomedical Image Technolo-
gies, Universidad Politécnica de Madrid, and also with CIBER-BBN, 
Madrid, Spain. 

A. Sánchez-Ferro is with the Madrid-MIT M+Visión Consortium, Re-
search Laboratory of Electronics, Massachusetts Institute of Technol-
ogy, and also with HM Hospitales—Centro Integral en Neurociencias 
HM CINAC, Spain. 

I. Butterworth is with Madrid-MIT M+Visión Consortium, Research 
Laboratory of Electronics, Massachusetts Institute of Technology 
Cambridge, MA, USA. 

C. S. Mendoza is with Asana Weartech, Spain and also with Madrid-
MIT M+Visión Consortium, Research Laboratory of Electronics, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA. 

M. Matarazzo is with the HM Hospitales—Centro Integral en Neuro-
ciencias HM CINAC, and also with the Instituto de Investigación Hospital 
12 de Octubre (i+12), Madrid, Spain. 

P. Montero is with the Movement Disorders Unit, Hospital Clinico San 
Carlos, Madrid, Spain. 

R. López-Blanco, V Puertas-Martín, and R. Trincado are with the 
Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain. 

*L. Giancardo is with the Center for Precision Health, School of 
Biomedical Informatics, The University of Texas Health Science Cen-
ter at Houston, Houston, TX 77030 USA, and also with the Madrid-
MIT M+Visión Consortium, Research Laboratory of Electronics, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: 
luca.giancardo@uth.tmc.edu). 

features based on a covariance, skewness, and kurtosis 

analysis of the timing information of the data to capture PD 

motor signs. We tested these features, both independently 

and in a multivariate framework, in a population of 21 PD 

and 23 control subjects, achieving a sensitivity/specificity 

of 0 .81 /0 .81 for the best performing feature and 0 .73/0 .84 
for the best multivariate method. The results of the alter-

nating finger-tapping, an established motor test, measured 

in our cohort are 0 .75 /0 .78 . This paper contributes to the 

development of a home-based, high-compliance, and high-

frequency PD motor test by analysis of routine typing on 

touchscreens. 

Index Terms—Feature extraction, finger tapping, 

keystroke dynamics, mHealth, passive monitoring, signal 

processing, smartphone. 

I. INTRODUCTION 

P
ARKINSON'S disease (PD) is a chronic neurological dis-

order causing progressive disability related to the loss of 

nigrostriatal dopaminergic neurons. It is the second most com-

mon neurodegenerative disorder, presenting an annual incidence 

rate of 8-18 per 100,000 persons [1]. PD is commonly defined 

by motor impairment, involving tremor, bradykinesia, postu-

ral instability, gait difficulty, and rigidity. However, non-motor 

signs, such as mood alteration, cognitive alteration or sleep 

disturbances, are also characteristic of this disease [2]. Symp-

tom diversity affects patients' daily life in all physical, social 

and mental planes, producing an adverse impact in the main 

components of health-related quality of life [3]. 

At this time, available medication provides symptomatic re-

lief by setting an appropriate balance of dopamine levels. One 

of the main difficulties in adapting treatment parameters is the 

lack of a clear and objective measurement method to accurately 

quantify and monitor the disease stage for each individual case 

[4]. The Unified Parkinson's Disease Rating Scale (UPDRS) 

is the most commonly used metric in the clinical evaluation 

of PD. It consists of a standardized test that provides an overall 

score of the patients' functional capabilities [5]. TheUPDRS-III 

evaluates motor performance by having the subject undertake 

a series of motor tasks and assigning each a score from 0 to 

4. The total UPDRS-III score is calculated as the sum of all 

the individual task scores. Despite UPDRS-III being the most 

accepted standard in clinical assessment, it requires significant 

training to minimize inter-rater variability [6]. The need for 

an experienced clinician to subjectively evaluate the progress 

of the disease typically limits the gathering of information to 
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on-site medical examinations. This clinical data constitutes the 

main basis on which clinicians adjust patients therapy, which 

means that decision-making is subject to the participant's recall-

bias and is based on limited information. In summary, current 

practices not only lack better monitoring of PD progress, but 

also do not provide a consistent and objective evaluation of the 

measured signs. 

Finger-tapping tests [7] are complementary methods that pro-

vide additional and objective information about motor function 

health. These tests employ standardized finger-movement exer-

cises to detect and quantify psychomotor dysfunction. Alternat-

ing finger-tapping (AFT) is one of the varieties of this method. 

Using a single hand, the tested subject has to alternatively press 

two specified buttons as fast as possible during a predefined time 

[8]. The test is repeated for both hands and the final score is the 

average number of pressed keys between the two. Despite its 

simplicity, AFT is a commonly used method to evaluate PD as 

it provides useful information to characterize upper limb motor 

function [9]. 

