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Abstract

We propose a new nonparametric procedure for the detection and estimation of

multiple structural breaks in the autocovariance function of a multivariate (second-

order) piecewise stationary process, which also identifies the components of the series

where the breaks occur. The new method is based on a comparison of the estimated

spectral distribution on different segments of the observed time series and consists of

three steps: it starts with a consistent test, which allows to prove the existence of

structural breaks at a controlled type I error. Secondly, it estimates sets containing

possible break points and finally these sets are reduced to identify the relevant struc-

tural breaks and corresponding components which are responsible for the changes in

the autocovariance structure. In contrast to all other methods which have been pro-

posed in the literature, our approach does not make any parametric assumptions, is

not especially designed for detecting one single change point and addresses the prob-

lem of multiple structural breaks in the autocovariance function directly with no use

of the binary segmentation algorithm. We prove that the new procedure detects all

components and the corresponding locations where structural breaks occur with prob-

ability converging to one as the sample size increases and provide data-driven rules for
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the selection of all regularization parameters. The results are illustrated by analyzing

financial returns, and in a simulation study it is demonstrated that the new procedure

outperforms the currently available nonparametric methods for detecting breaks in the

dependency structure of multivariate time series.

Keywords and phrases: multiple structural breaks, cusum test, empirical process, nonpara-

metric spectral estimates, multivariate time series

1 Introduction

The assumption of second order stationarity of time series is widely used in the statistical

literature, because it yields an elegant and powerful statistical methodology like parameter

estimation or forecasting techniques. On the other hand many real world phenomena can

not be adequately described by stationary processes because these models are usually not

able to capture all stylized facts of an observed time series (Xt)t∈ZZ . Consequently numerous

alternative models have been proposed to address model features of non-stationarity [see

Jansen et al. (1981), Dahlhaus (1997), Adak (1998) or Ombao et al. (2001) among many

others], and one concept which became quite popular in the last decades is to assume that

there is a certain number of segments on which the process can be considered as stationary

[see for example Starica and Granger (2005) or Fryzlewicz et al. (2006)]. This implies the

existence of several points where the process ’jumps’ from one stationary model to another,

and testing for the presence and determining the location of such structural breaks is an

important and challenging task. The main problems/questions in this context are (1) Do

there exist structural breaks? (2) If there exist structural breaks, how many of them are

present? (3) Where are the break points located? (4) In multivariate time series: in which

components do structural breaks occur?

Because of its importance the problem of change point detection has found considerable in-

terest in the statistical literature. For many decades, the identification of structural breaks
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in the mean function was the dominating issue, and some early results are given by Sen and

Srivastava (1975). Since this pioneering work numerous authors have considered this prob-

lem [see James et al. (1987), Banerjee et al. (1992), Bai (1994) or Fryzlewicz (2007) among

many others]. More recently several authors have argued that in applications the detection

of changes in the autocovariance structure is of importance as well. Typical examples include

the discrimination between stages of high and low asset volatility or the detection of changes

in the parameters of an AR(p) model in order to obtain superior forecasting procedures. In

the univariate case Inclan and Tiao (1994) propose a nonparametric CUSUM-type test for

changes in the variance of an independent identically distributed sequence. These results

are generalized by Lee and Park (2001) to linear processes. Chen and Gupta (1997) consider

the same model and problem, but use the Schwarz information criterion. Aue et al. (2009)

discuss multivariate time series and propose a nonparametric test for structural breaks in

the variance matrix, which is applicable to a broad class of stochastic processes.

On the other hand, the detection of changes in the complete autocovariance structure, that

is the existence of a change in the covariance function γ(k) = E(X0Xk) at some lag k ∈ IN ,

is more complicated and the corresponding literature is much less developed and mainly

refers to parametric models. Lavielle and Ludena (2000) use penalized methods for identi-

fying structural breaks and Lee et al. (2003) propose a CUSUM-type statistic for detecting

changes in specific parameters. Recently Davis et al. (2006) suggest the minimum descrip-

tion length principle to fit piecewise constant AR processes, while Chen et al. (2010) use

AR-processes with structural breaks for modeling asset volatility.

This list is of course far from being complete and could be extended by a vast amount of

further articles on this subject. Nevertheless, to the best of our knowledge, there does not

exist any nonparametric method for the detection of structural breaks in the autocovariance

structure of multivariate time series which addresses all four problems raised at the beginning

of this paper simultaneously. In fact, essentially all procedures either assume independence

of the observed data or rely on parametric assumptions. Moreover, these methods are partic-
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ularly designed to detect one structural break and the application of the binary segmentation

algorithm [Vostrikova (1981)] is used to locate multiple break points [see for example Fry-

zlewicz (2012) for a very recent approach]. Although this approach works both theoretically

and practically, it is of course not necessarily optimal because it relies on procedures designed

for detecting one change point.

In this paper we present an integrative procedure for the detection and localization of struc-

tural breaks in the autocovariance structure of a multivariate time series, which addresses

all raised issues simultaneously. Our approach works in the frequency domain and is based

on a comparison of the spectral density on two consecutive blocks of length, say N , which

is ’small’ compared to the whole sample size, say T . Roughly speaking, the method consists

of three basic steps. We start with the development of a new consistent bootstrap test,

which allows to prove the existence of structural breaks at a controlled type I error. In this

case, a set of possible break points is estimated, and finally this set is reduced to identify

the relevant structural breaks and corresponding components which are responsible for these

breaks. The different steps are carefully described and illustrated in Sections 3 and 4. Here

we also prove that the initial test keeps its nominal level, is consistent and that the detection

rule identifies all components and the corresponding locations where structural breaks occur

with probability converging to one as the sample size increases.

As all methods in this context [see for example Lee et al. (2003)] the new procedure depends

on the choice of several regularization parameters. Therefore we develop data-driven rules

for the selection of these parameters in Section 5, which can also be justified theoretically

and yield a good performance of the procedure from a practical point of view. In Section 6

we investigate the finite sample properties of the new method by means of a simulation study

and illustrate its application analyzing multivariate financial market returns. In particular

it is demonstrated that in most cases the new proposal improves competing nonparametric

methods for detecting multiple structural breaks in the dependency structure of a multivari-

ate time series. Finally all proofs are given in Section 7, in which some technical details are
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deferred to an additional Section 8.

We conclude this introduction emphasizing that the focus of this paper is on nonparamet-

ric detection of changes in the autocovariance structure of multivariate time series and

identification of the components which are responsible for the structural breaks. Nearly

all articles on nonparametric change point detection in the dependency structure are re-

stricted to the univariate case. To the best of our knowledge, only Aue et al. (2009) provide

a formal level-α test for the presence of structural breaks in a multivariate time series set-

ting. However, these authors do not investigate change point problems in the autocovariance

structure, but consider the problem of testing for a constant covariance matrix. As a con-

sequence their test is not able to discriminate between changes in the dependency structure

which keeps the variance constant. This situation occurs for example in an univariate AR(1)

model where the AR parameter switches from −a to a for some a ∈ (0, 1). The procedure

proposed in this paper solves problems of this type and in the multivariate case additionally

identifies the components, where the changes occur.

2 Piecewise stationary processes

We assume to observe realizations of a centered Rd valued stochastic process (Xt,T )t=1,...,T ,

where Xt,T = (Xt,T,1, ..., Xt,T,d)
T has a piecewise stationary representation. This means that

there exist an unknown number K ∈ IN0 and points 0 = b0 < b1 < · · · < bk < bK+1 = 1 such

that

Xt,T =
∞∑
l=0

Ψl(t/T )Zt−l t = 1, ..., T, (2.1)

where the functions Ψl : [0, 1] → IRd×d, l ∈ Z are defined as Ψl(u) =
∑K

j=0 Ψ
(j)
l 1Sj(u)

and 1Sj denotes the indicator function of the set Sj = {u : bj < u ≤ bj+1}, {Zt}t∈Z

denotes a centered Gaussian White Noise process with covariance matrix Id and the matrices

Ψ
(j)
l ∈ IRd×d correspond to the piecewise constant coefficents of the linear representations
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on the segment (bbjT c, bbj+1T c]. Throughout this paper we assume that K is ’minimal’

in the sense that for every pair (i, i + 1) with i ∈ {0, ..., K − 1} there exists an integer

l ∈ IN such that Ψ
(i)
l 6= Ψ

(i+1)
l . This ensures that, if K equals zero, there is no change

point in the dependency structure, while structural breaks exist for K ≥ 1. We also note

that the assumption of Gaussianity is only imposed here to simplify technical arguments

and the extension of the proposed methodology and results to more general innovations is

straigthforward; see Remark 3.9 for more details.

We introduce fj(λ) = 1
2π

∑∞
l,m=0 Ψ

(j)
l

(
Ψ

(j)
m

)T
exp(−iλ(l−m)) and obtain for the Cd×d valued

time-varying (piecewise constant) spectral density matrix

f(u, λ) =
1

2π

∞∑
l,m=0

Ψl(u)
(
Ψm(u)

)T
exp(−iλ(l −m)) =

K∑
j=0

fj(λ)1Sj(u). (2.2)

From this representation it follows that the spectral density has points of discontinuity in u

direction at the break points bi (i = 1, ..., K) whenever K ≥ 1. Therefore we propose to com-

pare the spectral density λ 7→ 1
e

∫ v
v−e f(u, λ)du with λ 7→ 1

e

∫ v+e

v
f(u, λ)du for some ’small’

constant e. If there exist structural breaks, the difference sup
ω∈[0,1]

1
e
|
∫ ωπ

0

∫ v+e

v
f(u, λ)dudλ −∫ ωπ

0

∫ v
v−e f(u, λ)dudλ| will be positive for v ∈ {b1, ..., bK} while it vanishes for

v ∈ [0, 1]\{b1, ..., bK} as e → 0. In order to obtain a global measure for the presence of

structural breaks, we define ||A||∞ = max
a,b=1,...,d

|Aa,b| as the usual maximum norm of a matrix

A ∈ Cd×d and consider
D := sup

v,ω∈[0,1]

||D(v, ω)||∞, (2.3)

where for v ∈ [e, 1− e] and ω ∈ [0, 1] the matrix D(v, ω) is defined by

D(v, ω) :=
1

e

(∫ ωπ

0

∫ v+e

v

f(u, λ)dudλ−
∫ ωπ

0

∫ v

v−e
f(u, λ)dudλ

)
∈ Rd×d (2.4)

and we set D(v, ω) = D(e, ω) and D(v, ω) = D(1 − e, ω) whenever v ≤ e amd v ≥ 1 − e

respectively. Under the hypothesis of no structural break, i.e. K = 0, we have D = 0,

while D is strictly positive if structural breaks occur. In order to obtain a test for the null
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hypothesis
H0 : K = 0, (2.5)

it is therefore natural to estimate D and to reject the null hypothesis for ’large’ values of the

estimator. We will construct such an empirical version of D in the following section and de-

rive its asymptotic properties. The identification of the location and components correspond-

ing to the break points is based on an estimator of the components supω∈[0,1] |[D(v, ω)]a,b|

and illustrated in Section 4.

3 Testing for structural breaks

The first step of the proposed procedure consists in a statistical test which allows to prove

the existence of structural breaks at a controlled type I error and is based on an empirical

version of the quantity D defined in (2.3). To be precise we choose an even integer N ≤ T/2

and consider the local periodogram

IN(u, λ) :=
1

2πN

N−1∑
r,s=0

XbuT c−N/2+1+s,TX
T
buT c−N/2+1+r,T exp(−iλ(s− r)), (3.1)

where we use the convention Xj,T = 0 whenever j 6∈ {1, . . . , T}. Note that (3.1) is the usual

periodogram computed from the N observations XbuT c−N/2+1,T , . . . ,XbuT c+N/2,T , and it can

be shown that the quantity IN(u, λ) is an asymptotically unbiased estimator for the spectral

density if N →∞ [see Dahlhaus (1997)]. An estimator of the matrix D(v, ω) is then defined

by
D̂T (v, ω) :=

1

N

bωN/2c∑
k=1

(
IN
(
v +N/(2T ), λk

)
− IN

(
v −N/(2T ), λk

))
, (3.2)

if v ∈ [N
T
, 1 − N

T
] where λk = 2πk/N denote the Fourier frequencies. On the intervals

[0, N
T

) and (1 − N
T
, 1] we define D̂T (v, ω) as D̂T (N

T
, ω) and D̂T (1 − N

T
, ω) respectively. So

roughly speaking we construct an estimator of D(v, ω) by replacing the integral by a Rie-

mann sum, where the averaged time varying spectral density matrices 1
e

∫ v+e

v
f(u, λ)du and
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1
e

∫ v
v−e f(u, λ)du on the intervals [v, v+e] and [v−e, v] are replaced by the local periodograms

IN(v + N/(2T ), λ) and IN(v −N/(2T ), λ). The final estimate of the quantity D in (2.3) is

then defined by

D̂T := sup
(v,ω)∈[0,1]2

||D̂T (v, ω)||∞ = max
v∈[N/T,1−N/T ]

sup
ω∈[0,1]

||D̂T (v, ω)||∞. (3.3)

The following results specify the asymptotic properties of the process

{D̂T (v, ω)}(v,ω)∈[0,1]2 under the null hypothesis (2.5) of no structural breaks and the alterna-

tive H1 : K > 0 for different choices of the sequence N . Throughout this paper the symbol⇒

denotes weak convergence in L∞([0, 1]2) and we distinguish the cases N/T → 1/c ∈ (0, 1/2)

(Theorem 3.1) and N/T → 0 (Theorem 3.2).

