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DETECTION OF MULTIVARIATE OUTLIERS WITH
DISPERSION SLIPPAGE IN ELLIPTICALLY
SYMMETRIC DISTRIBUTIONS!

By Rita Das anD BimaL K. SINHA
University of Pittsburgh and University of Maryland Baltimore County

In this paper Ferguson’s univariate normal results for detection of
outliers with variance slippage are extended to the multivariate elliptically
symmetric case with dispersion slippage. The locally optimum test we derive
possesses all three robustness properties, optimality, null and nonnull, and is
based on Mardia’s multivariate kurtosis statistic.

1. Introduction. Recently, Ferguson’s (1961) pioneering work on the detec-
tion of outliers with mean slippage in samples from a univariate normal distribu-
tion has been generalized to the multivariate case. While Schwager and Margolin
(1982) considered a multivariate normal distribution, Sinha (1984) treated an
arbitrary elliptically symmetric multivariate distribution. The main result proved
by these authors can be viewed as a robustness property of the use of Mardia’s
(1970) multivariate kurtosis statistic as a locally optimum test statistic to detect
outliers with mean slippage.

In this paper we consider the other aspect of Ferguson’s work, namely, the
detection of outliers with variance slippage in a univariate normal distribution
and extend this to the case of an arbitrary elliptically symmetric multivariate
distribution with dispersion slippage in the same spirit as in Sinha (1984). The
locally best invariant locally unbiased test we derive has some very interesting
features. First, as in Ferguson (1961) in the univariate case, the same test
statistic, namely, Mardia’s multivariate kurtosis statistic as in the mean slippage
case (Schwager and Margolin (1982); Sinha (1984)), turns out to be locally
optimum also in the case of dispersion slippage. Second, this locally best
invariant test is both optimality robust and null robust. Third, this test is also
nonnull robust. We refer to Kariya (1981) and Kariya and Sinha (1985) for the
notions and various results on optimality, null and nonnull robustness. The
multivariate outlier problem with dispersion slippage is formulated in Section 2
and the main result is contained in Section 3. It may be mentioned that
Schwager, in his Yale Ph.D. thesis (1979), formulated the multivariate dispersion
slippage problem under normality, demonstrated the invariance discussed here,
and conjectured that the Mardia kurtosis statistic was optimal.
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2. The multivariate outlier problem with dispersion slippage. Consider
a sample of size n from a multivariate distribution. We will denote the sample
by X: n X p and assume that the following model holds:

(2.1) X =1y + USV2,

where 1 is the unit n X 1 vector, p is the common unknown p X 1 mean vector
of the rows of X, = >0 (positive definite p X p), and the random error
component U has a distribution #(U) € #(0, I, X I,), the class of np-dimen-
sional elliptically symmetric distributions about 0 with scale matrix I » and with
density given by

(2.2) f(u) = ¢(tru‘u),

where ¢: [0, 00) = [0,0), U € % = {U: n X plrank U = p}. This amounts to the
specification that #(X)e #(1p/, I, X =). Moreover, we will assume that ¢
satisfies

f f o(trc’c + w'u)|c’c|* P~ V2 dedu < 0.
RPYGl(p)

The possibility of outliers with dispersion slippage can be detected by testing
the model

(23) £(X)eF(w,I,x3) versus L(X)eF(1w,Dx3), D=+I.

D is a function of a scalar parameter A, D = DZ(8) = diag(d,,...,8,) with
8, = exp(Aa,), i=1,...,n, where (v,...,7,) is an unknown permutation of
(1,...,n) and a,,...,a, are arbitrary constants at least two of which are
dissimilar and some of which may be zero. In this formulation, which is similar
to Ferguson’s (1961) in the univariate case, unless A = 0, the observation X,
corresponding to the ith row of X is an outlier if a; is nonzero.

The general multivariate outlier problem with dispersion slippage thus con-
sists of models #(X) € (1w, I, X Z)and L(X) € FAw,D X =), D = DZ(d),
and the null hypothesis Hy: A = 0 against the alternative hypothesis H;: A+0.