An increasing interest in developing new ways to apply tech-

nology for creating objective clinical assessment tools is shared 

by patients, clinicians, and researchers. In the particular case of 

PD, recent reviews confirm a keen interest in the exploration 

of technological improvements in patient care [10]. In [11], 

authors present a survey highlighting the existing consensus be-

tween clinicians and patients about the need for a monitoring 

system to better understand response to therapy and improve 

treatment titration. 

PD motor impairment manifests in a variety of ways, which 

allows for a broad range of measurement methods. Conse-

quently, a variety of techniques to provide complementary in-

formation for optimizing PD care are emerging [12]. Reported 

results on ambulatory monitoring of PD patient activity shows 

great promise [13]. However, its translation to clinical practice 

remains elusive. The application of accelerometers and other 

sensing systems to develop high frequency motor tracking tools 

has become one of the main trends thanks to the advances in 

sensor miniaturization, wireless technology, signal processing 

and data analysis [14]—[16]. A notable challenge in sensor-based 

solutions is the development of advanced algorithms to evaluate 

the highly complex patterns that result from the interference of 

PD motor signs and normal daily activity movements, this calls 

for advancement in algorithms to process the accelerometers 

data [17]. In the recent years, the use of commodity hardware 

such as smartphones has gained traction over systems using 

specialized sensors. For instance, the microphone of these de-

vices has been used to predict PD severity via speech analysis 

algorithms [18]. 

Touchscreens and embedded accelerometers are another 

source of data to quantify PD signs. One of the largest stud-

ies to date is mPower [19]. A smartphone-based activity tracker 

including touchscreen tapping, memory, voice, posture and gait 

tests that collected longitudinal data from a large number of PD 

patients and controls during a six month period. 

A common limitation between the cited tools is that they 

require subjects' active participation, in the sense that subjects 

need to be reminded to take each test. This leads to reduced 

compliance. In the mPower initiative, Bot et al. [19] reported 

that out of the 9,520 participants who opted to share broadly 

their data, less than 10% (898) performed the finger tapping test 

for 5 days or more. 

We propose a solution that takes advantage of the ubiquity 

and pervasiveness of smartphone technology. Importantly, in 

contrast to many other mobile-based approaches, our solution is 

transparent to the user, and does not require the user to take any 

action to initiate a test. Our primary objective is for this trans-

parent monitoring to provide information comparable to current 

motor tests. More specifically our approach should simplify the 

monitoring process by passively collecting information from the 

routine use of smartphone devices. In our previous work [20], 

we have demonstrated that clinically relevant motor function 

changes can be measured by timing key press/release events 

during typing on physical keyboards, irrespective of language 

or text typed. In the specific case of PD, we have shown that 

daily interaction with physical keyboards can be used to mea-

sure motor signs in the early stages of the disease [21]. In this 

work, we introduce a set of numerical features derived from 

similar keystroke dynamic variables on mobile phone touch-

screens. We learn characteristic PD typing patterns to facilitate 

detection and quantification of the motor signs related to this 

disease. PD motor phenotype is described by slowness, lack of 

spontaneous movement, rigidity, and tremor. This clinical pic-

ture should affect the unconstrained finger performance while 

interacting with smartphone devices. 

In this paper, we propose a smartphone-based approach to as-

sess PD motor signs. The developed solution uses touchscreens 

as hardware support, and relies on the typing signal as input 

to evaluate motor function anomalies. Our study is a first step 

towards a transparent and ubiquitous motor sign assessment 

method that is objective, convenient, and can produce quasi-

continuous ambulatory data. The main contribution of this pa-

per is a new methodology to quantify motor impairment through 

the analysis of the typing signal collected via smartphone de-

vices. We tested our solution on a validation cohort that includes 

data from 21 PD and 23 control subjects. The performance and 

relevance of the developed tool is verified by comparing the 

obtained results with respect to the alternating finger-tapping 

(AFT) motor test. 

II. MATERIALS AND METHODS 

This sections includes a general description of the data 

acquisition, followed by the presentation of the proposed 

methodology. 

A. Data Acquisition 

We collected 51 typing signals from a population composed 

of 24 people diagnosed with Parkinson's and 27 healthy con-

trols. Subjects gave informed consent prior to experiments, 

and experimental procedures were approved by the Committee 

On the Use of Humans as Experimental Subjects (COUHES) 

at the Massachusetts Institute of Technology, protocol no. 

1504007090. During the meeting the subjects independently 

underwent a clinical evaluation including the UPDRS-III test 



TABLE I 
DATASET DEMOGRAPHICS 

Age 

Women # (%) 

Men # (%) 

UPDRS-III 

Alternating finger-tapping 

Hoehn and Yahr 

n (total n = 44) 

Avg. (std) 

Parkinson's 

59.24(11.43) 

11 (52%) 

10 (48%) 

17.76 (7.92) 

49.17(10.65) 

2.05(0.31) 

21 

Avg. (std) 

Controls 

54.35 (13.95) 

19 (83%) 

4 (17%) 

1.22(1.70) 

67.54(14.11) 

N.A. 