Theorem 3.1 Suppose that the coefficients in the representation (2.1) satisfy
∞∑
l=0

sup
u∈[0,1]

‖Ψl(u)‖∞|l| <∞, (3.4)

and that N/T → 1/c for some c ≥ 2/mini=1,...,K+1 |bi− bi+1| as T →∞. Then the following

statements hold:

a) If K = 0, the process {
√
ND̂T (v, ω)}(v,ω)∈[0,1]2 converges weakly to a centered Gaussian

process {G(v, ω)}(v,ω)∈[0,1]2, i.e.

{
√
ND̂T (v, ω)}(v,ω)∈[0,1]2 ⇒ {G(v, ω)}(v,ω)∈[0,1]2 . (3.5)

Here for vi ∈ [1
c
, 1−1

c
] (i = 1, 2), the covariance kernel Cov([G(v1, ω1)]a1,b1 , [G(v2, ω2)]a2,b2)

of {G(v, ω)}(v,ω)∈[0,1]2 is given by
0 if 2

c
≤ |v2 − v1|

−[2− |v2 − v1|c] 1
π

∫ min(ω1,ω2)π

0
ρa1,a2,b1,b2(λ)dλ if 1

c
≤ |v2 − v1| ≤ 2

c

[2− 3|v2 − v1|c] 1
π

∫ min(ω1,ω2)π

0
ρa1,a2,b1,b2(λ)dλ if 0 ≤ |v2 − v1| ≤ 1

c

, (3.6)

where ρa1,a2,b1,b2(λ) := fa1,a2(λ)fb1,b2(−λ) + fa1,b2(λ)fb1,a2(−λ). If vi /∈ [1
c
, 1 − 1

c
] for at
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least one i ∈ {1, 2} the covariance kernel is given by

Cov([G(v1, ω1)]a1,b1 , [G(v2, ω2)]a2,b2) = Cov([G(ac(v1), ω1)]a1,b1 , [G(ac(v2), ω2)]a2,b2)

where ac(v) := min(max(v, 1
c
), 1− 1

c
).

b) If K ≥ 1, there exists a constant C ∈ IR+ with lim
T→∞

P( sup
ω∈[0,1]

∣∣[D̂T (br, ω)]a,b
∣∣ > C) = 1

for all (r, a, b) ∈ {1, ..., K} × {1, ..., d}2 such that sup
ω∈[0,1]

|[D(br, ω)]a,b| > 0.

Theorem 3.2 Suppose that the coefficients in the representation (2.1) satisfy (3.4) and that

N →∞, T ε/N → 0 and N/T → 0 for some ε > 0 as T →∞. Then the following statements

are correct:

a) If K = 0, then we have for any 0 < γ < 1
2
: D̂T = oP (N−γ).

b) If K ≥ 1, then part b) of Theorem 3.1 holds.

From these results it follows that under the null hypothesis of no structural breaks the

expression D̂T is of order OP (N−γ) where γ = 1/2 (Theorem 3.1) or γ ∈ (0, 1/2) (Theorem

3.2) while it is larger than some positive constant under the alternative. Note that in the

situation of Theorem 3.2, i.e. N/T → 0, it can also be shown that under the null hypothesis

of no structural breaks the random variable
√
ND̂T (v, ω) converges weakly to a Gaussian

limit for any fixed pair (v, ω). However, in this case
√
ND̂T (v1, ω) and

√
ND̂T (v2, ω) are

asymptotically uncorrelated whenever v1 6= v2, and therefore measurability is not given in

the limit.

Since the distribution under the null hypothesis depends on unknown quantities of the data

generating process we propose resampling methods to obtain its quantiles. More precisely

we will now develop a bootstrap procedure, which is closely related to the one dimensional

AR(∞) bootstrap introduced by Kreiss (1988). This methodology has found considerable

attention in the recent literature [see Choi and Hall (2000), Goncalves and Kilian (2007) or

Berg et al. (2010) among others] since it is easy to implement but has sufficient complexity
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to capture the predominant dependencies in the underlying process. In the present context

it will yield critical values such that a test for structural breaks based on the statistic D̂T is

directly implementable. For a description and the statement of the theoretical properties of

the resampling procedure we require the following central assumption.

Assumption 3.3 The stationary Rd-valued process {Xt}t∈Z with spectral density function

g(λ) =
∫ 1

0
f(u, λ)du has an AR(∞)-representation of the form

Xt =
∞∑
j=1

ajXt−j + Σ1/2Zt, (3.7)

where {Zt}t∈Z denotes a sequence of independent d-dimensional N (0, Id) distributed random

variables, Σ ∈ IRd×d is positive definite and (aj)j∈N is a sequence of d×d matrices satisfying

det
(
Id −

∞∑
j=1

zjaj

)
6= 0 for |z| ≤ 1 and

∞∑
j=0

|j|‖aj‖∞ <∞.

The main motivation of the resampling procedure consists in the fact, that every stationary

process can be approximated by an AR(p) model if the order p of the autoregressive process

is sufficiently large. Therefore we choose an increasing sequence p = p(T ) → ∞ as T → ∞

and approximate the process defined in (3.7) by an AR(p) model with coefficents

(a1,p, ...,ap,p) := argmin
b1,p,...,bp,p

tr
(
E[(Xt −

p∑
j=1

bj,pXt−j)(Xt −
p∑
j=1

bj,pXt−j)
T ]
)

(3.8)

and innovations with covariance matrix Σp = E[(Xt−
∑p

j=1 aj,pXt−j)(Xt−
∑p

j=1 aj,pXt−j)
T ].

To be precise let (â1,p, ..., âp,p) denote a ’consistent’ estimator of the minimizer in (3.8) (the

precise assumptions regarding this estimator are specified in Theorems 3.5 and 3.6 below

and are, for example, fulfilled for the Yule Walker estimators). The bootstrap replicates D̂∗T

of D̂T are then generated as follows:

Algorithm 3.4 (autoregressive bootstrap) We simulate data from the model
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X∗t,T =

p∑
j=1

âj,pX
∗
t−j,T + Σ̂1/2

p Z∗j , (3.9)

where Σ̂p = 1
T−p

∑T
j=p+1(ẑj − z̄T )(ẑj − z̄T )T , the random variables Z∗j are independent

N (0, Id) distributed, ẑj := Xj,T−
∑p

i=1 âi,pXj−i,T (j = p+1, ..., T ) and z̄T := 1
T−p

∑T
j=p+1 ẑj.

The bootstrap statistic D̂∗T is defined as the statistic D̂T in (3.3), where the observations

{Xt,T}t=1,...,T are replaced by its bootstrap replicates {X∗t,T}t=1,...,T .

To motivate this procedure note that under the null hypothesis of stationarity the process

{Xt}t=1,...,T and {Xt,T}t=1,...,T have the same spectral density g(λ) =
∫ 1

0
f(u, λ)du = f(λ).

Now {Xt}t=1,...,T is approximated by an AR(p) process and {X∗t,T}t=1,...,T mimics this ap-

proximation, which follows from definition (3.8) and the consistency of the estimators âj,p.

Therefore the process {X∗t,T}t=1,...,T exhibits similar spectral properties as the stationary pro-

cess {Xt}t=1,...,T . Consequently, under the null hypothesis of stationarity, the distribution

of D̂∗T is ’close’ to the distribution of the random variable D̂T . On the other hand, under

the alternative, D̂∗T corresponds to a stationary process with spectral density g, which by

Theorems 3.1 and 3.2 implies D̂∗T = OP (N−γ) for any γ ∈ (0, 1/2) while D̂T becomes larger

than some positive constant, which implies consistency of a bootstrap test. These heuristic

arguments are made rigorous by the following statements.

Theorem 3.5 Let the assumptions of Theorem 3.1 and Assumption 3.3 be fulfilled. Fur-

thermore, suppose that the following conditions on the growth rate of p = p(T ), the estimates

âj,p and the true AR parameters aj, aj,p defined in (3.7) and (3.8) are satisfied:

i) There exist sequences pmin(T ) and pmax(T ) such that the order p of the fitted autore-

gressive process satisfies p = p(T ) ∈ [pmin(T ), pmax(T )] with pmax(T ) ≥ pmin(T ) → ∞

and p3
max(T )

√
log(T )/T = O(1).

ii) The estimators âj,p satisfy max1≤j≤p(T ) ||âj,p − aj,p||∞ = OP (
√

log(T )/T ). uniformly

with respect to p ∈ [pmin(T ), pmax(T )].

11



iii) The matrices Σ̂p and Σ satisfy ‖Σ̂p −Σ‖∞
P−→ 0.

Then, as T → ∞, we have {
√
ND̂∗T (v, ω)}(v,ω)∈[0,1]2 ⇒ {G(v, ω)}(v,ω)∈[0,1]2 conditionally on

X1,T , ..., XT,T , where G(v, ω) is the limiting Gaussian process introduced in Theorem 3.1.

Theorem 3.6 Let the assumptions of Theorem 3.5 be fulfilled where (i) is replaced by

p2
max(T )

√
log(T )/TN1+ε = o(1) and N1+ε/pmin(T ) = o(1). Then there exists a sequence of

Cd×d valued random processes {D̂∗T,a(v, ω)}(v,ω)∈[0,1] such that the following statements hold:

a) If K = 0 then for any T ∈ N: sup(v,ω)∈[0,1]2 ||D̂T (v, ω)||∞
D
= sup(v,ω)∈[0,1]2 ||D̂∗T,a(v, ω)||∞.

b) If K ≥ 0, then (as T →∞)

sup(v,ω)∈[0,1]2 ||D̂∗T (v, ω)||∞ − sup(v,ω)∈[0,1]2 ||D̂∗T,a(v, ω)||∞

E

(
sup(v,ω)∈[0,1]2 ||D̂∗T,a(v, ω)2||∞

)−1/2
= oP (1). (3.10)

c) For any 0 < γ < 1
2
: Nγ sup(v,ω)∈[0,1]2 ||D̂∗T,a(v, ω)||∞ = oP (1).

Note that all assumptions of Theorems 3.5 and 3.6 are rather standard in the framework of

AR(∞) bootstrap [see for example Berg et al. (2010) or Kreiss et al. (2011) among others]

and that (ii) is proved in Hannan and Kavalieris (1986) for the least squares and the Yule-

Walker estimators. In order to obtain a consistent level α test for the null hypothesis (2.5),

we now proceed as follows:

Step I (testing for structural breaks) We calculate the test statistic D̂T defined in (3.3)

and fit an AR(p) model to the observed data {X1,T , ...,XT,T}. In the next step Algorithm

3.4 with the corresponding estimates (â1,p, ..., âp,p, Σ̂p) is used to calculate the bootstrap

sample {D̂∗T,1, ..., D̂∗T,B} and the null hypothesis of no break points is rejected, whenever

D̂T > D̂∗T,(b(1−α)cB), (3.11)

where D̂∗T,(b(1−α)cB) is an estimate for the (1 − α)-quantile of the distribution of D̂T (here

D̂∗T,(1), ..., D̂
∗
T,(B) denotes the ordered bootstrap sample).
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Theorem 3.5 and the continuous mapping theorem imply that the test constructed in (3.11)

has asymptotic level α under the assumption N/T → 1/c. On the other hand in the case

N/T → 0 it can be show by application of Theorem 3.6 that the Mallows distance between

the random variables
sup

(v,ω)∈[0,1]2
||D̂T (v, ω)||∞

/√
E sup

(v,ω)∈[0,1]2
||D̂T (v, ω)2||∞,

sup
(v,ω)∈[0,1]2

||D̂∗T (v, ω)||∞
/√

E sup
(v,ω)∈[0,1]2

||D̂∗T (v, ω)2||∞

converges to zero in probability. Therefore similar arguments as in Paparoditis (2010) in-

dicate that the bootstrap test has asymptotic level α if N/T → 0. Moreover, the test is

consistent under the alternative in both cases, since it follows from Theorem 3.5 and 3.6

that the bootstrap statistic sup(v,ω)∈[0,1]2 ||D̂∗T (v, ω)||∞ converges to zero in probability, while

sup(v,ω)∈[0,1]2 ||D̂T (v, ω)||∞ becomes larger than some positive constant under the alternative

due to Theorem 3.1b) and 3.2b). The finite sample properties of this test will be investigated

in Section 6.

Remark 3.7 If the statistic in (3.3) is replaced by sup
v∈[0,1]

||D̂T (v, 1)||∞, a similar analysis

can be performed and we obtain as a special case a test for the null hypothesis that the

covariance matrix of the process is constant over time as considered in Aue et al. (2009).

Moreover, several other interesting hypotheses can be included by choosing an appropriate

function φ(u, λ) : [0, 1]× [0, π]→ Cd×d and considering functionals of the form

1

e

(∫ ωπ

0

∫ v+e

v

φ(u, λ)f(u, λ)dudλ−
∫ ωπ

0

∫ v

v−e
φ(u, λ)f(u, λ)dudλ

)

instead of D(v, ω). For example, the choice φ(u, λ) = Id exp(−iλk) yields a test for con-

stancy of the covariance function at a specific lag k ∈ IN . A hypothesis of this type is of

interest if the statistician knows in advance that only certain lags influence the dependency

structure of the underlying process.
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Remark 3.8 Statistics with a similar structure as D̂T (v, ω) have been studied under dif-

ferent conditions by several authors in the past and some references can be found in Giraitis

and Leipus (1990). These authors consider one dimensional time series and the periodogram

I(k1,...,k2)(λ) of the data Xk1 , Xk1+1, ..., Xk2 . In order to test for a change point they propose

to compare the estimators F̂k(ω) =
∫ ωπ

0
I(1,...,k)(λ) and F̂ ∗T−k(ω) =

∫ πω
0

I(k+1,...,T )(λ)dλ by

calculating supk∈{1,...,T} supω∈[0,1] |F̂k(ω) − F̂ ∗T−k(ω)|. Note that this procedure can detect at

most one break point and that these authors show that an appropriately standardized test

statistic converges to some non degenerate limit whose quantiles are, however, unknown.