Following Ferguson (1961), Schwager and Margolin (1982), and Sinha (1984),
it is clear that the above testing problem remains invariant under the action of
the group ¥ =2 X Gl(p) X R? where 2 denotes the (finite) group of all n X n
permutation matrices with elements I',, GI(p) the full linear group of p x p
nonsingular matrices with elements C and R” the Euclidean p space. The three
(sub)group operations are defined by gx = T,xC + 1p*, T, € P, C € Gl( p), and
p* € RP. In the next section we apply Wijsman’s (1967) theorem to derive the
distribution of a maximal invariant statistic.

3. Main results. By invariance of the problem we may assume without any
loss of generality p = 0 and = = L,

Let T = #(x) be a maximal invariant under the transformation ¢ and let pr
be the distribution induced by 7 under A. Then, using a version of Wijsman’s
(1967) theorem, the pdf of T under A with respect to P! evaluated at T' = t(x)is
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given by
[1(gxia)icrer 2 dv(g)
(3.1) (dPT/dPT)(t(x)) = —~
/g f(gxld = 0)|C'C|"* dw(g),
where

f(x|a) = exp(—ApZa,/2)¢(tr(x'DA‘2x)),
D% = diag(exp(—Aa,,l), . .,exp(—Aa,,")),

and » is a left invariant measure on 4. We take » = v, X »,, where », is the
discrete uniform probability measure with mass 1/n! at each of the n! elements
T, € 2, and dry(C, p*) = dCdp*/|C’C|'P*V/2 where dp* is the Lebesgue mea-
sure on RP. This is a left invariant measure on the affine group Gl( p) X R”. The
following result is crucial in the derivation of an invariant test.
LEMMA 3.1. The ratio of the pdf ’s in expression (3.1) is evaluated as
NS i
(3:2) i L (1S#/18) " ——,
» n!
where S = x'x — nXx’, X is the sample mean vector, T, = exp(—pAXa,/2),
T, = 77 P/2 with = 1'Dy 21 = Y exp(—Aa;), and
(3.3) * = 1Ty Dy 2 — Dy 11D 2 /7 )T

ProoF. The numerator N, (say) of (3.1) can be written as
1
(34) N, = —le‘,f f ¢(tr(x'Dy %xjx — gx))|C’C|"~P~D/2 dy* dC,
n! 7 JGip) R

where ¢(tr( - -+ |x = gx)) stands for the value of ¢ evaluated when x is replaced
by gx. Using gx = [ xC + 1p*’, the argument of ¢, after the substitution
x = gx, simplifies to

tr[(T,xC + 1p*) Dy (T,xC + 1p*)]
(3.5) = tr[Cx'TUD; 2T xC + mpp*’ + 2Cx'T. Dy *1p*]
= tr[refer’ + C'x'TY Dy ? — Dy 211Dy 2/ )T,aC.
In the last equality above, ¢* = p* + C’x’'T/Dy %/7. Since dp* = de?, using a
result of Dawid (1977), integration with respect to ¢ over R” yields
(3.6) N, = ?zl_!%za: [G l(p)q? [trC'x'TY Ds? — Dy 211Dy %/7)T,xC|
X |C’C|("_p‘ N/2 Jo
for ¢: [0, 00) — [0,00) given by ¢(z) = [rr®(z + w'u)du. Now x’I‘o’t(DA‘Q -
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Dy 211Dy 2 /7)l,x = S (say) is p.d. by our assumption n > p + 1. Writing
Sx = §¥1/28*1/2 where S*!/? is the positive square root of S* and making the
transformation C — S*'/2C, N, reduces to

1 ~
(37) NA = __'TITZ{ZIS"*I*(n—I)/Z}f ¢[trczc]lclcl(n—p—l)/2 dc.
n: o G](P)

Since the denominator of (3.1) corresponds to N, with A = 0 and since S} at
A=0is x'TYI, - 11'"/n)[,x = x’x — nXX’ = S, the sample sum of squares and
products matrix, the lemma follows. O

REMARK 3.1. Since dP!/dPT (t(x)) is independent of ¢, it follows that any
null robust invariant test is also nonnull robust. In particular, the locally
optimum invariant test derived below is null and hence nonnull robust. This is

yet another example of a test for covariance structure that is nonnull robust (see
Kariya and Sinha (1985)).

