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Abstract—In recent years, the sub-synchronous oscillation (SSO) 

accidents caused by wind power have received extensive attention. 
A method is needed to distinguish if nonlinear behavior exists in 
the recorded equal-amplitude accident waveforms, so that 
different methods can be adopted to analyze the mechanism of the 
oscillation. The theory of higher-order statistics (HOS) has become 
a powerful tool for detection of nonlinear behavior (DNB) in 
production quality control since 1960s. However, HOS analysis 
has been applied in mechanical condition monitoring and fault 
diagnosis, even after being introduced into the power system and 
wind farms. This paper focuses on the voltage source converter 
(VSC) control systems in wind farms and tries to detect the 
nonlinear behavior caused by the bilateral or unilateral saturation 
hard limits based on HOS analysis. First, the traditional 
describing function is extended to obtain more frequency domain 
information, and hereby the harmonic characteristics of bilateral 
and the unilateral saturation hard limit are studied. Then the 
bispectrum and trispectrum are introduced as HOS, which are 
extended into bicoherence and tricoherence spectrums to 
eliminate the effects from linear parts in the VSC control system. 
The effectiveness of DNB and classification based on HOS is 
strictly proved and its detailed calculation and estimation process 
is illustrated. Finally, the proposed method is demonstrated and 
further discussed through simulation results. 
 

Index Terms—Bicoherence spectrum, HOS, DNB, tricoherence 
spectrum, VSC, wind farms. 
 

I. INTRODUCTION 
ITH the implementation of the energy development 
strategy in China, the installation capacity of wind power 

increases in high speed. However, the stability problems 
brought about by wind integration are also becoming more and 
more serious. Among them, the sub-synchronous oscillation 
(SSO) is the most prominent. After the SSO accidents, the 
collected accident waveform record tends to be of equal-
amplitude because the transition process is very fast. Among 
current literatures, most scholars analyze the SSO based on the 
weakly-damped assumption, therefore they linearized the 
power system dynamic equations and conducted their studies 

using analysis methods for linear systems. These methods 
mainly includes the eigenvalue method [1], the dynamic 
equivalent method [2], [3], the impedance method [4], [5], and 
the complex torque coefficient method [6], [7] and so on. 
However, there are nonlinear parts such as hard limits in the 
control system of wind power, and the induced self-sustained 
oscillation is also of constant amplitude. So, it is unreasonable 
to directly analyze the amplitude and frequency of SSO with a 
linearized method, and adopt corresponding measures to 
suppress the oscillation. It is necessary to distinguish the 
oscillation type, linear or nonlinear, from the waveform records 
before choosing analyzing methods. 

Since its emergence in the early 1960s, the theory of higher-
order statistics (HOS) has become a powerful analysis tool in 
condition monitoring and fault diagnosis of mechanical 
equipment. Its applications mainly include three aspects at the 
very beginning: harmonic retrieval [8], system identification [9], 
and feature extraction [10]. Later, researchers applied HOS to 
detection of nonlinear behavior (DNB) [11]. On the basis of 
bispectrum, [12] and [13] proposed the definitions of 
bicoherence spectrum and inverted bispectrum, respectively. 
Since then, scholars have proposed different statistical 
indicators based on HOS for DNB. 

In the field of power systems, inspired by the above ideas, as 
early as 1995, researchers have proved that bispectral analysis 
can be introduced into fault identification and condition 
monitoring of three-phase induction motors to analyze and 
identify motor asymmetric faults and stator winding failure [14]. 
Since then, the research on fault diagnosis using HOS has 
achieved fruitful results. Reference [15] detected and identified 
asymmetric faults in induction motors by measuring vibration 
data and analyzing motor nonlinearity using the bicoherence 
spectrum. In [16], considering the Gaussian noise and non-
Gaussian noise of mechanical signals, a new rolling bearing 
detection method was proposed, which integrated bispectral 
analysis and improved ensemble empirical mode 
decomposition.  