23 

Significance 

p = 0.32 

p < 0.05 

p < 0.05 

p < 0.001 

p < 0.001 

N.A. 

The complete study cohort comprised 51 subjects. From the total participants, 

44 provided enough typing information to perform the analysis. A minimum of 

5 keypresses every 15 seconds during at least half of the duration of the typing 

task was required to apply the proposed method. Seven subjects, 3 from the 

Parkinson's group and 4 healthy controls, did not provide enough data and were 

excluded from the analysis (see Materials and Methods). The table provides a 

summary of the demographic information of the participants included in the 

analysis, 21 people diagnosed with Parkinson's (PD) and 23 control subjects 

(CNT). PD subjects and controls are statistically similar in age, according to 

the two-sided Mann-Whitney U test. The same test suggests gender might be 

a confound variable in this study. These differences were accounted in the 

analysis. The table also shows the results of the clinical evaluation that includes 

UPDRS-III, alternating finger-tapping and the Modified Hoehn and Yahr scale. 

The Hoehn and Yahr scale is a widely used clinical rating scale that defines 

broad categories of disability in PD in a 0 to 5 range. 

conducted by a movement disorder expert. After the clinical 

assessment, each participant created an account on our website 

(www.neuroqwerty.com). The Alternating finger-tapping (AFT) 

test was performed on a physical keyboard. Subjects had to alter-

natively press two keys, separated approximately 25 cm, using 

their index finger. They repeated the test for both hands. The 

final score was computed as the average number of buttons 

pressed between the two hands. The typing data was collected 

using dedicated smartphone software. Participants transcribed 

a randomly-selected text excerpt for five minutes and were in-

structed to type as they would normally do in order to reflect 

actual routine use of the device. PD subjects were tested during 

their "ON" state, under best medical treatment. 

Seven participants, 4 from the control group and 3 Parkin-

son's subjects, did not have enough data to compute the feature 

analysis and were excluded from the dataset. All of them pre-

sented a typing rate below 20 keys per minute for at least half 

of the typing time. Table I summarizes the demographic infor-

mation of the remaining 44 subjects that were included in the 

analysis. 

For the study, we developed a custom screen keyboard in 

order to enable typing data collection. The application was 

based on the open source software keyboard AnySoftKeyboard 

(github.com/AnySoftKeyboard). Running in the background of 

any application that receives keyboard input, it captures the 

time stamps corresponding to press and release events for each 

keystroke. The system tested has a clock speed and a theoretical 

low-level sampling frequency of 1.2 GHz. Our implementation 

uses a software timer with a time granularity of 1 millisecond. 

The encrypted information was sent to a remote server for the 

analysis. All the subjects were tested on an Android terminal, i.e. 

Motorola Moto GII running Android 5.0. In Fig. 1 we provide 

a graphical representation of the study procedure. 

Clinical evaluation 
UPDRS-III 

rtt*. 

NTOIAL = 5 1 [24 PD, 27 CNT) 

NiNMi.s = 4 4 {21 PD, ZÍ CNT) 

Alternating 
finger-tapping 

(AFT) 

Touch screen typing 
for 5 minutes 

Fig. 1. The figure presents a schema of the study procedure that com-
prises a clinical evaluation, finger-tapping test and our typing test. For the 
clinical evaluation a movement disorder specialist filled-in the motor sec-
tion in the Unified Parkinsons Rating Scale (UPDRS-III). The alternating 
finger-tapping test was included as an external reference to quantify up-
per limbs dexterity. It was performed on a physical keyboard. The typing 
test consisted of a five minutes task were participants were asked to 
transcribe a non-standardized text excerpt using a touchscreen device. 
The custom screen keyboard and smartphone model used in the test 
are shown in this figure. 

B. Data Analysis 

The method description is divided into three different phases 

as follows: An initial signal conditioning phase in order to mini-

mize signal noise and artifacts. Then, statistical analysis is used 

to describe the processed signal using a limited number of typ-

ing features. In the last stage the feature vector is evaluated to 

determine its suitability for detecting PD status. 