These results are of great importance to understand the theoretical properties of such statis-

tics. On the other hand, the construction of a computable level α test based on statistics of

this type is an open and very challenging problem.

Remark 3.9 We emphasize that the assumption of Gaussianity in this (and the following)

section is merely imposed to simplify technical arguments in the proofs. In particular it is

straightforward (but cumbersome) to extend the results to a more general class of linear

processes. In fact, the proof of Theorem 3.1 can be modified to address for non Gaussian

innovations. The only difference appears in the bootstrap procedure because Gaussian in-

novations are not an appropriate choice of the bootstrap replicates Z∗t in Algorithm 3.4.

In general one has to employ replicates Z∗t which mimic the fourth cumulant of the true

underlying innovation process [see Kreiss and Paparoditis (2012) for more details].

4 Detecting the number and location of break points

If structural breaks have been detected by the test (3.11) it is of futher interest to estimate

the number and location of possible break points and to identify the components responsible

for these changes in the regime. In the following discussion we will develop a procedure

which consists of two further steps and detects simultaneously the number, location and

corresponding components of multiple structural breaks. In the second step we estimate

14



(shrinking if N/T → 0) sets, which may contain potential break points. Roughly speaking

these sets contain all points where the components of the spectral density estimate indicate

a structural break. In the third step these sets are reduced to identify the relevant struc-

tural breaks and corresponding components which are responsible for these breaks. For this

purpose we recall the definition (3.2), choose some constant 0 < γ < 1/2 (a recommendation

for this choice will be given in Section 5) and proceed as follows.

Step II (identification of sets containing break points) We consider a point v ∈

{N
T
, N+1

T
, ..., T−N

T
} as a candidate for a structural break in the component (a, b) if the in-

equality

Nγ sup
ω∈[0,1]

| ˆ[DT (v, ω)]a,b| > εT,a,b(v) (4.1)

holds, where εT,a,b(v) is a threshold satisfying lim inf
T→∞

εT,a,b(v) ≥ C > 0 for some constant

C and εT,a,b(v) = o(Nγ) uniformly in v ∈ [0, 1]. A data driven rule for the choice of the

threshold εT,a,b(v) with good finite sample properties will be given in Section 5.

The decision rule (4.1) identifies subsets R1, ..., RKT ⊂ {N/T, ...., 1 − N/T} where possible

break points in the components of the spectral density matrix may occur. The following

example illustrates the second step of the procedure.

Example 4.1 We consider the bivariate model

Xt,T =
4∑
j=1

1( j−1
4
T, j

4
T ](t)ΘjZt, (4.2)

where the matrices Θ1,Θ2,Θ3,Θ4 are defined by

Θ1 :=

(
1 0

0 1

)
Θ2 :=

(
2 0

0 1

)
Θ3 :=

(
2 0

0 2

)
Θ4 :=

(√
2
√

2

0 2

)

and {Zt}t∈Z is a two dimensional Gaussian white noise process. The spectral density f

of a bivariate time series model (4.2) exhibits 3 break points, where the first change only

involves the first component [f ]1,1, the second only concerns the component [f ]2,2 and the

third break point leaves the compontens [f ]1,1 and [f ]2,2 unchanged but appears in the cross
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Figure 1: Simulated data from the model (4.2), where T = 2048. The vertical dashed lines
denote the true break points in the univariate time series.

spectrum [f ]1,2 and [f ]2,1. Figure 1 contains a plot of a typical set of data of length T = 2048

generated by model (4.2), where the dashed vertical lines indicate the true break points in

the univariate time series. Note that the third break point only corresponds to a change in

the dependency structure of the two univariate data sets. Figure 2 shows the four plots of the

functions v 7→ Nγ sup
ω∈[0,1]

|[D̂T (v, ω)]a,b|, a, b ∈ {1, 2}, (solid lines), where N = 256, γ = 0.49.

In each component we added a plot of the threshold level v 7→ εT,a,b(v), a, b ∈ {1, 2} (broken

lines), which will be formally defined in equation (5.1) of the following section. It is evident

that for each component (a, b) the test statistic exceeds the level εT,a,b(v) in a neighborhood

of the break point. For the simulated scenario we obtain the sets R1 = { 289
2048

, ..., 606
2048
},

R2 = { 802
2048

, ..., 1140
2048
}, R3 = {1427

2048
, ..., 1715

2048
} of potential break points. Note that the local

maximum of the function Nγ sup
ω∈[0,1]

|[D̂T (v, ω)]a,b| is rather close to the true change point.

The following result shows that for an increasing sample size the subsets R1, ..., RKT are

contained in neighborhoods of radius of N
T

of the ’true’ break points, that is
KT⋃
j=1

Rj ⊂
⋃

a,b∈{1,...,d}

IT,a,b(b1, ..., bK),
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Figure 2: Plots of the functions v 7→ Nγ sup
ω∈[0,1]

∣∣[D̂T (v, ω)]a,b
∣∣ (solid lines) and v 7→ εT,a,b(v)

(a, b = 1, 2) (broken lines) with vertical dashed lines at the true break points.

where
IT,a,b(b1, ..., bK) :=

K⋃
j=1

supω |[D(bj ,ω)]a,b|>0

{bbjT c −N
T

, ...,
bbjT c+N

T

}
. (4.3)

Theorem 4.1 Assume that condition (3.4) is satisfied and that the sequence N satisfies one

of the following conditions:

(1) There exists some ε > 0 such that N →∞, T ε/N → 0 and N/T → 0.

(2) There exists some constant c ≥ 2/ min
i=1,...,K−1

|bi − bi+1| such that N/T → 1/c.

Furthermore for all a, b ∈ {1, ..., d}, v ∈ [0, 1] and γ ∈ (0, 1
2
) let (εT,a,b(v))T∈IN denote a

sequence satisfying εT,a,b(v) = o(Nγ) and lim inf
T→∞

inf
v∈[0,1]

εT,a,b(v) ≥ C > 0 for some constant

C. Then the detection rule (4.1) is accurate in the following sense:

a) The probability that the decision rule (4.1) indicates a structural break at a rescaled

time point, which has a distance of at least N
T

from each of the break points b1, ..., bK,

vanishes asymptotically, that is
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P
( ⋃
a,b∈{1,...,d}

⋃
v∈ĪT,a,b(b1,...,bK)

{
Nγ sup

ω∈[0,1]

|[D̂T (v, ω)]a,b| > εT,a,b(v)
})

T→∞−−−−→ 0, (4.4)

where ĪT,a,b(b1, ..., bK) = {N
T
, N+1

T
, ..., T−N

T
} \ IT,a,b(b1, ..., bK).

b) The probability that the procedure detects all structural breaks converges to one, that is

P
( ⋂
v∈{b1,...,bK}

⋂
(a,b)∈B(v)

{
Nγ sup

ω∈[0,1]

|[D̂T (v, ω)]a,b| > εT,a,b(v)
})

T→∞−−−−→ 1, (4.5)

where B(v) := {(a, b) ∈ {1, ..., d}2| supω∈[0,1] |[D(v, ω)]a,b| > 0}.

Recall that we use the decision rule (4.1) to identify sets of possible break points. By

Theorem 4.1 it follows with probability converging to 1 that these sets are contained in the

(shrinking if N/T → 0) neighborhoods { bbjT c−N
T

, ...,
bbjT c+N

T
} of those points bj, for which

there is at least one change in one of the components of the spectral density matrix. As

demonstrated in Example 4.1 the inequality (4.1) is usually satisfied in a neighborhood of

the break point. Consequently, for a finite sample size, the number of possible change points

detected by (4.1) is usually much larger than the true number K ∈ IN . To address this

issue these sets are further reduced in the third step of the procedure. As a final result we

obtain estimators of the number and the location of structural breaks. The basic idea is

very simple: For a certain set Rj of points in {N/T, ..., 1−N/T} satisfying (4.1) for at least

one pair (a, b) ∈ {1, ..., d}2 we identify a point b̃ ∈ Rj for which the local deviation from

stationarity is maximal and then remove all points of the interval [b̃− N
T
, b̃+ N

T
] from the set

Rj. The detailed description of this idea, which has to be iterated, is described below.

Step III (localization of structural breaks)

(1) Let K̂ denote the number of elements v ∈ {N
T
, N+1

T
, ..., T−N

T
} which fulfill (4.1) for at

least one component (a, b) ∈ {1, ..., d}2, denote the corresponding elements by b̂1, ..., b̂K̂

and define the sets B̂P := {b̂1, ..., b̂K̂} and B̂D = ∅ of potential break points and

detected break points, respectively.

(2) If the set B̂P is not empty add the element b̃ ∈ B̂P to the set B̂D for which the
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statistic sup(a,b)∈{1,...,d}2( sup
ω∈[0,1]

Nγ|[D̂T (b̃, ω)]a,b) is maximal and replace the set B̂P by

B̂P\[b̃− N
T
, b̃+ N

T
].

(3) Repeat step (2) until BP = ∅ and redefine K̂ = |B̂D| and (b̂1, ..., b̂K̂) as the elements

of B̂D such that b̂i < b̂i+1 for i = 1, ..., K̂ − 1.

Note that in step (2) of the above procedure we pick the element from B̂P for which a change

in the spectral density matrix seems to be most noticable. If K̂ break points b̂1, ..., b̂K

have been found, it is (as mentioned above) of further interest to determine the nature

of each detected structural break, i.e. to identify the components of the spectral density

matrix, which exhibit a change at the specific points in time. Such a refined analysis can be

undertaken by considering a change in the component (a, b) of the spectral density matrix

f ∈ Cd×d at the point b̂i as relevant if the inequality Nγ sup
ω∈[0,1]

∣∣[D̂T (b̂i, ω)]a,b
∣∣ > εT,a,b(b̂i)

holds.

Example 4.2 In order to illustrate this step we continue the discussion of Example 4.1

where the sets R1, R2 and R3 of potential break points were identified. Therefore at the

beginning of Step III the set of possible break points is given by B̂P = R1 ∪ R2 ∪ R3 while

the set of determined break points satisfies B̂D = ∅. In the first step we add the element

b̃ = 511
2048

to B̂D and then remove all elements, which do not have a distance of at least

N/T = 256
2048

from b̃ = 511
2048

, from the set B̂P . This leaves the set B̂P = R2 ∪ R3. In the next

iteration we add the element b̃ = 1537
2048

to B̂D and reduce the set B̂P to B̂P = R2. In the

last step we add the point b̃ = 1026
2048

and obtain B̂D = { 511
2048

, 1026
2048

, 1537
2048
} and reduce the set B̂P

accordingly. At this point the procedure terminates because B̂P = ∅ and yields K̂ = 3 as an

estimator for the number of break points. The locations of the break points are estimated

as (b̂1, b̂2, b̂3) = ( 511
2048

, 1026
2048

, 1537
2048

). Thus in this example all break points are detected and the

respective components of the spectral density matrix f responsible for these changes are

identified as well.

Theorem 4.1 implies that K̂ converges to K in probability and that the same statement also
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holds for the estimated break points b̂1, ..., b̂K̂ , that is

b̂j
P−→ bj (j = 1, ..., K), (4.6)

where b1, ..., bK denotes the true locations of the break points. In the case (1) of shrinking

relative size of the blocklength N/T → 0, the property (4.6) simply follows from the fact

that the diameter of the sets Rj converges to zero. For sequences N which satisfy condition

(2), consistency follows from the property

Nγ sup
(v,ω)∈[0,1]2

‖D̂T (v, ω)−DN,T (v, ω)‖∞ = oP (1), (4.7)

where DN,T (v, ω) := T
N

(
∫ ωπ

0

∫ v+N/T

v
f(u, λ)dudλ −

∫ ωπ
0

∫ v
v−N/T f(u, λ)dudλ). This can be

shown by similar arguments as given in the proof of Theorem 3.1 and the fact that the de-

terministic sequence D̄N,T (v) := sup
ω∈[0,1]

‖DN,T (v, ω)‖ attains local maxima at the true break

points bj as T →∞. In addition, Theorem 4.1 also shows that the refined analysis described

in the previous paragraph consistently identifies the components where the structural breaks

are present. This means that the procedure is able to detect the ’true’ number, locations and

components responsible for the breaks with a probability converging to one as the sample

size increases. We will give data driven rules for the choice of the regularization parameters

in Section 5 and investigate the finite sample properties of the procedure in Section 6.

5 Data driven regularization

The proposed test for structural breaks and the corresponding localization method depend

on the choice of several regularization parameters. In this section we will present guidelines

for a data driven choice of these parameters which from a theoretical point of view satisfy

the assumptions for the asymptotic theory discussed in the previous sections and from a

practical point of view, yield good results for finite samples (see the examples of the follow-

ing section).
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We begin with the choice of γ, where one faces a tradeoff in practical applications. Roughly

speaking large values of γ ∈ (0, 1
2
) tend to increase the number K̂ of estimated break points.