In wind farms, [17] used a modulated signal bispectrum 
detector to diagnose bearing faults of wind turbines for doubly-
fed induction generator wind turbines. [18] used bispectral 
analysis to identify single-point defects in rolling bearings. [19]  
proposed an improved signal separation method based on the 
Vold Kalman filter and the HOS analysis for rotating 
mechanical systems under strong background noise.  
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However, the current application of bispectral analysis mainly 
focuses on the mechanical defects of the power system, and 
there are few studies analyze the nonlinearity of the control 
system in the power system or specifically in wind farms. 
Meanwhile, the voltage source converter (VSC) is an essential 
component of wind turbines and static var generators (SVGs). 
To apply HOS in the control system of VSCs in wind farms for 
DNB, four aspects need to be considered:  

1) whether the nonlinearity of the VSC control system can 
still be characterized by HOS and which HOS should be used;  

2) how to figure out the characteristics with only the 
waveform collected at the terminal of the VSC;  

3) how to detect the nonlinear behavior caused by the bilateral 
or unilateral saturation hard limits, which is considered the 
source of nonlinearity in this paper;  

4) how to improve the effectiveness and quality of the 
spectrum.  

This paper attempts to give an analytical proof of the 
effectiveness of HOS applied in DNB of the VSC control.  

The remainder of this paper is organized as follows. Section 
II extends the traditional describing function and analyzes two 
types of hard limits. In Section III, HOS is introduced. In 
Section IV, the VSC control system is modeled and DNB based 
on HOS is studied and strictly proved. The detailed calculation 
process for DNB in the VSC control system is described in 
Section V, and its effectiveness is proved through case studies 
in Section VI. Finally, conclusions derived from this paper is 
presented in Section VII. 

II. ANALYSIS OF HARMONIC CHARACTERISTICS OF HARD 
LIMIT 

The describing function (DF) [20] has been effectively used 
to analyze the characteristics of sustained oscillations (or limit 
cycles) caused by nonlinearities. In the traditional DF, only the 
first-order Fourier series of the oscillation is reserved. In DNB, 
however, the higher-order characteristics are needed to tell 
apart the sustained oscillations induced by hard limits and 
negatively damped oscillations induced by incorrectly 
configured control parameters. So, the DF method is introduced 
and extended in this section, and the harmonic characteristics 
of the bilateral and unilateral saturation hard limit are discussed. 

A. The Extended DF 
As shown in Fig. 1, assume that the input signal of the studied 

nonlinear part is a sinusoidal signal which is described as 
 ( ) sinx t A tω=  (1) 

where 𝐴𝐴 and 𝜔𝜔 are the amplitude and the frequency of the input 
sinusoidal signal, respectively.  

( )x t ( )y t
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Fig. 1.  A typical hard limit with a sinusoidal input 

The output 𝑦𝑦(𝑡𝑡) of the hard limit is a periodic non-sinusoidal 

signal, which can be expanded into a Fourier series as 

 ( ) ( )0
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n
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∞
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where 𝐴𝐴0 is the magnitude of the DC component; 𝐴𝐴𝑛𝑛  and 𝐵𝐵𝑛𝑛 
are the cosine part and sine part of the magnitude of the n-th 
Fourier harmonics, respectively.  

In the traditional DF-based analysis method, the nonlinear 
part is considered oddly symmetrical and the linear part of the 
system is considered to be low-pass. Then 𝐴𝐴0 = 0 is derived 
and 𝑦𝑦(𝑡𝑡) can be approximated as 
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The ratio of the first-order Fourier series of 𝑦𝑦(𝑡𝑡)  and the 
magnitude of the input signal is defined as the DF of the 
nonlinear part: 

 ( ) 11 jYN A e
A

ϕ=  (5) 

To extend the DF method, the higher-order harmonics 𝐴𝐴𝑛𝑛 and 
𝐵𝐵𝑛𝑛 in (2) are calculated as 
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B. Bilateral Saturation Hard Limit 
As shown in Fig. 2(a), when a sine wave goes through a 

bilateral saturation hard limit in time domain, its upper and 
lower part exceeding the limit is set at the limit value, which 
can be described as 
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where 𝐴𝐴 and 𝜔𝜔 are the amplitude and the frequency of the input 
sinusoidal signal, and 𝑎𝑎 (> 0) is the upper limit of the hard 
limit.  
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(a) bilateral-saturation     (b) unilateral-saturation 

Fig. 2.  Time-domain characteristics of bilateral-saturation and unilateral-
saturation hard limits 
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The bilateral hard limit is oddly symmetrical, and the output 
periodic signal is an odd function, so the coefficients of the DC 
component and the cosine components in the Fourier series are 
0, i.e., 𝐴𝐴𝑛𝑛 = 0 (𝑛𝑛 = 0,1,2, … ) . According to (4), the sine 
fundamental component of the output can be derived as 
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The n-th components are calculated similarly and the results 
show that only 

 ( )2 1 0 0,1,2,nB n+ ≠ =   (9) 

The detailed calculation results can be referred to Table A in 
the appendix. 