1) Signal Conditioning: In this study, we define the typ-

ing signal (X [t]) as the sequence of flight time (FT) values 

corresponding to each key tap. In the context of our work, we 

define FT as the release latency between key taps, i.e. for two 

consecutive keystrokes the time measured between first and sec-

ond key release times. The captured typing data requires further 

processing in order to remove noise, minimize the effect of 

confounding factors on the analysis and define a standardized 

representation of the whole signal. Noise can be introduced by 

many sources, such as software inaccuracies or unnatural typ-

ing episodes (e.g. special keys). Additionally, to reduce noise 

levels, the signal is processed by a series of conditional filters 

that remove potentially noisy samples if the FT value exceeds 

a 3-second threshold, or if they correspond to special key-types 

that engage non-standard digit kinematics (e.g. SHIFT). To min-

imize the effect of typing skills in the results of the analysis, each 

signal is normalized by subtracting its mean value to every data 

sample in X[t\. Fig. 2 compares the probability density func-

tions for the normalized FT (NFT) data grouped by condition. 

x'[t]=x[t]-X:X'e [eA,eB] 

where X' is the normalized signal and X its average. The value 

t represents the time at which a key has been pressed to generate 
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Fig. 2. The figure shows the probability density distribution (PDF) esti-
mated for the normalized flight time (NFT) signals both for each subject 
(light color) and grouped by condition (dark color). Normalization min-
imizes the influence of confounding variables related to typing skills. 
Parkinson's subjects' (PD) distributions present a greater sparsity than 
controls' (CNT) distributions. A Mann-Whitney U test suggests a signif-
icant difference between the NFT values measured on PD participants 
and controls (p < 0.001). 

the relative FT signal. The parameters OA and OB give the esti-

mated range of values in which the 99% of the normalized FT 

data is concentrated. These two parameters have been estimated 

in an external typing database of 27 healthy subjects. 

We define a new type of signal representation (X's) based 

on the FT time series as to adapt the normalized data to the 

following analysis stages. Given X'[t], the signal structure, X's, 
is defined as a set of vectors X'Si with a varying number of 

elements but a fixed length in the time domain: 

X'Si[t,N]=X'[t]w[t-iN} 

where i is a strictly positive integer which serves as an index 

to the list of vectors, N = 15,000 is the length of the window 

time expressed in milliseconds and w[n] is defined as: 

1, 0 <n< N 

0, otherwise 

2) Feature Extraction: Evaluating X's using distribution 

and covariance based approaches we define two different feature 

families. 

a) Skewness and Kurtosis: These measurements correspond 

to the third and forth moments of a distribution. Skewness can be 

interpreted as an indicator of distribution symmetry, while kur-

tosis measures the variable distribution flatness. Each element 

in the typing structure (X'Si) is evaluated as an independent 

realization of the same random variable, with its corresponding 

distribution that we will call sub-distribution in the context of 

X[t\. Then, for each sub-distribution a pair including skewness 

(Ski) and kurtosis (KU) descriptors are computed. 

For a sample of n values, a natural method of moments 

estimator of the population skewness is: 

X' Si, 
oki 

For a sample of n values the sample excess kurtosis is: 

Kti = 
ZZLI(X'SÍ[™]-X'SÍ 

where M¿ is the length of the i vector in X's and a,si is the 

standard deviation of X'Si. 
With I being the number of sub-distributions that compose the 

structured typing signal, the analysis described above generates 

a total of I measures for each metric. These values are reduced 

to four final features computed as the average and standard 

deviation of the I skewness measurements (Sk, a,sk) and the I 
kurtosis measurements (Kt,aKt). 

b) Covariance: The typing signal structure (X's) is trans-

formed into a matrix (H) by applying Kernel Density Estima-

tion (KDE). A similar approach was presented in [20] to define 

the Key Hold Time Evolution Matrix. 

We apply KDE to estimate the probability density function 

(PDF) that represents the underlying distribution of each ele-

ment in the typing structure. Given a typing sub-sample X'Si of 

size Mi, its PDF /¿ is computed as follows: 

M, 

fi(y,b)=YJK((y-X'Si[m})/b) 
rn = l 

where 6 is a bandwidth parameter that controls K, a Gaussian 

kernel: 

K(x, b) oc exp 
262 

Each function /¿ is quantizied using pre-defined mapping 

levels v. This allows a standardized I x L, matrix representation 

of the typing signal as: 

Hij = fi(v[j}) 

We used our external dataset, not used for training or test-

ing, comprised by 27 healthy subjects, to adjust the value of 

the bandwidth parameter b [22], as well as the number of quan-

tization levels (L = 10) and the limits of the mapping vector 

The corresponding covariance matrix (COVH) is estimated 

for the resulting NFT distribution matrix (H) as follows: 

COVHt] =cov(Hit,Hjt) = 

L 

1
 L 

—j- 2_, (Hi<1 ~ Hi*) (HÍ<1 ~ H3 
1=1 
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Fig. 3. The figure compares six signal examples from three people diagnosed with Parkinson's (PD) and three healthy controls (CNT). The 
normalized flight time series (NFT) is split into 15 second-length windows. Applying Kernel Density Estimation (KDE) we compute the sub-distribution 
representing the information contained in each window. The mean and standard deviation of the skewness and kurtosis values measured on each 
sub-distribution define four of the features (Sk, aSk, Kt, ant) that are included in the final 7-dimensional feature vector. The NFT covariance map 
represents the correlation across the NFT sub-distributions. We define the covariance vector (Cv) as an array including the coefficients in the strict 
upper triangle of the covariance matrix, i.e. above the matrix main diagonal. We extract three metrics from the covariance analysis that complete 
the typing feature vector (Cv, acv, ~^2 \Cv\) Distributions show a higher uniformity of the NFT values for the CNT's signals compared to PD's. 
Covariance maps for PD show stronger correlation and anti-correlation within sub-distributions while CNT's maps present values nearer 0 for the 
entire matrix. 