This property is of practical importance for example if it is desirable to avoid an underesti-

mation of the true number of break points. In our simulation study we follow this path (i.e.

we want to be sure to detect all underlying change points) and choose γ = 0.49. This value

leads to satisfactory results in all investigated scenarios (see Section 6 for more details) and

is therefore recommended.

For the choice of the threshold εT,a,b(v) in (4.1) we note that it follows by similar calculations

as given in the proof of Theorem 3.1 that the variance of ˆ[DT (v, ω)]a,b satisfies

lim
T→∞
N/T→c

Var(
√
N [D̂T (v, ω)]a,b) =

1

2π

∫ πω

0

(
[f(v − 1

2c
, λ)]aa[f(v − 1

2c
, λ)]bb

+[f(v +
1

2c
, λ)]aa[f(v +

1

2c
, λ)]bb + |[f(v − 1

2c
, λ)]ab|2 + |[f(v +

1

2c
, λ)]ab|2

)
dλ.

Consequently, for fixed v, ω, the asymptotic local variance can be easily estimated on a block

of length 2N by MT,a,b(v, ω) = 1
N

∑bωNc
k=1 [I2N(v, λk,2N)]aa[I2N(v, λk,2N)]bb, where λk,2N :=

2πk/2N . Similar arguments as given in the proof of Theorem 3.1 yield that Nγ[D̂T (v, ω)]a,b

and Nγ[D̂T (v′, ω′)]a,b are asymptotically independent whenever v 6= v′. Motivated by hard

thresholding [see Fan (1994)] we recommend

εT,a,b(v) =

√
2MT,a,b(v, 1) log

(d(d+ 1)T

2N

)
, (5.1)

where d denotes the dimension of the time series under consideration. Note that under the

condition inf
u∈[0,1]

min
i∈{1,...,d}

[f(u, λ)]ii > 0 it follows that lim inf
T→∞

εT,a,b(v) ≥ C > 0 for all v ∈ [0, 1],

a, b ∈ {1, ..., d} with probability converging to 1, and that the threshold sequence (5.1) thus

satisfies the conditions of Theorem 4.1.

The choice of the window length N has to reflect two contradicting objectives. On the one

hand, N should be chosen rather large, if there exists no change point or if there are only

a few structural breaks with long stationary segments in between. On the other hand, N
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should be chosen rather small if there exist many break points with small distances. This

basic idea is incorporated in the following rule.

Algorithm 5.1 (choice of the window length N) We consider a set of even integers,

say VT := {N1, ..., Nn} satisfying
√
T ≤ N1 < N2 < . . . < Nn ≤ T 5/6 and determine for each

N ∈ VT the number K̂T (N) of break points detected by the algorithm of Step III. We define

i∗ := sup{i ∈ {2, ..., n(T )}|K̂T (Ni−1) ≤ K̂T (Ni)} (here sup ∅ = −∞), N∗ = Ni∗ if i∗ ≤ n(T )

and N∗ = Nn(T ) if i∗ = −∞ and use N = 2N∗ for the test of structural breaks and N = N∗

for the estimation of K and the localization of the break points.

Algorithm 5.1 employs the detection method described in Section 4 for every N ∈ VT and

selects N∗ as the largest N ∈ VT for which there is no additional break point detected for

the next smaller N ∈ VT . Note also that the recommended choice of N is different for step

I and steps II, III of the procedure. This recommendation is motivated by the following

observation. If the distance between two consecutive break points is m, then one should use

N = m in step I, while the ’best’ window length would be N = m/2 in step II [because

we assume that the distance between two consecutive change points is at least 2/c]. In the

numerical investigations we additionally restrict ourselves to window lengths which equal a

power of two, that is we consider n = blog2(T 5/6)c− dlog2(
√
T )e+ 1 and Ni = 2dlog2(

√
T )e−1+i

for i = 1, ..., n. This choice allows for an application of the FFT algorithm in the calculation

of the local periodogram which yields a significant reduction in computational time.

Finally we select the order p for the autoregressive bootstrap as the minimizer of the AIC

criterion, which is defined by

p̂ = argminp
2π

T

T/2∑
k=1

(
log(det[fθ̂(p)(λk,T )]) + tr[(fθ̂(p)(λk,T ))−1IT (λk,T )]

)
+ p/T

in the context of stationary processes [see Whittle (1951)]. Here, fθ̂(p) is the spectral density

of the fitted stationary AR(p) process and IT is the usual periodogram calculated under the

assumption of stationarity with the corresponding Fourier frequencies λk,T = 2πk/T .
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6 Finite sample properties

In this section we investigate the finite sample properties of the proposed procedure. We

also provide a comparison with competing methods and illustrate the methodology in a

data example. The regularizing parameters are chosen as described in the previous section.

Throughout this paragraph {Zt}t∈Z always denotes a standard normal distributed White

Noise sequence.

We begin with a study of the power of the bootstrap test, where 1000 and 500 simulation runs

are used for estimating the rejection probabilities under the null hypothesis and alternative,

respectively, and 300 bootstrap replications are performed for the test (3.11). In order to

investigate the approximation of the nominal level we consider the bivariate MA(1) and

AR(1) models

Xt = Zt +

(
θ 0.2

0.2 θ

)
Zt−1 (6.1)

Xt =

(
φ 0.2

0.2 φ

)
Xt−1 +Zt. (6.2)

The simulated rejection frequencies for different values of the parameters θ and φ are given

in Table 1 and we observe that the nominal level is underestimated for small sample sizes,

but the approximation becomes better with increasing sample size. Next we study the power

H0: Model (6.1) H0: Model (6.2)

θ = 0.5 θ = −0.5 φ = 0.5 φ = −0.5

T 5% 10% 5% 10% 5% 10% 5% 10%

128 0.018 0.049 0.019 0.047 0.021 0.061 0.020 0.059

256 0.025 0.054 0.029 0.063 0.031 0.070 0.031 0.068

512 0.043 0.081 0.039 0.088 0.034 0.075 0.040 0.083

Table 1: Simulated nominal level of the test (3.11) for the models (6.1) and (6.2) with
different choices of θ, φ and T .

of the test (3.11) and compare it with the CUSUM type procedure proposed by Aue et al.

(2009). This procedure is specifically designed to test for constancy of the covariance matrix

Cov(Xt,Xt). We consider three bivariate models
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Xt,T =
K∑
l=0

1[bblT c+1,bbl+1T c](t)

(
φl 0.1

0.1 φl

)
Xt−1,T +Zt (6.3)

Xt,T =
K∑
l=0

1[bblT c+1,bbl+1T c](t)

(
θl 0.1

0.1 θl

)
Zt−1 +Zt (6.4)

Xt,T =
K∑
l=0

1[bblT c+1,bbl+1T c](t)

(
σl 0.2

0.2 σl

)
Zt (6.5)

for different choices of the number K and location b = (b1, ..., bK) of the break points

and parameters Σ := (σ0, ..., σK), Φ := (φ0, ..., φK) and Θ := (θ0, ..., θK). The results are

summarized in Table 2.

T = 128 T = 256 T = 512

b parameter (3.11) Aue (3.11) Aue (3.11) Aue

(6.3)
( 1
4 ,

2
3 ,

3
4 ) Φ = (0.5,−0.5, 0.5,−0.5) 0.072 0.046 0.306 0.059 0.812 0.090

( 1
2 ) Φ = (0.5,−0.5) 0.078 0.047 0.234 0.146 0.702 0.337

(6.4)
( 1
4 ,

2
3 ,

3
4 ) Θ = (1,−1.5, 1,−1.5) 0.284 0.066 0.544 0.119 0.926 0.282

( 1
2 ) Θ = (1,−1.5) 0.258 0.257 0.542 0.620 0.850 0.965

(6.4)
( 1
4 ,

2
3 ,

3
4 ) Σ = (1, 2, 1, 0.5) 1.000 0.213 1.000 0.989 1.000 1.000

( 1
2 ) Σ = (1, 2) 0.864 0.818 0.990 1.000 1.000 1.000

∅ Σ = (1) 0.026 0.033 0.029 0.048 0.041 0.047

Table 2: Empirical rejection frequencies of the test (3.11) and the CUSUM type procedure
of Aue et al. (2009). The nominal level is α = 0.05 and the models are defined in (6.3),
(6.4) and (6.5), where different choices of break points b = (b1, ..., bK) and AR-parameters
Φ = (φ0, ..., φK), MA-parameters Θ = (θ0, ..., θK) and standard deviations Σ = (σ0, ..., σK)
are considered.

We observe from the upper part of Table 2 that in the AR-model (6.3) the test proposed

in this paper significantly outperforms the CUSUM method of Aue et al. (2009) in all cases

under consideration. In the MA-model (6.4) the new test yields a substantially larger power

if there exist multiple break points while the power is slightly smaller if there exists only one

break point.

In the lower part of Table 2 we summarize the simulated power of the test (3.11) and the

method proposed by Aue et al. (2009) for various configurations of the model (6.5). It can

be observed that the new method significantly outperforms the method of Aue et al. (2009)
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for models with more than one break for small sample sizes. For the configurations featuring

one break point we observe that the new method performs similarly for large sample sizes,

while providing slightly better performance for small sample sizes. These observations are

remarkable since model (6.5) defines a process with switching variance and the test of Aue

et al. (2009) is particularly designed for detecting this structure. Since our approach is able

to detect a much wider class of alternatives one might expect a loss in power compared to a

procedure which is specifically constructed to test for such changes. Surprisingly, this does

not seem to be the case.

Next we illustrate the performance of the procedure for the localization of the break points.

For this purpose we simulated data from model (4.2) and applied the new method to detect

and estimate the location of the change points. We repeated this 100 times and for each

trial we obtained an estimate b̂ = (b̂1, ..., b̂K̂) of the location b = (b1, ..., bK). The histograms

in Figure 3 present the obtained empirical distribution of the estimated break points for

different sample sizes T . We observe that all histograms are centered at the true break

points and that the variation decreases with increasing sample size.

We conclude this section with an illustration of the procedures in a multivariate data ex-

ample. For this purpose we investigate five stock ETFs (Exchange Traded Funds), namely

Materials Select Sector SPDR (XLB), Consumer Staples Select Sector SPDR (XLP), Util-

ities Select Sector SPDR (XLU), Financial Select Sector SPDR (XLF) and Energy Select

Sector SPDR (XLE). In Figure 5 the five dimensional time series {Xt}t=1,...,700 of the daily

log returns corresponding to the five ETFs between February 2010 and November 2012 is

displayed. The new method yields the following results: The test (3.11) for structural breaks

is highly significant and rejects the null hypothesis with a p-value of zero. In a second step we

use the detection procedure with N = 64 and detect four break points at dates 29/04/2010,

03/08/2010, 03/08/2011, and 01/12/2011. We then also applied the refined analysis in

order to identify the components where the change point is present. The results are dis-

played in Figure 4 and 5. Note that at the third break point 03/08/2011 each component
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Figure 3: Histograms for the empirical distribution of b̂ = (b̂1, ..., b̂K̂) based on 100 simulation
runs of model (4.2) for sample sizes T ∈ {512, 1024, 2048}.

Nγ sup
ω∈[0,1]

∣∣[D̂T (b̂i, ω)]a,b
∣∣ surpasses the respective critical threshold εa,b,T (b̂i) and we conclude

that each component of the spectral density exhibits a change point. On the other hand, for

the other three break points only some entries of this matrix exceed the threshold sequence

and we therefore detect a structural break only in some components of the spectral density

matrix.
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Figure 5: The log returns of the sector ETFs. In each plot the vertical lines mark the
estimated break points of the univariate process.
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Chen, Y., Härdle, W., and Pigorsch, U. (2010). Localized realized volatility modeling.

Journal of the American Statistical Association, 105(492):1376–1393.

Choi, E. and Hall, P. (2000). Bootstrap confidence regions computed from autoregressions

of arbitrary order. Journal of the Royal Statistical Society, Series B, 62:461–477.

Dahlhaus, R. (1988). Empirical spectral processes and their applications to time series

analysis. Stochastic Process and their Applications, 30:69–83.

Dahlhaus, R. (1997). Fitting time series models to nonstationary processes. Annals of

Statistics, 25(1):1–37.

Davis, R. A., Lee, T. C. M., and Rodriguez-Yam, G. A. (2006). Structural break estimation

for nonstationary time series models. Journal of the American Statistical Association,

101(473):223–239.

29



Eichler, M. (2008). Testing nonparametric and semiparametric hypotheses in vector station-

ary processes. Journal of Multivariate Analysis, 99:968–1009.

Fan, J. (1994). Test of significance based on wavelet thresholding and neyman’s truncation.

Journal of the American Statistical Association, 91(434):674–688.

Fryzlewicz, P. (2007). Unbalanced haar technique for nonparametric function estimation.

Journal of the American Statistical Association, 102(480):1318–1327.

Fryzlewicz, P. (2012). Wild binary segmentation for multiple change-point detection. http:

//stats.lse.ac.uk/fryzlewicz/wbs/wbs.pdf.

Fryzlewicz, P., Sapatinas, T., and Subba Rao, S. (2006). A Haar-Fisz technique for locally

stationary volatility estimation. Biometrika, 93:687–704.

Giraitis, L. and Leipus, R. (1990). Functional clt for nonparametric estimates of the spec-

trum and change-point problem for a spectral function. Lithuanian Mathematical Journal,

30(4):302–322.