C. Unilateral Saturation Hard Limit 
As shown in Fig. 2 (b), when a sine wave goes through a 

unilateral saturation hard limit in the time domain, its upper (or 
lower, depending on the actual situation) part exceeding the 
limit is set at the limit value, which can be described as 
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where 𝐴𝐴, 𝐴𝐴0 and 𝜔𝜔 are the amplitude, offset and the frequency 
of the input sinusoidal signal, and 𝐴𝐴0 + 𝑎𝑎 is the upper limit of 
the hard limit.  

Similar to II.B, the n-th components can be calculated and the 
results show that 
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The detailed calculation results can be referred to Table B in the 
appendix. 

III. HOS ANALYSIS 
In order to analyze the harmonic characteristics of nonlinear 

parts, the definition of HOS is introduced in this section. The 
eigenfunction method is one of the important tools of statistical 
analysis, which can easily lead to the definition of higher-order 
moments and higher-order cumulants.  

The first joint eigenfunction of 𝑘𝑘  continuous random 
variables 𝑥𝑥1,⋯ , 𝑥𝑥𝑘𝑘 is defined as  
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where 𝑓𝑓(·) is the probability density function. 
The k-order moments and k-order cumulants of 𝑘𝑘  random 

variables are derived respectively as 
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For a stationary continuous random signal 𝑥𝑥(𝑡𝑡) , set 𝑥𝑥1 =
𝑥𝑥(𝑡𝑡), 𝑥𝑥2 = 𝑥𝑥(𝑡𝑡 + 𝜏𝜏1),⋯ , 𝑥𝑥𝑘𝑘 = 𝑥𝑥(𝑡𝑡 + 𝜏𝜏𝑘𝑘−1)  in (14), then the 
kth-order cumulant of the random signal 𝑥𝑥(𝑡𝑡) is represented as 

 ( ) ( ) ( ) ( )1 1 1 1, , , , ,kx k kc cum x t x t x tτ τ τ τ− −= + +   

 (15) 

The k-order cumulant spectrum is defined as the (k-1)-
dimensional discrete Fourier transform of the k-order cumulant, 
which is calculated as 
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Generally, the higher-order cumulant spectrum is simply 
referred to as the higher-order spectrum. In particular, the third-
order spectrum  𝑆𝑆3𝑥𝑥(𝜔𝜔1,𝜔𝜔2) is called bispectrum because it is 
an energy spectrum of two frequencies, and is represented by 
𝐵𝐵(𝜔𝜔1,𝜔𝜔2) in this paper. Likewise, the fourth-order spectrum 
𝑆𝑆4𝑥𝑥(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) is referred to as the trispectrum, herein denoted 
by 𝑇𝑇(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3). 

IV. DNB OF VSC CONTROL SYSTEM 

A. Modeling of VSC Control System 
A typical direct-drive wind farm has 30–60 generators. 

Several direct-drive permanent magnet synchronous generators 
(PMSGs)  are connected, forming a string structure. Then 
several strings are attached to PCC and finally to the main grid 
through a series of boosting transformers and transmission lines 
(which is equivalent to a set of impedances) [21]. Fig. 3 is the 
schematic of a typical direct-drive wind generator, which 
consists of a wind turbine, a PMSG, and a full-power converter 
(including machine- and grid-side converters).  
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PMSG Full Power 
Converter

GridFilter Circuit

 
Fig. 3.  Structure of a typical direct-drive wind generator. 

As the machine-side converter adopts maximum power 
tracking control, its interaction with the grid is small. As noted 
by [22] and [23], the grid-related oscillation dynamics strongly 
depend on the DC capacitor and grid-side converter but are 
weakly affected by the wind turbine, PMSG, and machine-side 
converter. Therefore, the machine-side component (including 
the wind turbine, PMSG, and machine-side converter) is 
equivalent to a power source that outputs wind power received 
by the wind turbine and the grid-side converter is modeled as a 
VSC with its corresponding control system.  

Meanwhile, the static reactive power compensation 
equipment such as static VAR generator (SVG) is usually 
installed in wind farms. The SVG model in this paper adopts a 
double closed-loop control strategy. The d-axis control loop 
stabilizes the DC bus voltage, and the q-axis control loop varies 
according to the control mode. When a SVG operates in a 
constant-voltage control mode, the control target of this loop is 
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the terminal voltage; when it operates in constant reactive 
power control mode, the control target of this loop is output 
reactive power. The SVG is hereby modeled as a VSC with its 
corresponding control system.  