TABLE II 
RESULTS, UNIVARIATE ANALYSIS (INDEPENDENT TYPING FEATURES) 

Feature 

Sk 

&Sk 

Kt 

&Kt 

Cv 

CCv 

E\Cv\ 

Avg. (std) 

Parkinson's 

0.955 (0.572) 

0.652 (0.135) 

0.767(1.749) 

1.691 (0.977) 

-0.019 (0.015) 

0.104(0.030) 

3.290(1.071) 

n (total n = 44) 21 

Avg. (std) 

Controls 

1.742(0.536) 

0.837 (0.210) 

3.587 (2.594) 

3.595(1.593) 

-0.018 (0.006) 

0.068 (0.029) 

1.839(0.656) 

23 

AUC [5%, 95%] 

0.85 [0.74, 0.95] 

0.77 [0.64, 0.87] 

0.87 [0.78, 0.95] 

0.88 [0.78, 0.95] 

0.46 [0.38, 0.69] 

0.84 [0.72, 0.93] 

0.91 [0.82,0.97] 

Significance 

p < 0.001 

p < 0.01 

p < 0.001 

p < 0.001 

p = 0.66 

p < 0.001 

p < 0.001 

The table shows the mean values and performance of the typing features and the reference 

metrics, including the ROC AUC mean and confidence intervals achieved by each mea-

surement and the results of the Mann-Whitney U test to analyze if the null hypothesis, that 

Parkinson's disease (PD) and control (CNT) subjects come from the same population, can 

be rejected. Covariance sum J2 \Gv\ presents the best discrimination performance with an 

AUC of 0.91 and significance p < 0.001. 

where íf¿> 

ith
 row: 

is a vector that contains the H matrix values for the 

H* — [Hti,H,2 Hi i,l\ 

Being Cv a covariance vector including the upper triangle 

elements of COVH, i.e. the coefficients in the upper portion 

above the main diagonal of the matrix, we define the covariance 

typing features as follows: covariance mean (Cv), covariance 

standard deviation (acv) and the sum of the absolute values 

of the covariance vector elements (J2 \Cv\). A graphic repre-

sentation of the typing signal characterization is presented in 

Fig. 3. 

3) Evaluation Methodology 

The proposed features are based on a limited set of parameters 

that are estimated on an external dataset of 27 healthy subjects. 

These parameters, shown in the previous sections, provide a 

general description of the typing signal and are independent of 

motor function status, i.e. they are not optimized to enhance the 

separation between Parkinson's participants and controls. 

First, we assess the classification performance of the proposed 

typing features with univariate methods. Next, we evaluate the 

joint discriminatory power of the features in a multivariate 

analysis framework. 

The multivariate method assembles a feature selection trans-

form followed by a final estimator. We use a nested-cross val-

idation strategy for performance evaluation, i.e. a combination 

of two embedded cross-validation loops. The inner k-fold cross-

validation loop is used to identify the relevant features and es-

timate the model hyperparameters based on the training folds 

of the outer leave-one-out cross-validation fold. The outer loop 



TABLE III 
RESULTS, MULTIVARIATE ANALYSIS (AGGREGATED TYPING FEATURES) 

Model 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Feature Selection 

LI (Lasso) 

LI (Lasso) 

LI (Lasso) 

L2 (Ridge) 

L2 (Ridge) 

L2 (Ridge) 

Gini Impurity 

Gini Impurity 

Gini Impurity 

n (total n = 44) 21 

Classifier 

Logistic Regression 

Linear SVM 

AdaBoost 

Logistic Regression 

Linear SVM 

AdaBoost 

Logistic Regression 

Linear SVM 

AdaBoost 

23 

Avg. Score (std) 

Parkinson's 

2.127(2.883) 

0.825(1.109) 

3.603 (6.612) 

1.767 (2.870) 

0.736(1.063) 

0.617(1.599) 

1.434(2.350) 

0.650(1.035) 

2.131 (5.123) 

Avg. Score (std) 

Controls 

-1.684(2.127) 

-0.663 (0.730) 

-0.218(1.591) 

-2.241 (2.293) 

-0.709 (0.926) 

-1.464(1.734) 

-1.236(1.850) 