Goncalves, S. and Kilian, L. (2007). Asymptotic and bootstrap inference for ar(∞) processes

with conditional heteroskedasticity. Econometric Reviews, 26:609–641.

Hannan, E. and Kavalieris, L. (1986). Regression, autoregression models. Journal of Time

Series Analysis, 7(1):27–49.

Inclan, C. and Tiao, G. C. (1994). Use of cumulative sums of squares for retrospective detec-

tion of changes of variance. Journal of the American Statistical Association, 89(427):913–

923.

James, B., James, K. L., and Siegmund, D. (1987). Tests for a change-point. Biometrika,

74(1):71–83.

Jansen, B., Hasman, A., and Lenten, R. (1981). Piecewise eeg analysis: An objective evalu-

ation. International Journal of Bio-Medical Computing, 12:12–27.

30



Jolley, L. (1961). Summation of Series.

Kreiss, J.-P. (1988). Asymptotic statistical inference for a class of stochastic processes.

Habilitationsschrift, Fachbereich Mathematik, Universität Hamburg.

Kreiss, J. P. and Paparoditis, E. (2012). The hybrid wild bootstrap for time series. to appear

in: Journal of the American Statistical Association.

Kreiss, J.-P., Paparoditis, E., and Politis, D. N. (2011). On the range of the validity of the

autoregressive sieve bootstrap. To appear in: Annals of statistics.

Lavielle, M. and Ludena, C. (2000). The multiple change-points problem for the spectral

distribution. Bernoulli, 6(5):845–869.

Lee, S., Ha, J., Na, O., and Na, S. (2003). The cusum test for parameter change in time

series models. Scandinavian Journal of Statistics, 30:781–796.

Lee, S. and Park, S. (2001). The cusum of squares test for scale changes in infinite order

moving average processes. Scandinavian Journal of Statistics, 28(4):625–644.

Newey, W. K. (1991). Uniform convergence in probability and stochastic equicontinuity.

Econometrica, 59(4):1161–1167.

Ombao, H. C., Raz, J. A., von Sachs, R., and Malow, B. A. (2001). Automatic statisti-

cal analysis of bivariate nonstationary time series. Journal of the American Statistical

Association, 96(454):543–560.

Paparoditis, E. (2010). Validating stationarity assumptions in time series analysis by rolling

local periodograms. Journal of the American Statistical Association, 105(490):839–851.

Preuß, P. and Vetter, M. (2012). Discriminating between long-range dependence and non-

stationarity. http://www.ruhr-uni-bochum.de/imperia/md/content/mathematik3/

publications/longmemory24092012.pdf.

31



Preuß, P., Vetter, M., and Dette, H. (2012). A test for stationarity based on empirical

processes. to appear in Bernoulli.

Sen, A. and Srivastava, M. S. (1975). On tests for detecting change in mean. Annals of

Statistics, 3(1):98–108.

Starica, C. and Granger, C. (2005). Nonstationarities in stock returns. The Review of

Economics and Statistics, 87:503–522.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical Processes.

Springer, Berlin.

Vostrikova, L. J. (1981). Detecting ’disorder’ in multidimensional random processes. Soviet

Mathematics Doklady, 24:55–59.

Whittle, P. (1951). Hypothesis Testing in Time Series Analysis. Uppsala: Almqvist and

Wiksell.

7 Appendix I: Sketch of the proofs

For the sake of brevity and in order to improve the readability we restrict ourselves to the

main ideas of the proofs in this section and present all technical details in an additional

Appendix thereafter.

Proof of Theorem 3.1 For notational convenience we restrict ourselves to the case d = 1,

since the more general case is treated completely analogously using linearity arguments and

the independence of the components of Zt. Throughout this chapter C denotes a universal

constant, which does not depend on the sample size and can vary from line to line in the

calculations.
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Proof of part a): For the proof of (3.5) it is sufficient to show the following two claims: [see

Theorem 1.5.4 and 1.5.7 in van der Vaart and Wellner (1996)]:

(1) For every k ∈ IN and y1 := (v1, ω1), ..., yk := (vk, ωk) ∈ [0, 1] we have

√
N [D̂T (y1), ..., D̂T (yk)]⇒ [G(y1), ..., G(yk)]. (7.1)

(2) For every η, ε > 0 there exists a δ > 0 such that

lim
T→∞

P
(

sup
(y1,y2)∈[0,1]2:d2(y1,y2)<δ

N1/2|D̂T (y1)− D̂T (y2)| > η
)
< ε, (7.2)

where d2(y1, y2) denotes the euclidean distance between y1 = (v1, ω1) and y2 = (v2, ω2).

Proof of (7.1): The assertion follows if we are able to show that, for each k ∈ IN and

each y1 = (v1, ω1), ..., yk = (vk, ωk), all cumulants of the random vector [
√
ND̂T (yi)]i=1,...,k

converge to the corresponding cumulants of the vector [G(yi)]i=1,...,k. We thus have to show

for all y = (v, ω), y1, ..., yl ∈ [0, 1]2:

(i) E(
√
ND̂T (y)) = o(1).

(ii) Cov(
√
ND̂T (y1),

√
ND̂T (y2)) = Cov(G(y1), G(y2)) + o(1).

(iii) cum(
√
ND̂T (y1), ...,

√
ND̂T (yl)) = o(1).

For this purpose we define for y = (v, ω)

φy,T (j, λ) :=1
[0,

2πbωN/2c
N

]
(λ)
[
1{bu(v,T )T c+N/2}(j)− 1{bu(v,T )T c−N/2}(j)

]
, (7.3)

where the function u is defined by u(v, T ) = v if N/T ≤ v ≤ 1 − N/T , N/T if v < N/T ,

and 1−N/T if v > 1−N/T . This notation implies the representation

D̂T (y) =
1

N

T∑
j=1

N/2∑
k=1

φy,T (j, λk)IN(
j

T
, λk). (7.4)
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Additionally, we set DN,T (y) := T
N

(
∫ ωπ

0

∫ v+N/T

v
f(u, λ)dudλ −

∫ ωπ
0

∫ v
v−N/T f(u, λ)dudλ), and

start with a proof of

E

(√
N
(
D̂T (y)−DN,T (y)

))
= o(1), (7.5)

from which (i) follows directly because of DN,T (y) ≡ 0 under the null hypothesis [we treat

the more general case since (7.5) is also required in the proof of part b)]. By writing

ψl(t/T ) := Ψl(t/T ) we get (y = (v, ω))

E
(
D̂T (y)

)
=

1

2πN2

T∑
j=1

N/2∑
k=1

φy,T (j, λk)
N−1∑
p,q=0

e−iλk(p−q)
E(Xj−N

2
+1+pXj−N

2
+1+q)

=
1

2πN2

T∑
j=1

N/2∑
k=1

φy,T (j, λk)
∞∑

l,m=0

ψl(
j − N

2
+ 1 + p

T
)ψm(

j − N
2

+ 1 + q

T
)
N−1∑
p,q=0

e−iλk(p−q)

×E(Zj−N
2

+1+p−lZj−N
2

+1+q−m) (7.6)

and by using the identity E(ZiZj) = δij [here and throughout this paper δij denotes the

Kronecker symbol] we obtain that the restriction q = p − l + m has to hold such that the

respective summands in (7.6) do not vanish. If we furthermore define AT,1(v) := {bvT c −

N/2, bvT c+N/2}, we obtain for (7.6)

1

2πN2

∑
j∈AT,1(v)

N/2∑
k=1

φy,T (j, λk)
∞∑

l,m=0

N−1∑
p=0

0≤p−l+m≤N−1

×ψl(
j − N

2
+ 1 + p

T
)ψm(

j − N
2

+ 1 + p− l +m

T
)e−iλk(m−l)

=
1

2πN2

∑
j∈AT,1(v)

N/2∑
k=1

φy,T (j, λk)
∞∑

l,m=0

N−1∑
p=0

0≤p−l+m≤N−1

{
ψl(

j − N
2

+ 1 + p

T
)ψm(

j − N
2

+ 1 + p

T
)

+ ψl(
j − N

2
+ 1 + p

T
)
(
ψm(

j − N
2

+ 1 + p− l +m

T
)− ψm(

j − N
2

+ 1 + p

T
)
)}
e−iλk(m−l)

=: E1,T (y) + E2,T (y), (7.7)

where E1,T and E2,T are defined in an obvious manner. The assertion now follows from
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(ia) E1,T (y) = DN,T (y) +O(1/N).

(ib) E2,T (y) = o(1/
√
N)

which are established in Appendix II. The proof of (ii) and (iii) are also given in Appendix

II. 2

Proof of (7.2): Observing

√
ND̂T (y) =

1√
N

bωN/2c∑
k=1

IN(u(v, T ) +N/(2T ), λk)−
1√
N

bωN/2c∑
k=1

IN(u(v, T )−N/(2T ), λk)

=:
√
ND̂

(1)
T (y)−

√
ND̂

(2)
T (y), (7.8)

it is sufficient to show asymptotic stochastic equicontinuity for the processes

{
√
ND̂

(1)
T (y)}y∈[0,1]2 and {

√
ND̂

(2)
T (y)}y∈[0,1]2 . We only present the proof for the first sum-

mand in (7.8) and note that stochastic equicontinuity for the second term can be shown

analogously. With the notation φ
(1)
y,T (j, λ) := 1

[0,
2πbωN/2c

N
]
(λ)1{bu(v,T )×T c+N/2}(j), we obtain

the representation D̂
(1)
T (y) = 1

N

∑T
j=1

∑N/2
k=1 φ

(1)
y,T (j, λk)IN(j/T, λk). For yi = (vi, ωi) (i = 1, 2)

we define a semi-metric dT (y1, y2) :=
√
|ω2 − ω1|+ |bv1T c − bv2T c|/N on the set PT :=

{0, 1/T, 2/T, ..., 1−N/T} × {1/N, ..., 1− 1/N, 1}. This yields

∆δ,η := P( sup
yi∈[0,1]2

d2(y1,y2)<δ

√
N | D̂(1)

T (y1)− D̂(1)
T (y2)| > η) = P( sup

yi∈PT
d2(y1,y2)<δ

√
N |D̂(1)

T (y1)− D̂(1)
T (y2)| > η),

and it is easy to verify that, for a fixed δ > 0, there exists a δ′ > 0 [with δ′(δ)→ 0 as δ → 0]

such that

∆δ,η ≤ P( sup
yi∈PT :dT (y1,y2)<δ′

√
N |D̂(1)

T (y1)− D̂(1)
T (y2)| > η) (7.9)

is fulfilled if T is sufficiently large. So it suffices to prove that the probability on the right

hand side of (7.9) can be made arbitrarily small if T is sufficiently large. For this purpose

let C(u, dT ,PT ) denote the covering number of PT with respect to the semi-metric dT (·, ·)

and define the corresponding covering integral of PT by JT (κ) :=
∫ κ

0
[log

(
48C(u,dT ,PT )2

u

)
]2du.
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In Appendix II we establish the assertions

lim
κ→0

lim
T→∞

JT (κ) = 0, (7.10)

E
(
Nk/2

(
D̂

(1)
T (y1)− D̂(1)

T (y2)
)k) ≤ (2k)!CkdT

(
y1, y2

)k
(7.11)

for a constant C ∈ IR+ and all y1, y2 ∈ [0, 1]2 and even integers k ∈ IN . Therefore it follows,

by similar arguments as given in Dahlhaus (1988), that

P( sup
yi∈PT

dT (y1,y2)<δ′

√
N |D̂(1)

T (y1)− D̂(1)
T (y2)| > η) < ε

for T sufficiently large and sufficiently small δ′ = δ′(δ) > 0, which proves stochastic equicon-

tinuity. 2

Proof of part b): Under the alternative, there exist for all r ∈ {1, ..., K} an ωr such that

|D(br, ωr)| > 0. Note that, the proof of part a) does not rely on the property that the

functions ψl(u) are constant. In fact, only the treatment of the expectation [i.e. part (1) (i)]

is slightly easier if ψl(u) = ψl. However, in this case we proved the more general claim (7.5).

So, by following the proofs of (ii) and (iii) in the proof of part a) and employing (7.5), we

obtain N1/2
∣∣∣∣∣∣D̂T (y)−DN,T (y)

∣∣∣∣∣∣
∞

= OP (1), which directly yields the assertion. 2

Proof of Theorem 3.2: See Appendix II.

Proof of Theorem 3.5 As in the previous proof we restrict ourselves without loss of

generality to the case d = 1. Furthermore we suppress the argument T , when referring to

the sequence p = p(T ). Because of Assumption 3.3, we obtain the MA(∞) representation

X∗t,T =
∑∞

l=0 ψ̂
AR
l (p)Z∗t−l for T and p(T ) sufficiently large [see Section 3 of Preuß et al. (2012)

for more details]. Note that this representation corresponds to a process without structural

breaks and that in the proof of Theorem 3.1a) all error terms can be bounded by

(
∑∞

m=0 |ψm|)q1(
∑∞

l=0 l|ψl|)q2
N

= O(1/N)
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where q1, q2 ∈ IN and the equality is a consequence of (3.4). So the proof of Theorem 3.5

follows in the same way as the proof of Theorem 3.1 a) if we show that the (now random)

errors terms are of order OP (1/N). However, it was shown in Theorem 3.2 of Preuß et al.