So far, we obtain a unified VSC control system for both 
PMSGs and SVGs in wind farms. The only difference is the 
choice of the control targets in the d-axis and the q-axis control 
loop, as is shown in Fig. 4. In this paper, 4 hard limits are 
considered as the nonlinear parts: 2 in the inner control loop of 
current and 2 in the outer control loop of voltage.  
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Fig. 4.  Structure of VSC control systems. 

The meanings of the symbols in Fig. 4 are as follows: 
𝑣𝑣𝑑𝑑𝑑𝑑 (or  𝑃𝑃 ) and 𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑∗  (or 𝑃𝑃𝑑𝑑∗ ) are the measurement and the 
reference of the DC bus voltage (or DC power), respectively; 
𝑣𝑣𝑑𝑑  (or 𝑄𝑄 ) and 𝑣𝑣𝑑𝑑𝑑𝑑∗  (or 𝑄𝑄𝑑𝑑∗ ) are the measurement and the 
reference of the d-axis terminal voltage (or the output reactive 
power), respectively; 𝑖𝑖𝑑𝑑 and 𝑖𝑖𝑞𝑞  are the d axis component and q 
axis component of the output current of the grid-side converter, 
respectively; 𝑒𝑒𝑑𝑑  and 𝑒𝑒𝑞𝑞  are the d axis component and q axis 
component of the fundamental output voltage of the grid-side 
converter, respectively; 𝑉𝑉’ , 𝑉𝑉  and 𝑉𝑉𝑔𝑔  are the phase voltage 
amplitude of the terminal, the PCC and the grid, respectively; 𝛿𝛿 
is the output angle of the PLL; 𝑅𝑅1 and 𝐿𝐿1  (or 𝑅𝑅2 and 𝐿𝐿2) are the 
equivalent resistance and inductance of the transformer and the 
transmission line between the terminal and PCC, respectively; 
𝑅𝑅𝑔𝑔 and 𝐿𝐿𝑔𝑔 are the equivalent resistance and inductance of the 
transmission line between PCC and the grid, respectively. 

B. Elimination of the Effects from Linear Parts 
While the nonlinear parts take effect inside the control system, 

the accident waveform record collected from the phasor 
measurement unit (PMU) offers only the voltage and current 
information at the terminal of the VSC. Therefore, it’s 
necessary to derive the relationship between the HOS of the 
hard limit output and that of the terminal electrical quantities.  

When the hard limit in the d-axis inner control loop of current 
takes effect, the output �̅�𝑣𝑑𝑑  is produced by the nonlinear part 
after PI. Assume the phase-locked loop (PLL) performs well 
and the VSC keeps synchronized with the system, then the d-
axis frame model of the main circuit is written as 

 ( ) 0d d d qv v sL R i L iω′∆ − ∆ = + ∆ − ∆  (17) 

Ignoring the dynamics of the PWM, assume 𝑣𝑣𝑑𝑑′ = 𝑒𝑒𝑑𝑑∗ , then the 
relationship between �̅�𝑣𝑑𝑑 and 𝑣𝑣𝑑𝑑′  is derived as 

 0d q ddv v L i vω= ∆ − ∆ + ∆′∆  (18) 

Combining (17) and (18), we get the relationship between 𝑖𝑖𝑑𝑑 
and �̅�𝑣𝑑𝑑 as 

 
1

ddi sL R
v=

+
∆∆  (19) 

Similarly, when the hard limit in the q-axis inner control loop 
of current takes effect, the relationship between 𝑖𝑖𝑞𝑞  and �̅�𝑣𝑞𝑞 
stands as 

 
1

qqi sL R
v=

+
∆∆  (20) 

When the hard limit in the d-axis outer control loop of voltage 
takes effect, the output 𝑖𝑖𝑑𝑑 is produced by the nonlinear part after 
PI. (18) turns into  

 ( ) 0( )d i d d q dG s i i L vv iω= ⋅ ∆ − ∆ − ∆ + ∆′∆  (21) 

Combining  (17) and(21), we get the relationship between 𝑖𝑖𝑑𝑑 
and  𝑖𝑖𝑑𝑑 as 

 d
i

d
i

G i
G

i
sL R

∆
+
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+
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where 𝐺𝐺𝑖𝑖 is the transfer function of the inner control loop of 
current. Similarly, when the hard limit in the q-axis outer 
control loop of voltage takes effect, the relationship between 𝑖𝑖𝑞𝑞 
and 𝑖𝑖𝑞𝑞 stands as 

 q
i

q
i

G i
G

i
sL R

∆
+

∆=
+

 (23) 