-0.588 (0.683) 

-1.019(1.972) 

AUC [5%,95%] 

0.87 [0.75, 0.94] 

0.88 [0.78, 0.95] 

0.73 [0.58, 0.84] 

0.87 [0.77, 0.95] 

0.86 [0.74, 0.95] 

0.82 [0.69, 0.92] 

0.81 [0.67,0.91] 

0.86 [0.74, 0.95] 

0.80 [0.66, 0.90] 

Significance 

p < 0.001 

p < 0.001 

p < 0.01 

p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 

p < 0.05 

The table summarizes the results of the multivariate analysis. We evaluate the classification performance of different models that aggregate 

the information of the proposed typing features. We tested a total of nine models, built as the possible combinations of three different feature 

selection methods and three estimators. A nested cross validation framework was implemented to train and test the models. For each model, 

we include the mean and confidence intervals of the AUC and the results of the Mann-Whitney U test to reject the null hypothesis that 

Parkinson's disease (PD) and control (CNT) subjects come from the same population. Model 2, a linear support vector classifier preceded by 

LI-regularized linear model (Lasso) for feature selection, presents the best discrimination performance with an AUC of 0.88 and significance 

p < 0.001. 

> 

¿ 

/ 

^^ 

f^S 

Typing based metr ics: 

^ _ Best univariate method (EICVJ) 
AUC 0 . 9 1 " * [0.82-0.971 

^ _ Best multivariate method (Model 2) 

AUC 0 . 8 8 " * [0.78-0.95] 

_ _ Raw flight time average (X) 
AUC0,83"** [0.71-0,91] 

Clinical reference: 
Alternating finger-tapping (AFT) 

A U C 0 . S 5 * " [0.76-0,94] 

00 02 01 01 OS 10 

1-Specificity 

Fig. 4. Comparison of receiver operating characteristic (ROC) curves 
showing the classification rate for the typing based metrics, including 
raw flight time average (X) and best performing univariate (^ \Cv\) a n Q l 

multivariate methods (Modeli), with the alternating finger-tapping test 
AFT. Statistical significance of the MannWhitney U test is estimated to 
reject the null hypothesis that the two groups, PD and CNT, come from 
the same population. Statistical significance noted as: p < 0.001 (***), p 
< 0.01 (**) and p < 0.05(*). 

is run using the best model settings estimated in the inner loop 

and storing the score for the left-out sample. 

We used two tests to evaluate the ability of each metric, typing 

features and models' scores, to correctly separate the referred 

classes: the Receiver Operating Characteristic (ROC) analysis 

and the Mann-Whitney U test to reject the null hypothesis that 

the controls and the Parkinson's samples come from the same 

distribution. 

The ROC analysis consists of an iterative process that mono-

tonically increases the value of the metric under study to define a 

dynamic threshold. On each iteration the current threshold value 

is evaluated as a binary classifier that separates Parkinson's and 

controls. The output is a set of sensitivity/(l-specificity) pairs 

that are joined to draw the corresponding ROC curve. The Area 

Under the Curve (AUC) can be interpreted as the probability 

that the classifier will rank a randomly chosen positive instance 

higher than a randomly chosen negative one. Moreover, this 

metric allows a reliable comparison of the performance even 

when the number of cases and controls is not fully balanced, 

as it is the case of our study dataset (48% PD, 52% CNT). A 

sampling with replacement method (1,000 bootstraps) defines a 

ROC distribution from which we compute the average and con-

fidence intervals of the AUC values to describe the classification 

performance of each metric. 

III. RESULTS 

Table II shows the results obtained for the univariate feature 

evaluation. The values presented for each typing metric include: 

mean value and standard deviation grouped by condition, aver-

age Area Under the Curve (AUC) for the bootstrapped ROC dis-

tribution, AUC confidence interval computed as the [5th, 95
ift

] 

percentiles on the resulting AUC values, and the Mann-Whitney 

significance test outcome. 

Table III summarizes the results of the multivariate analysis. 

We evaluate nine different models defined as the possible com-

binations of three feature selectors and three classifiers. These 

methods were selected to represent different families of common 

machine learning approaches. Feature ranking methods used are 

Lasso, Ridge regression and Gini impurity based random forests 

used as estimators in a recursive feature elimination framework. 

Classification methods considered are logistic regression, linear 

kernel Support Vector Machines (SVM) and AdaBoost. 