(2012) that (
∑∞

m=0 |ψ̂ARm (p)|)q1(
∑∞

l=0 l|ψ̂ARl (p)|)q2 = OP (1) holds for all q1, q2 ∈ IN , which

directly yields the claim. 2

Proof of Theorem 3.6: see Appendix II.

Proof of Theorem 4.1 For a Proof of part a) note that sup
ω∈[0,1]

|[DN,T (v, ω)]a,b| = 0 for

v ∈ ĪT,a,b(b1, ..., bK), and observe (4.7). This yields for all a, b ∈ {1, ..., d} and sufficiently

large N, T

P
( ⋃
v∈ĪT,a,b(b1,...,bK)

{
Nγ sup

ω∈[0,1]

|[D̂T (v, ω)]a,b| > εT,a,b(v)
})

≤P
(
Nγ sup

v∈ĪT,a,b(b1,...,bK)

sup
ω∈[0,1]

|[D̂T (v, ω)]a,b − [DN,T (v, ω)]a,b| > C/2
)

≤P
(
Nγ sup

v∈[0,1]

sup
ω∈[0,1]

||D̂T (v, ω)−DN,T (v, ω)||∞ > C/2
)

T→∞−−−−→ 0.

where we used Theorem 3.1 (if assumption (2) is fulfilled) and 3.2 (if assumption (1) is

fulfilled). Part b) is a direct consequence of Theorem 3.1b) and 3.2b), which imply for

r = 1, ..., K and (a, b) ∈ B(br) : P( sup
ω∈[0,1]

Nγ|[D̂T (br, ω)]a,b| > εTa,b(br))→ 1. 2
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8 Appendix II: technical details

8.1 Proof of (ia) and (ib) in the proof of part (a) Theorem 3.1

For a proof of (ia), we note that by (3.4) we can drop the restriction in the summation with

respect to p by making an error of order O(1/N). Thus we obtain for E1,T

1

2πN2

∑
j∈AT,1(v)

N/2∑
k=1

φy,T (j, λk)
∞∑

l,m=0

N−1∑
p=1

ψl(
j − N

2
+ 1 + p

T
)ψm(

j − N
2

+ 1 + p

T
)e−iλk(m−l)

+O(1/N)

=
1

N

∑
j∈AT,1(v)

N/2∑
k=1

φy,T (j, λk)
1

2π

∞∑
l,m=0

T

N

∫ j/T+ N
2T

j/T− N
2T

+ 1
T

ψl(u)ψm(u)du e−iλk(m−l)du+O(1/N)

= DN,T (y) +O(1/N), (8.1)

where the second equality follows with the piecewise constancy of the functions ψl(u). For

(ib) we get

|E2,T (y)| ≤ C
∑

j∈AT,1(v)

∞∑
l,m=0
|l−m|≤N

∣∣∣ ∫ j/T+ N
2T

j/T− N
2T

+ 1
T

ψl(u)
(
ψm(u+

m− l
T

)− ψm(u)
)
du
∣∣∣+O(1/N),

where the summation can be restricted to indices satisfying |l − m| ≤ N , which follows

directly from the restriction on p. By employing that

∫ b

a

f(x)g(x+ y)dx−
∫ b

a

f(x)g(x)dx ≤ C|y| sup
z∈[a−|y|,b+|y|]

|f(z)| sup
z1,z2∈[a−|y|,b+|y|]

|g(z1)− g(z2)|,

holds for all piecewise constant functions f , g exhibiting only finitely many points of discon-

tinuity on the interval [a− |y|, b+ |y|], we obtain

|E2,T (y) ≤ |C
∑

j∈AT,1(v)

∞∑
l,m=0
|l−m|≤N

|m− l|
T

sup
u∈[0,1]

|ψl(u)| sup
u∈[0,1]

|ψm(u)|+O(1/N) = o(1/
√
N).
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8.2 Proof of (ii) and (iii) in the proof of part (a) of Theorem 3.1

For the proof of part (ii) note that, under the null hypothesis of no structural breaks,

the quantities ψl(t/T ) do not depend on the rescaled time t/T and we can work with the

representation

Xt,T =
∞∑
l=0

ψlZt−l.

Without loss of generality we assume that v1 ≤ v2 holds and define the set

AT,2(v1, v2) := {bv1T c −N/2, bv1T c+N/2} × {bv2T c −N/2, bv2T c+N/2}.

We then obtain for ω1, ω2 ∈ [0, 1]

Cov(
√
ND̂T (y1),

√
ND̂T (y2))

=
1

N

∑
(j1,j2)∈AT,2(v1,v2)

N/2∑
k1,k2=1

φy1,T (j1, λk1)φy2,T (j2, λk2)cum(IN(
j1
T
, λk1), IN(

j2

T
, λk2))

=
1

(2π)2N3

∑
(j1,j2)∈AT,2(v1,v2)

N/2∑
k1,k2=1

φy1,T (j1, λk1)φy2,T (j2, λk2)
N−1∑

p1,p2=0

N−1∑
q1,q2=0

∞∑
l,m,n,o=0

ψlψm

× ψnψoe−iλk1 (p1−q1)e−iλk2 (p2−q2)cum(Zj1+p1+1−lZj1+q1+1−m, Zj2+p2+1−nZj2+q2+1−o)

= :
∑

(j1,j2)∈AT,2(v1,v2)

BT (j1, j2), (8.2)

where BT (j1, j2) is defined in an obvious manner. Using

cum(ZaZb, ZcZd) = cum(Za, Zd)cum(Zb, Zc) + cum(Za, Zc)cum(Zb, Zd)
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[see Theorem 2.3.2 in Brillinger (1981)] we can split BT (j1, j2) into two parts, and the

independence of the innovations Zt yields for the first term

1

(2π)2N3

N/2∑
k1,k2=1

φy1,T (j1, λk1)φy2,T (j2, λk2)
∞∑

l,m,n,o=0

ψlψmψnψo

×
N−1∑

p1,p2=0
0≤p1−l+o+j1−j2≤N−1

0≤p2−n+m+j2−j1≤N−1

e−iλk1 (p1−p2+n−m−j2+j1)e−iλk2 (p2−p1+l−o−j1+j2)

=
1

(2π)2N3

N/2∑
k1,k2=1

φy1,T (j1, λk1)φy2,T (j2, λk2)
∞∑

l,m,n,o=0

ψlψmψnψoe
−iλk1 (n−m)e−iλk2 (l−o)

×
N−1∑

p1,p2=0
0≤p1−l+o+j1−j2≤N−1

0≤p2−n+m+j2−j1≤N−1

e−i(λk1−λk2 )(p1−p2−j2+j1) =: Vk1=k2 + Vk1 6=k2 ,

where Vk1=k2 and Vk1 6=k2 denote the summation of all terms with k1 = k2 and k1 6= k2

respectively [note that the restrictions p1− l+ o+ j1− j2 = q2 and p2−n+m+ j2− j1 = q1

follow by the independence of the innovations Zt]. For the first term we obtain

Vk1=k2 =
1

(2π)2N3

N/2∑
k=1

φy1,T (j1, λk)φy2,T (j2, λk)
∞∑

l,m,n,o=0

ψlψmψnψoe
−iλk(n−m)e−iλk(l−o)

×max(N − 1− |j1 − j2 − l + o|, 0) max(N − 1− |j2 − j1 +m− n|, 0). (8.3)

By applying the summability condition (3.4) we obtain that Vk1=k2 is of order O( 1
N

) if

|j1 − j2| > N , and that for ∆ := |j1 − j2| < N , (8.3) is the same as

1

N

(
1− ∆

N

)2
N/2∑
k=1

φy1,T (j1, λk)φy2,T (j2, λk)f
2(λk) +O(

1

N
).
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For the quantity Vk1 6=k2 we get by simple calculations and an application of (3.4)

Vk1 6=k2 =
1

(2π)2N3

N/2∑
k1,k2=1
k1 6=k2

φy1,T (j1, λk1)φy2,T (j2, λk2)
∞∑

l,m,n,o=0

ψlψmψnψoe
−iλk1 (n−m)e−iλk2 (l−o)

×
N−1∑

p1,p2=0
0≤p1+j1−j2≤N−1
0≤p2+j2−j1≤N−1

e−i(λk1−λk2 )(p1−p2−j2+j1) +O(
1

N
)

[i.e. we can omit the l,m, n, o in the restrictions on pi at the cost of a term of order O( 1
N

)].

In the following let aT denote a sequence satisfying aT → ∞, aT/N → 0 and N2/a3
T → 0.

It is straightforward to verify

N−1∑
p1,p2=0

0≤p1+j1−j2≤N−1
0≤p2+j2−j1≤N−1

e−i(λk1−λk2 )(p1−p2−j2+j1) =
∣∣∣N−1−∆∑

p=0

e−i(λk1−λk2 )p
∣∣∣2 =

∣∣∣1− ei 2π(k1−k2)N
∆

1− e−i
2π(k1−k2)

N

∣∣∣2 =
∣∣∣sin(π(k1−k2)

N
∆)

sin(π(k1−k2)
N

)

∣∣∣2,

which yields

Vk1 6=k2 =
1

N3

N/2∑
k1,k2=1
k1 6=k2

φy1,T (j1, λk1)φy2,T (j2, λk2)f(λk1)f(λk2)
∣∣∣sin(π(k1−k2)

N
∆)

sin(π(k1−k2)
N

)

∣∣∣2 +O(
1

N
)

=
1

N3

N/2∑
k1,k2=1
k1 6=k2

|k1−k2|≤aT

φy1,T (j1, λk1)φy2,T (j2, λk2)f(λk1)f(λk2)
∣∣∣sin(π(k1−k2)

N
∆)

sin(π(k1−k2)
N

)

∣∣∣2 +O(
1

N
+

1

a1−τ
T

)

for any τ > 0, because of

1

N

N/2∑
k1,k2=1
|k1−k2|>aT

1

N2

1

sin2(π(k1−k2)
N

)
≤ C

N

N/2∑
k1,k2=1
|k1−k2|>aT

1

(k1 − k2)2
≤ 1

a1−τ
T

.
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By applying sin(x) = x+O(ε3) for x ∈ [0, ε], a Taylor expansion and
∑n

k=1 1/k ∼ log(n) we

obtain, that Vk1 6=k2 is the same as

1

N

N/2∑
k1,k2=1
k1 6=k2

|k1−k2|≤aT

φy1,T (j1, λk1)φy2,T (j2, λk1)f
2(λk1)

∣∣∣sin(π(k1−k2)
N

∆)

π(k1 − k2)

∣∣∣2 +O(
1

N
+

1

a1−τ
T

+
N2

a3
T

).

This expression is equal to

1

N

N/2−aT∑
k1=aT

φy1,T (j1, λk1)φy2,T (j2, λk1)f
2(λk1)

N/2∑
k2=1
k1 6=k2

|k1−k2|≤aT

∣∣∣sin(π(k1−k2)
N

∆)

π(k1 − k2)

∣∣∣2

+O(
1

a1−τ
T

+
aT
N

+
N2

a3
T

)

=
2

N

N/2−aT∑
k1=aT

φy1,T (j1, λk1)φy2,T (j2, λk1)f
2(λk1)

( aT∑
k2=1

sin2(πk2
∆
N

)

π2k2
2

)
+O(

1

a1−τ
T

+
aT
N

+
N2

a3
T

)

=
1

N

N/2∑
k1=1

φy1,T (j1, λk1)φy2,T (j2, λk1)f
2(λk1)

(N −∆)∆

N2
+O(

1

a1−τ
T

+
aT
N

+
N2

a3
T

),

where we used the identities sin2(x) = 1
2
(1 − cos(2x)) and

∑∞
k=1

cos(kx)
k2

=
(
x−π

2

)2 − π2

12
in

the last step [see Jolley (1961)]. By combining the above results for Vk1=k2 and Vk1 6=k2 and

proceeding completely analogously in the treatment of the second summand of BT (j1, j2) we

obtain

BT (j1, j2) =
(
1− ∆

N

) 2

N

N/2∑
k=1

φy1,T (j1, λk)φy2,T (j2, λk)f
2(λk) +O(

1

a1−τ
T

+
aT
N

+
N2

a3
T

),
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uniformly with respect to (j1, j2) if ∆ = |j1 − j2| < N . For the case 1
c
≤ vi ≤ 1 − 1

c
for

i = 1, 2 the definition of the functions φy1,T and φy2,T now yields

NCov(D̂T (φy1,T ), D̂T (φy2,T )) =
∑

(j1,j2)∈AT (v1,v2)
∆<N

BT (j1, j2) +O(
1

a1−ε
T

+
aT
N

+
N2

a3
T

)

→


0 if 2

c
≤ v2 − v1

−[2− (v2 − v1)c] 1
π

∫ min(ω1,ω2)π

0
f 2(λ)dλ if 1

c
< v2 − v1 ≤ 2

c

[2− 3(v2 − v1)c] 1
π

∫ min(ω1,ω2)π

0
f 2(λ)dλ if 0 ≤ v2 − v1 ≤ 1

c
,

and the assertion for the cases vi <
1
c

and vi > 1 − 1
c

for at least one i ∈ {1, 2} follows by

similar arguments.