We now proceed to evaluate the expression in (3.2). It turns out that there is
no uniformly most powerful invariant test for this problem. To derive a locally
best invariant test, we expand the expression in (3.2) locally in A around A = 0.
Toward this end, note that

(3.8) Dy%—I,=AD(a) + A’D(a%)/2 + o(A?),
where a’ = (ai,..., al), D(a’) = diag(aj,..., al), j = 1,2, and

(3.9) Dy VD 2 /7 = [1 — A(al’ + 1a’ — all’) + A%(a — al)(a — al)’
+4%(a%l’ + 1a¥ — @%11') /2 + o(4?)] /n,
where @ = Ya,/n, a* = Ya?/n.
Using (3.3), (3.8) and (3.9), and writing &£, = [ (x — 1X’),

S} =S — Ax!D(a)x, + (A%/2)x,D(a%)%, — A’%,aa'%,

(3.10)
+a remainder term R, which for every fixed x is 0(A?),
implying
ISH/IS| =1, - AS™'?%, D(a)%,S~"*
(3.11) +(4A%/2)S™ %% D(a?)%,S™'/% — AS™ V%% aa’x S /2

+ a remainder term, which uniformly in x is o( A?)).

To evaluate this determinant (locally in A), we use the following result, whose
proof is easy and hence omitted.

LEMMA 32. |I,— AB|=1 - AtrB + (A%/2)((tr B)®> — tr B?) + o(&%).

Identifying B and applying this result, (3.11) is evaluated as
(312) IS¥|/1S| = 1 — Atr D(a)x, + (A%/2)tr D(a®)%, — A’a'’%,a
+(4%2/2){(tr D(a)%,) — tr D(a)Z,D(a)x,} + R, (x, A),



MULTIVARIATE OUTLIERS WITH DISPERSION SLIPPAGE 1623

where %, = %,S7'%,, and sup,R(x,4) = o(A?) for all T, € P. Finally, we
need the followmg results for a complete (local) evaluatlon of (3.2). We write
x;,—-®S'x;—-X)=b,,i=1...,n

() Y trD@}, =) Ya,b,=pna,
a a i
using Ferguson ((1961), page 258) and ¥;b,;, = p
() Y trD@®i,=pnla® by ().

(iii) Zax a= tr[S Yaal( x)(x - x) ]

i, J

- tr[S‘l{n(n ~ )Y (a, - @Y (x, - B)(x, - B’
+(n - 2T, - 0)(Z(x, - D) ((Te) - Tat))]

(using a straightforward generalization
(3.13) of Ferguson’s result ((1961), page 258))

=pn(n — 2! Y. (a, — @)~
() Y(trD(a)%,)’ = X La, b= n(n-2) Zb X(a,— ay’

+(n - 2'p((La) - Za?),

using Ferguson ((1961), page 258).
2

© D@, D), - Tt Ta, 5'(x, - D(x; - 2]

= n(n - 2)! Y.(a; - @)’ LB}
+(n-2ip((La,) - Ta?).
Using (3.12) and (3.13) (i)~(v), it follows that
(IS8~
" n![l + (n - 1)pad,/2
+(2/8){(n + )L (a, - @)L + Ky + R(x, A)],
where K is a constant and sup,R(x, A) = o(A?). This leads to (see (3.2))
PI/dP ((x)) = 1+ (n+ 1) i (a; - @) ( L)
+K,A* + R(x, 4),

where supxIT?(x, A) = 0(A?) and K, is a constant.

(3.14)

(3.15)



1624 R. DAS AND B. K. SINHA

Consider now an invariant test y(¢) of size a. Then its local power is
evaluated as

J#() dBI(8(x)) = a + (n+ D3N (¢, - @)°
(3.16)

X fxp(t)(Zb,?i) dPT (#(x)) + K,A% + o( A2).

Our main result is the following.

THEOREM 3.1. The locally best invariant test for Hy: A =0 versus H,:
A # 0 under the model (2.1)-(2.3) rejects H, for large values of
LH{(x; — X)’'S™(x; — X)}?, whatever a,, ..., a,, Z(a; — @)? > 0.

ProoF. An application of (3.16) and the Neyman-Pearson lemma completes
the proof of the theorem. O

REMARK 3.2. That the test based on X757 is null robust follows from Kariya
(1981) and Sinha (1984).
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