Alternating finger-tapping (AFT), a quantitative upper limb 

motor test commonly used in clinical trials to monitor PD signs, 



TABLE IV 
METHODS COMPARISON 

Method 

Avg. (std) 

Parkinson's 

Avg. (std) 

Control AUC [5%,95%] Specificity Sensitivity 

Significance 

Adjusted 

Significance 

Unadjusted 

Best Univariate (J2 \Cv\) 
Best Multivariate (Modell) 

Raw Flight Time Average (X) (s) 

Alternating finger-tapping (AFT) 

3.290(1.071) 1.839(0.656) 0.91 [0.82,0.97] 

0.825 (1.109) -0.663 (0.730) 0.88 [0.78, 0.95] 

0.870(0.283) 0.566(0.155) 0.83 [0.71,0.91] 

49.17(10.65) 67.54(14.11) 0.85 [0.76,0.94] 

0.81 

0.84 

0.72 

0.78 

0.81 

0.73 

0.73 

0.75 

p < 0.001 

p < 0.001 

p < 0.001 

p < 0.001 

p = 0.002 

p = 0.002 

p = 0.003 

p = 0.002 

The table compares the performance of the touchscreen typing based metrics, including the raw flight time average (X) and best performing univariate 

(J2 \Cv I) and multivariate methods (Model2) , with the alternating finger-tapping test AFT. The presented methods improve the discrimination ability 

of the reference test (AFT: 0.85[0.76, 0.94] AUC and 0.75/0.78 sensitivity/specificity), with 0.91[0.82, 0.97] AUC and 0.81/0.81 sensitivity/specificity 

for the best performing feature (J2 \Cv\) and 0.88[0.78, 0.95] AUC and 0.73/0.84 sensitivity/specificity for the best multivariate model (M odel2). The 

adequacy of the proposed methods to enhance the differences of the typing patterns between Parkinson's subjects and controls is stressed by the comparison 

with the raw signal based metric (X: 0.83[0.71, 0.91] AUC and 0.73/0.72 sensitivity/specificity). The presented sensitivity/specificity pairs correspond to 

the closest-to-(0,l) cut-off point. The unadjusted statistical significance is computed with two-sided Mann-Whitney U test. The adjusted significance tests 

were computed with logistic regression models including gender and age as co-variares. For the developed methods none of the co-variates reached statistical 

significance. 

is used as the reference metric to evaluate the performance of 

the proposed method. Also, we include the average of the un-

processed flight time signal (X) as a starting point to show 

the improvement introduced by our solution to the discrimi-

nation ability measured on the raw typing data. We replicate 

the evaluation framework used in our methods to test the clas-

sification performance of these two reference metrics in our 

cohort. 

Fig. 4 and Table IV show the performance comparison of the 

touchscreen typing based metrics, i.e. raw flight time average 

and the developed methods, with the AFT test reference. Raw 

flight time average (X) presents an AUC of 0.83 [0.71-0.91]. 

The best performing typing feature, covariance sum (J2 \Cv\), 
presents an AUC of 0.91 [0.82-0.97]. The best multivariate 

method (Model2), a combination of LI-regularized feature se-

lection plus a linear S VM as the final estimator, scores an AUC of 

0.88 [0.78-0.95]. AFT test performance measured in our cohort 

achieves an AUC of 0.85 [0.76-0.94]. Sensitivity and specificity 

values shown in Table IV are estimated using the closest-to-(0,1) 

criterion to define the cut-off point [23]. Unadjusted p-values 

present the results of the Mann-Whitney U test to reject the 

null hypothesis that PD and CNT subjects come from the same 

population. Adjusted significance tests the null hypothesis that 

the metric under scrutiny does not contribute to the separation 

between PD and control groups in a logistic regression model 

accounting for sex and age. 

Finally, we evaluated the classification performance of the 

proposed methods for different signal lengths, in order to ana-

lyze the appropriate duration of continuous typing that would be 

necessary to achieve significant results. In Fig. 5 we illustrate the 

results of this analysis for our best univariate and multivariate 

methods. 

IV. DISCUSSION 

In this work we propose an algorithm to identify PD motor 

signs by analyzing the typing activity on smartphones indepen-

dently of the typed text. Users do not need to wear any sensor 

or remember to perform a structured test. Compliance depends 

only on the act of installing the software. Once installed, data 
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Fig. 5. The figure shows the evolution of the area under the ROC curve 
(AUC) for the best performing feature (^2\C'v\) and best multivariate 
model (Model2) as we increment the amount of typing data used to per-
form the analysis. We observe a clear improvement of the classification 
performance as the duration of the analyzed typing series increases. 

collection happens automatically without interfering with the 

normal use of the device. 

The current clinical standard used to quantify PD stage and 

progress present some limitations that define a clear need in the 

treatment and control of the disease. This scenario has led to the 

study and development of different alternatives in attempting to 

complete and complement UPDRS information. 

In our cohort, a commonly used quantitative method that eval-

uates upper limbs dexterity, alternating finger-tapping (AFT), 

discriminated both populations with an AUC of 0.85 with 

0.75/0.78 sensitivity/specificity. The proposed methods outper-

form this clinical reference, achieving an AUC of 0.91 with 

0.81/0.81 for the best performing typing feature, the covariance 

sum (X \Cv\), and an AUC of 0.88 with 0.73/0.84 for the best 

multivariate method, a pipeline comprised of LI-regularized 

feature selection and a linear SVM as the final classifier. 