For the proof of part (iii) we use the notation Yi,1 := Zji−N/2+pi−mi , Yi,2 := Zji−N/2+qi−ni ,

AT,l(v1, ..., vl) := {bv1T c −N/2, bv1T c+N/2} × ...× {bvlT c −N/2, bvlT c+N/2}

and obtain as in the proof of Theorem 2.1 (2) in Preuß et al. (2012) that

cum(
√
ND̂T (φy1,T ), ...,

√
ND̂T (φyl,T )) =

∑
ν

V (ν),

where V (ν) is defined by

V (ν) :=
1

N
3l
2 (2π)l

∑
(j1,...,jl)∈AT,l(v1,...,vl)

N/2∑
k1,...,kl=1

∞∑
m1,...,ml=0

∞∑
n1,...,nl=0

N−1∑
p1,...,pl,q1,...,ql=0

×
l∏

s=1

φys,T (js, λks)ψmsψnse
−λks (ps−qs)cum(Ya,b; (a, b) ∈ ν1) · · · cum(Ya,b; (a, b) ∈ νl),

and the summation is carried out over all indecomposable partitions ν = (ν1, ..., νk) of the
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table

Y1,1 Y1,2

...
...

Yl,1 Yl,2

(8.4)

[see Theorem 2.3.2 in Brillinger (1981)]. Due to the Gaussianity of the Yi,j we only have to

consider partitions ν = (ν1, ..., νl) with l elements and without loss of generality we restrict

ourselves to the indecomposable partition

ν̄ :=
l−1⋃
i=1

(Yi,1, Yi+1,2) ∪ (Yl,1, Y1,2) (8.5)

[all partitions which yield cumulants of the same order can be treated in the same way, while

all other partitions yield cumulants of smaller order]. Simple calculations reveal

V (ν̄) =
1

N
3
2
l(2π)l

∑
(j1,...,jl)∈AT,l(v1,...,vl)

N/2∑
k1,...,kl=1

l∏
s=1

φys,T (js, λks)
∞∑

m1,...,ml,n1,...,nl=0

?∑
p1,...,pl

×
l∏

s=1

ψmsψnse
−iλk1 (p1−pl+ml−n1+j1−jl)

l∏
s=2

e−iλks (ps−ps−1+ms−1−ns−js−1+js), (8.6)

where
?∑

denotes the summation with respect to the conditions

0 ≤ qi+1 = pi −mi + ni+1 + ji − ji+1 ≤ N − 1 for i ∈ {1, ..., l − 1} (8.7)

0 ≤ q1 = pl −ml + n1 − j1 + jl ≤ N − 1,

[otherwise the cumulant vanishes due to the independence of the Zt]. (8.7) implies that

|ni+1 −mi + ji − ji+1| ≤ N for i ∈ {1, ..., l − 1} (8.8)

|n1 −ml − j1 + jl| ≤ N
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have to hold for each summand in (8.6) not to vanish. If we combine this with the inequality

1

N

N/2∑
k=1

φy,T (j, λk)e
−iλkr ≤ C

|r mod N/2|
,

which holds uniformly with respect to v, ω and for all r ∈ IN with r mod N/2 6= 0 [see (A2)

in Eichler (2008)], and the bound ψl ≤ Cl−1, which follows from (3.4), we obtain that (8.6)

is bounded by (up to a constant)

1

N l/2

∑
(j1,...,jl)∈AT,l(v1,...,vl)

∞∑
m1...nl=1

|ni+1−mi+ji−ji+1≤N
|n1−ml−j1+jl≤N

1

m1 . . .ml · n1 . . . nl

N−1∑
p1,...,pl=0

|ps−ps−1+ms−1−ns−js−1+js|<N/2
|p1−pl+ml−n1+j1−jl|<N/2

×
l∏

s=1

1

|ps − ps−1 +ms−1 − ns − js−1 + js|

l∏
s=1

1(ps /∈ {zs1, zs2}), (8.9)

where we define zs1 := −ps−1 +ms−1− ns− js−1 + js and zs2 := ps+1 +ms− ns+1− js + js+1

(identifying 0 with l and l + 1 with 1) and use that the cases with ps = zs1, ps = zs2

or |ps − ps−1 + ms−1 − ns − js−1 + js| ≥ N/2 for some s ∈ {1, ..., l} are of the same or

smaller order than (8.9). By proceeding completely analogously to the proof of Theorem

6.1 c) in Preuß and Vetter (2012) [with d = 0] thereafter, it follows that V (ν̄) is of order o(1).

8.3 Proof of (7.10) and (7.11) in the proof of Theorem 3.1

Since the proof of (7.10) is elementary we restrict ourselves to a treatment of (7.11), and by

following the proof of Theorem 2.4 in Dahlhaus (1988), it suffices to show

|cuml

(√
N(D̂

(1)
T (y1)− D̂(1)

T (y2)
)
)| ≤ (2l)!C ldT (y1, y2)l (8.10)

for all (y1, y2) ∈ PT , l ∈ IN . Without loss of generality we assume that l is even and ω1 ≤ ω2.

We use the notations φ(j, λ) := φ
(1)
y1,T

(j, λ)−φ(1)
y2,T

(j, λ) and obtain as in the proof of part (1)
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(iii) that

cuml

(√
N
(
D̂

(1)
T (y1)− D̂(1)

T (y2)
))

=
∑
ν

V (ν),

where V (ν) is defined as

V (ν) :=
1

N
3l
2 (2π)l

T∑
j1,...,jl=1

N/2∑
k1,...,kl=1

∞∑
m1,...,ml=0

∞∑
n1,...,nl=0

N−1∑
p1,...,pl,q1,...,ql=0

×
l∏

s=1

φ(js, λks)ψmsψnse
−λks (ps−qs)cum(Ya,b; (a, b) ∈ ν1) · · · cum(Ya,b; (a, b) ∈ νl), (8.11)

and the summation is carried out over all indecomposable partitions ν = (ν1, ..., νk) of

(8.4). As in the proof of part (1) (iii), we only have to consider partitions ν = (ν1, ..., νl)

with l elements due to the Gaussianity of the innovations and restrict ourselves to the

indecomposable partition of the form (8.5). The definition of the function φ(j, λ) implies

that the summation over the set {1, ..., T}l in (8.11) needs only to be performed over the set

AT (v1, v2)l := {bv1T c+N/2, bv2T c+N/2}l.

By additionally exploiting that cum(Zi, Zj) = δij, we again obtain the l relations (8.7)

between pi, qi,mi, ni and ji, which have to be fulfilled such that the corresponding summands

in (8.11) do not vanish. We redefine the mi and ni [denoting mi by ni and replacing ni by

mi−1], which gives the following conditions

0 ≤ qi+1 = pi +mi − ni + ji − ji+1 ≤ N − 1 for i ∈ {1, 3, ..., l − 1} (8.12)

0 ≤ qi+1 = pi +mi − ni + ji − ji+1 ≤ N − 1 for i ∈ {2, 4, ..., l − 2} (8.13)

0 ≤ q1 = pl +ml − nl + jl − j1 ≤ N − 1. (8.14)
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By employing the Cauchy Schwarz inequality we can bound V (ν̄) by
√
V1(ν̄)V2(ν̄), where

V1(ν̄) :=
1

N
3l
2 (2π)l

∑
(j1,...,jl)∈AT (v1,v2)l

N/2∑
k1,...,kl=1

( l∏
s=1

φ(js, λks)
)∣∣∣ N−1∑

p1,p3...,pl−1=0

∞∑
m1,n1,m3,n3,..
.,ml−1,nl−1=0

(8.12)

×
∏

s∈{1,3,...,l−1}

ψmsψns
∏

s∈{1,3,...,l−1}

e−i(λks−λks+1
)ps

∏
s∈{1,3,...,l−1}

e−iλks+1
(ns−ms+js+1−js)

∣∣∣2 (8.15)

and V2(ν̄) is defined analogously with the respective summations carried out over pi,mi, ni

for even i and with respect to conditions (8.13) and (8.14). The term V1(ν̄) is bounded by

C

N3l/2

∑
(j1,...,jl)∈AT (v1,v2)l

N/2∑
k1,k2...,kl=1

( l∏
s=1

φ(js, λks)
)∣∣∣HT (j1, j2, ..., jl, λk1 , λk2 , ..., λkl)

∣∣∣, (8.16)

where HT (j1, j2, ..., jl, λk1 , λk2 , ..., λkl) equals

N−1∑
p1,p3...,pl−1
p̄1,p̄3...,p̄l−1=0

∞∑
m1,n1,m3,n3,...
...,ml−1,nl−1=0

(8.12)

∞∑
m̄1,n̄1,m̄3,n̄3,...
...,m̄l−1,n̄l−1=0

(8.12)

∏
s∈{1,3,...,l−1}

(
e−iλks (ps−p̄s)ψmsψnsψm̄sψn̄s

×e−iλks+1
(−ps+p̄s+ns−ms−n̄s+m̄s)

)
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and (8.12) denotes the condition (8.12) with pi,mi, ni replaced by p̄i, m̄i, n̄i. Simple calcula-

tions show that (8.16) is equal to

C

N3l/2

∑
(j1,...,jl)∈AT (v1,v2)l

N/2∑
k1,k2...,kl=1

( l∏
s=1

φ(js, λks)
) ∞∑
m1,n1,m3,n3,...
...,ml−1,nl−1=0

(8.12)

∞∑
m̄1,n̄1,m̄3,n̄3,...
...,m̄l−1,n̄l−1=0

(8.17)

×
∏

s∈{1,3,...,l−1}

ψmsψnsψm̄sψn̄s
∏

s∈{2,4,...,l}

e−iλks (ns−1−ms−1−n̄s−1+m̄s−1)

N−1∑
p1,p3...,pl−1=0

(8.12)

N−1∑
p̄1,p̄3...,p̄l−1=0

(8.12)

×
∏

s∈{1,3,...,l−1}

e−i(λks−λks+1
)(ps−p̄s)

=
( C
N3

∑
(j1,j2)∈AT (v1,v2)2

N/2∑
k1,k2=1

φ(j1, λk1)φ(j2, λk2)
∞∑

m,n,m̄,n̄=0

ψmψnψm̄ψn̄e
−iλk2 (n−m−n̄+m̄)

×
N−1∑

p1,p̄1=0
0≤p1+m1−n1+j1−j2≤N1
0≤p̄1+m̄1−n̄1+j1−j2≤N1

e−i(λk1−λk2 )(p1−p̄1)
)l/2

=:
( ∑

(j1,j2)∈AT (v1,v2)2

B̃T (j1, j2)
)l/2

,

where the quantities B̃T (j1, j2) are defined in an obvious manner. By the same arguments

as provided in the calculation of the covariances and by the definition of φ one obtains that

B̃T (j1, j2) = 0 if |j1 − j2| > N and that (8.17) is bounded by

C
[ ∫ ω2π

ω1π

f 2(λ)dλ+
2|bu(v1, T )T c − bu(v2, T )T c|

N

∫ ω1π

0

f 2(λ)dλ
]l/2
≤ CdT (y1, y2)l/2.

Since the same upper bound holds for V2(ν̄), the claim follows.

8.4 Proof of Theorem 3.2

As in the proof of Theorem 3.1 we restrict ourselves to the case d = 1 and emphazise that

C denotes a constant, which does not depend on the sample size and can vary from line to

line in the calculations.
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Proof of part a): In order to show the claim it is sufficient to prove the following two

properties [see. Newey (1991)]:

(1) For every y := (v, ω) ∈ [0, 1] we have

NγD̂T (y) = oP (1). (8.18)

(2) For every η, ε > 0 there exists a δ > 0 such that

lim
T→∞

P
(

sup
(y1,y2)∈[0,1]2:d2(y1,y2)<δ

Nγ|D̂T (y1)− D̂T (y2)| > η
)
< ε, (8.19)

where d2(y1, y2) denotes the euclidean distance between y1 = (v1, ω1) and y2 = (v2, ω2).

The statement (8.18) follows by similar arguments as given in the proof of Theorem 3.1 a)

and the details are omitted for the sake of brevity. For a proof of (8.19) we employ the

representation

D̂T (y) =
1

N

T∑
j=1

N/2∑
k=1

φy,T (j, λk)IN(
j

T
, λk)

which was introduced in (7.4), where the functions φy,T for y = (v, ω) are defined in (7.3).

We define by

ρ2,T,γ(y1, y2) :=
( 1

N2(1−γ)

T∑
j=1

N∑
k=1

(
φy1,T (j, λk)− φy2,T (j, λk)

)2
)1/2

(8.20)

a semi-metric on the set

PT := {N/T, (N + 1)/T, ..., 1−N/T} × {1/N, ..., 1− 1/N, 1},
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and a straightforward calculation shows that there exists a constant A ∈ IR+ such that the

inequality

ρ2,T,γ(y1, y2) ≤ dT,γ(y1, y2) (8.21)

: =
A/2

N
1
2
−γ

(
√
|ω2 − ω1|+

√
|v2 − v1|)1{bv1T c=bv2T c} +

A

N
1
2
−γ

1{bv1T c6=bv2T c}

holds. Note that dT,γ(·, ·) defines a further semi-metric on PT , and for every γ ∈ [0, 1/2) we

obtain for fixed δ > 0 and sufficiently large T ∈ IN

P( sup
yi∈[0,1]:

d2(y1,y2)<δ

Nγ|D̂T (y1)− D̂T (y2)| > η) ≤ P( sup
yi∈PT

dT,γ(y1,y2)<δ

Nγ|D̂T (y1)− D̂T (y2)| > η). (8.22)

So it suffices to prove that the probability on the right hand side of (8.22) is arbitrary small

for T sufficiently large. This is a consequence of the following assertions:

i) lim
κ→0

lim
T→∞

JT,γ(κ) = 0, where JT,γ denotes the covering integral of the set PT with respect

to the metric dT,γ.

ii) There exists a constant C ∈ IR+ such that for all y1, y2 ∈ [0, 1]2 and integers l ∈ IN

∣∣∣cuml

(
Nγ(D̂T (y1)− D̂T (y2)

))∣∣∣ ≤ (2l)!C ldT,γ(y1, y2)k. (8.23)

Proof of part i): The construction of dT,γ implies that there exists a constant A > 0 such

that C(u, dT,γ,PT ) ≤ TN for u ≤ A/N1/2−γ and C(u, dT,γ,PT ) = 1 for u ≥ A/N1/2−γ. This

yields that, for any κ > 0, the quantity JT,γ(κ) is bounded by

JT,γ(A/N
1/2−γ) + 1{κ>A/N1/2−γ}

∫ κ

A/N1/2−γ

[
log
(48C(u, dT,γ,PT )2

u

)]2
du

≤
∫ A/N1/2−γ

0

[log(48T 2N2)2 − 2 log(48T 2N2) log(u) + log(u)2]du+
∣∣ ∫ κ

A/N1/2−γ

[
log
(48

u

)]2
du
∣∣,
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and it is straightforward to see that the right handside of the above expression converges to

zero as T →∞ and κ→ 0.

Proof of part ii): We assume without loss of generality that l is even and only consider

the first summand {D̂(1)
T (y)}y∈[0,1]2 . We then obtain as in the proof of (7.11) (by using an

additional symmetry argument) that

cuml

(
Nγ
(
D̂

(1)
T (y1)− D̂(1)

T (y2)
))

=
∑
ν

Vγ(ν),

where Vγ(ν) is defined as

Vγ(ν) :=
1

N l(2−γ)(4π)l

T∑
j1,...,jl=1

N/2∑
k1,...,kl=−bN−1

2
c

∞∑
m1,...,ml=0

∞∑
n1,...,nl=0

N−1∑
p1,...,pl,q1,...,ql=0

l∏
s=1

φ(js, λks)

×
l∏

s=1

[ψmsψnse
−λks (ps−qs)]cum(Ya,b; (a, b) ∈ ν1) · · · cum(Ya,b; (a, b) ∈ νl), (8.24)

and the summation is carried out over all indecomposable partitions ν = (ν1, ..., νk) of (8.4)

and without loss of generality we restrict ourselves to the indecomposable partition defined

in (8.5). By proceeding completely analogously to the proof of (7.11) we obtain

Vγ(ν̄) ≤
√
V1,γ(ν̄)V2,γ(ν̄),

where

V1,γ(ν̄) :=
1

N l(2−γ)(4π)l

∑
(j1,...,jl)∈AT (v1,v2)l

N/2∑
k1,...,kl=−bN−1

2
c

∏
s∈{1,3,...,l−1}

φ2(js, λks)

×
∣∣∣ N−1∑
p1,p3...,pl−1=0

∞∑
m1,n1,m3,n3,...,ml−1,nl−1=0

(8.12)

∏
s∈{1,3,...,l−1}

ψmsψns
∏

s∈{1,3,...,l−1}

e−i(λks−λks+1
)ps

×
∏

s∈{1,3,...,l−1}

e−iλks+1
(ns−ms+js+1−js)

∣∣∣2 (8.25)
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and V2,γ(ν̄) is defined analogously with the respective summations carried out over ji, pi,mi, ni

for even i and with respect to condition (8.14). The term V1,γ(ν̄) is bounded by

C

N l(1−γ)

∑
(j1,...,jl)

∈AT (v1,v2)l

N/2∑
k1,k3...,kl−1=−bN−1

2
c

∏
s∈{1,3,...,l−1}

φ2(js, λks)|HT,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
)|,

where HT,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
) equals

1

N l

N−1∑
p1,p3...,pl−1
p̄1,p̄3...,p̄l−1=0

∞∑
m1,n1,m3,n3,...
...,ml−1,nl−1=0

(8.12)

∞∑
m̄1,n̄1,m̄3,n̄3,...
...,m̄l−1,n̄l−1=0

(8.12)

∏
s∈{1,3,...,l−1}

e−iλks (ps−p̄s)
∏

s∈{1,3,...,l−1}

ψmsψnsψm̄sψn̄s

×
N/2∑

k2,...,kl=−bN−1
2
c

∏
s∈{1,3,...,l−1}

e−iλks+1
(−ps+p̄s+ns−ms−n̄s+m̄s)

and (8.12) denotes the condition (8.12) with pi,mi, ni replaced by p̄i, m̄i, n̄i. The well know

identity

1

N

N/2∑
k=−bN−1

2
c

exp(λkp) =


1 if p = lN for some l ∈ N

0 else

yields that for a fixed choice of pi,mi, ni, m̄i, n̄i there is only one choice for p̄i such that the

corresponding summand does not vanish. Thus we obtain

∑
(j2,j4...,jl)∈AT (v1,v2)l/2

|HT,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
)|

≤
∑

(j2,j4...,jl)∈AT (v1,v2)l/2

∞∑
m1,m3...,ml−1
m̄1,m̄3...,m̄l−1
n1,n3,...,nl−1
n̄1,n̄3,...,n̄l−1=0

∏
s∈{1,3,...,l−1}

|ψmsψnsψm̄sψn̄s| = 4l/2
( ∞∑
n=0

|ψn|
)2l

,
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which is bounded by C l for some C > 0 due to (3.4). Observing (8.25) this implies that

V1,γ(ν̄) is bounded by

C l

N l(1−γ)

T∑
j1,j3...,jl−1=1

N/2∑
k1,k3...,kl−1=−bN−1

2
c

(
φ2(j1, λk1)φ

2(j3, λk3)...φ
2(jl−1, λkl−1

)
)

which equals C lρ2,T,γ(y1, y2)l. Since the same upper bound can be obtained for V2(ν̄), (8.23)

follows with (8.21).

Proof of part b): Assertion b) of Theorem 3.2 can be established using the same arguments

as in the proof of part b) of Theorem 3.1. 2

8.5 Proof of Theorem 3.6

We again consider only the case d = 1 and suppress the argument T , when referring to the

sequence p = p(T ). Note that due to Assumption 3.3 the stationary process Xt with spectral

density g(λ) =
∫ 1

0
f(u, λ)du possesses an MA(∞) representation

Xt =
∞∑
l=0

ψlZt−l. (8.26)

Moreover, under the null hypothesis we have g ≡ f and the functions ψl(u) in (2.1) satisfy

for all u ∈ [0, 1] ψl(u) = ψl (l ∈ IN). Let {X∗t }t∈ZZ denote the process which is obtained

by replacing Zt in (8.26) by the bootstrap replicates Z∗t from step 2) in Algorithm 3.4, then

{Xt}t∈ZZ and {X∗t }t∈ZZ obviously have the same distribution. Thus, if we define D̂∗T,a(y) as

D̂T (y) where the random variables Xt,T are replaced by X∗t , then part a) of Theorem 3.6

follows directly.

From the arguments presented in the proof of Theorem 3.1 we obtain that there exist ỹ ∈
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[0, 1]2 such that |D̂∗T,a(ỹ)|2 ≥ L/N for some constant L ∈ IR+. So it suffices to prove

√
N sup

(y)∈[0,1]2
|D̂∗T (y)− D̂∗T,a(y)| = oP (1), (8.27)

which is a consequence of the following two statements [see the proof of Theorem 3.2]:

(1) For every y = (v, ω) ∈ [0, 1] we have
√
N(D̂∗T (y)− D̂∗T,a(y)) = oP (1).

(2) For every η, ε > 0 there exists a δ > 0 such that

lim
T→∞

P
(

sup
y1,y2∈[0,1]2:
d2(y1,y2)<δ

√
N |(D̂∗T (y1)− D̂∗T,a(y1))− (D̂∗T (y2)− D̂∗T,a(y2))| > η

)
< ε. (8.28)

For the sake of brevity we restrict ourselves to a proof of (8.28) since it is by far the more

complicated one. For this purpose we introduce the process

XAR
t (p) :=

p∑
j=1

aj,pX
AR
t−j(p) + ZAR

t (p), (8.29)

where a1,p, ..., ap,p are defined in (3.8) and the ZAR
j (p) are independent centered Gaussian

random variables with variance σp = E
[(
Xt −

∑p
j=1 aj,pXt−j

)2]
. Because {Xt}t∈Z is the

stationary process with spectral density g(λ) =
∫ 1

0
f(u, λ)du, the process {XAR

t (p)}t∈Z cor-

responds to the ’best’ approximation of the process (3.7) by an AR(p) model. It now follows

from Lemma 2.3 in Kreiss et al. (2011) that for sufficiently large T the approximating process

{XAR
t (p)}t∈ZZ and the bootstrap analogon X∗t,T in (3.9) have MA(∞) representations, i.e.

XAR
t (p) =

∞∑
j=0

ψARj (p)ZAR
t−j(p) and X∗t,T =

∞∑
j=0

ψ̂ARj (p)Z∗t−j. (8.30)

We define WT as the event

√
N

∞∑
m,n=0

|ψmψn − ψ̂ARm (p)ψ̂ARn (p)| ≤ 1 (8.31)
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and D̄T (y) :=
√
N(D̂∗T (y)− D̂∗T,a(y))× 1WT

. The claim (8.28) then follows as in the proof of

(8.19) from the following two assertions:

i) P(WT )→ 1.

ii) There exists a constant C ∈ IR+ such that for all y1 = (v1, ω1) and y2 = (v2, ω2)

|cuml(D̄T (y1)− D̄T (y2))| ≤ (2l)!C lρ2,T,0(y1, y2)l, ∀l ∈ IN, (8.32)

where ρ2,T,0 was defined in (8.20).

We will at first comment on the second statement (8.32) and justify the first part afterwards.

If we define V1,γ(ν̄)∗ as V1,γ(ν̄) in (8.15), with the quantities

∏
s∈{1,3,...,l−1}

ψmsψns (8.33)

being replaced by

E

( ∏
s∈{1,3,...,l−1}

(
ψmsψns − ψ̂ARms ψ̂

AR
ns

))
, (8.34)

then we obtain by the same arguments as given in the proof of Theorem 3.2 that V1,γ(ν̄)∗ is

bounded by

1

(4π)lN l/2

∑
(j1,...,jl)
∈AT (v1,v2)

N/2∑
k1,k3...,kl−1=−bN−1

2
c

∏
s∈{1,3,...,l−1}

φ2(js, λks)|H∗T,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
)|,

where H∗T,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
) is the corresponding bootstrap analogue of

HT,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
), i.e. the quantity (8.33) is replaced by (8.34). Combining
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the arguments in the treatment of HT,2(j1, ..., λkl−1
) with (8.31) we obtain

∑
(j2,j4,...,jl)∈AT (v1,v2)l/2

N l/2|H∗T,2(j1, j2, ..., jl, λk1 , λk3 , ..., λkl−1
)| ≤ 4l/2

on the setWT . This yields (8.32) as in the proof of (8.19), and it remains to prove P(WT )→ 1.

Because of

∞∑
m,n=0

|ψmψn − ψ̂ARm (p)ψ̂ARn (p)| ≤
∞∑
m=0

|ψm|
∞∑
n=0

|ψn − ψ̂ARn (p)|+
∞∑
m=0

|ψ̂ARm (p)|
∞∑
n=0

|ψn − ψ̂ARn (p)|

it is sufficient to show

√
N

∞∑
n=0

|ψn − ψ̂ARn (p)| = oP (1) and
∞∑
m=0

|ψ̂ARm (p)| = OP (1). (8.35)

We now use Lemma 2.3 of Kreiss et al. (2011) which implies that the polynomials Ap(z) :=

1−
∑p

k=1 aj,pz
k and Âp(z) := 1−

∑p
k=1 âj,pz

k have no roots within the closed unit disc {z| |z| ≤

1 + 1
p
} if p is sufficiently large. An application of Cauchÿı¿1

2
s inequality for holomorphic

functions to the difference

Â−1
p (z)− A−1

p (z) :=
∞∑
k=1

[ψ̂ARk (p)− ψARk (p)]zk,

as in the proof of Lemma 2.5 in Kreiss et al. (2011), yields

|ψ̂ARl (p)− ψARl (p)| ≤
( 1

1 + 1/p

)l
max
|z|=1+ 1

p

∣∣Ap(z)− Âp(z)
∣∣∣∣Ap(z)Âp(z)
∣∣

≤
( 1

1 + 1/p

)l
max
|z|=1+ 1

p

∑p
k=1 |âk,p − ak,p|(1 + 1

p
)k∣∣Ap(z)Âp(z)

∣∣
= p
(

1 +
1

p

)−l
OP (

√
log(T )/T )
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uniformly with respect to l and p. This bound implies

√
N

∞∑
n=0

|ψ̂ARn (p)− ψARn (p)| = OP

(
p2

max(T )
√

log(T )
√
N√

T

)
= oP (1), (8.36)

and Lemma 2.4 of Kreiss et al. (2011) yields that (for sufficiently large T )

√
N

∞∑
n=0

|ψARn (p)− ψn| ≤
√
N

p

∞∑
j=p+1

j|aj| = OP

( √
N

pmin(T )

)
= oP (1). (8.37)

(8.36) and (8.37) now imply the first part of (8.35). The second part can be easily derived

from the first part and (3.4). This yields part b). Part c) is of course the bootstrap analogue

of Theorem 3.2 a), and is therefore shown by combining the arguments given here with the

reasoning in the proof of Theorem 3.2 a). 2
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