We believe that our approach is able to achieve such perfor-

mance because of bradykinesia, bimanual coordination prob-

lems and other PD signs that may alter typing kinetics in a way 

detectable through a keystroke timing data analysis. PD motor 

impairment, in the particular case of the FT signal, may impede 



PD patients to press and release the keys in a consistent man-

ner, which we hypothesize would induce irregular flight times 

(similar to what may be seen in finger tapping tests). Our re-

sults are consistent with that hypothesis in that the typing signal 

distribution for PD patients has a greater dispersion and tempo-

ral variability, i.e. the heteroscedasticity measured using those 

features. The improvement achieved in the classification rate, 

compared to the alternating finger-tapping test, may be due to 

the fact that our features (i.e. skewness, kurtosis and covariance 

of the FT distribution) have been carefully defined to specifically 

capture these motor abnormalities that are a direct representa-

tion of PD signs. The approach of constructing the typing signal 

as a sequence of consecutive signal segments allows an intra-

subject analysis, which optimizes the detection of the internal 

variability introduced by PD signs. 

One of the main difficulties when using the typing signal 

as the unique source of information is the risk of measuring 

variables that are representative of the typing style but do not 

capture the effect of PD signs. We limit this effect by applying 

a normalization phase that forces a zero mean. This focuses 

the analysis on the FT distribution shape and variability. An-

other external factor that has to be taken into account when 

studying the potential limitations of the proposed method is the 

requirement of a minimal number of signal samples to make 

the sub-distribution analysis consistent. To collect enough in-

formation from the natural typing signal, a minimum level of 

skills in touchscreen typing is demanded in order to meet the 

established criteria. We consider that, taking into account the 

rapid growing rate of smartphone users, typing skills will not 

limit the application of this method. 

Our methods were validated in a controlled environment. 

Participants were asked to type for 5 minutes to complete the 

touchscreen test. Although they were instructed to type as they 

would normally do in order to reflect actual routine use of the 

device, further analysis will be necessary to discard a signif-

icant influence of the controlled test on their typing behavior. 

Regarding the 5-minute duration of the test, we understand that 

not all the smartphone users are likely to continuously type for 

this amount of time, however, the proposed methodology can be 

applied on natural typing signals collected for longer periods of 

time whose aggregate active typing time is 5 minutes or more. 

This study is a step towards the final goal of developing an au-

tomated biometric tool for diagnostic and therapeutic decision 

support in PD. The presented methodology compares well to 

standard clinically-used methods in terms of its ability to differ-

entiate PD participants from controls, and is able to do so from 

information collected from touchscreen typing activity. In our 

cohort, PD population presented mild signs (average UPDRS-

III score of 17.76 ± 7.92 and range [6, 41]), this suggests that 

the proposed features are able to discriminate PD from controls 

even at early disease stages. However, as a pilot study, the find-

ings of this research must be considered with caution. A further 

validation of this methodology would require a larger and better 

balanced cohort that enables a comprehensive review of the in-

fluence of the potential confounding variables mentioned in this 

work and others, such as medication state and cognitive deficits. 

Future work will include new studies to collect subjects' daily 

interaction with their smartphones in order to validate the ap-

plicability of the presented methods in a passively-monitored 

environment. Additional information from user's daily inter-

action with smartphones, such as pressure, gesture typing and 

accelerometer data, could be used to complement our keystroke 

based analysis. Method functionality could also be improved 

with the appropriate algorithms. Turning from a classification 

to a regression model, it may be possible to quantify a con-

tinuous metric for the natural progression of the disease over 

continuous motor function evaluations. 

V. CONCLUSION 

An approach to a more continuous, objective, and convenient 

tool to quantify PD related motor impairment is presented in 

this paper. The method suggests that motor anomalies in PD can 

be detected through analysis of keystroke dynamics during typ-

ing on smartphone touchscreens. The computed typing metrics 

show significant changes across the different studied groups: PD 

participants and healthy controls. In terms of classification, the 

best performing typing feature presents a 0.91 AUC rate, and 

sensitivity/specificity 0.81/0.81. The best multivariate model 

scores 0.88 AUC and 0.73/0.84 sensitivity/specificity. The pro-

posed methods are comparable or improve the performance of 

the a reference motor test (AFT) measured in our cohort, 0.85 

AUC and 0.75/0.78 sensitivity/specificity. Based on the analysis 

of the routine typing signal, the proposed approach introduces a 

transparent way to evaluate the motor function. In future work, 

a clinical study will validate our technique in a larger cohort of 

patients and controls and for an extended period of time that 

captures additional potential confounding variables. 
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