Therefore, combining (19), (20), (22) and (23), the output of 
the nonlinear part in the control system can always be obtained 
from the current measured at the terminal after going through a 
linear part. To eliminate the effects of linear parts on the HOS 
of the terminal current, consider the system in Fig. 5, with the 
input 𝑒𝑒(𝑛𝑛) and the output 𝑦𝑦(𝑛𝑛). 𝐻𝐻(𝑧𝑧) represents a linear time-
invariant part.  

( )H z
( )e n ( )y n

 
Fig. 5.  A typical linear system. 

Combining the definition and properties of the HOS, it can be 
proved that the following relationship exists between the HOS 
of 𝑒𝑒(𝑛𝑛) and 𝑦𝑦(𝑛𝑛): 

 ( ) ( ) ( ) ( ) ( )*
1 1 1 1 1 1 1 1, , , ,ky k ke k k kS S H H Hω ω ω ω ω ω ω ω− − − −= + +   

 (24) 

where 𝑆𝑆𝑘𝑘𝑘𝑘(𝜔𝜔1,⋯ ,𝜔𝜔𝑘𝑘−1) and 𝑆𝑆𝑘𝑘𝑘𝑘(𝜔𝜔1,⋯ ,𝜔𝜔𝑘𝑘−1) are the k-order 
cumulant spectrum of 𝑒𝑒(𝑛𝑛)the 𝑦𝑦(𝑛𝑛), respectively, and 𝐻𝐻(𝜔𝜔) is 
the continuous transfer function of 𝐻𝐻(𝑧𝑧). Let 𝑘𝑘 = 2,3 in (24), 
we get 

 ( ) ( ) ( ) 2
y eP P Hω ω ω=  (25) 

 ( ) ( ) ( ) ( ) ( )*
1 2 1 2 1 2 1 2, ,y eB B H H Hω ω ω ω ω ω ω ω= +  (26) 

Define 𝑏𝑏𝑖𝑖𝑏𝑏(𝜔𝜔1,𝜔𝜔2) as the bicoherence at the frequency pair 
(𝜔𝜔1,𝜔𝜔2), which is calculated as 

 ( ) ( )
( ) ( ) ( )

1 2
1 2

1 2 1 2

,
,

B
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P P P
ω ω

ω ω
ω ω ω ω

=
+

 (27) 

Combining (25), (26) and (27), it can be proved that  
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 ( ) ( )1 2 1 2, ,y ebic bicω ω ω ω=  (28) 

Define tricoherence 𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) as 
 ( ) ( )

( ) ( ) ( ) ( )
1 2 3

1 2 3
1 2 3 1 2 3

, ,
, ,

T
tric

P P P P

ω ω ω
ω ω ω

ω ω ω ω ω ω
=

+ +
 (29) 

Similarly, it can be proved that 𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) =
𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3).  

From the above deduction, it is clear that the linear part does 
not change the bicoherence and the tricoherence of the system. 
Combining (19), (20), (22) and (23), by measuring the 
waveform of 𝑖𝑖𝑑𝑑  and 𝑖𝑖𝑞𝑞  at the terminal of the VSC and 
performing HOS analysis on them, the nonlinearity of the VSC 
system can be detected. 

C. Bicoherence Spectrum and Unilateral Saturation Hard 
Limit Detection 

From the results in II.C, when the self-sustained oscillation 
occurs, the output 𝑦𝑦  of the unilateral saturation hard limit 
contains the second harmonic of the oscillation frequency with 
the same phase as that of the fundamental frequency. Without 
loss of generality, let its initial phase be 0, i.e.,  

 ( ) 1 2sin 2 sin 2 2y t B ft B ftπ π= + ⋅  (30) 

where 𝑓𝑓 is the oscillation frequency. 𝐵𝐵1 and 𝐵𝐵2 are the cosine 
parts of the magnitude of the fundamental and second Fourier 
harmonics, respectively.  

The Fourier transform is performed twice on the second-order 
autocorrelation function of 𝑦𝑦(𝑡𝑡)  and then the bispectrum of 
𝑦𝑦(𝑡𝑡) can be derived as 

 ( ) ( ) ( ) ( ) ( )1 2 3
1/ 2

1 2 1 2 1 20
,

f j
yB f y t y t y t dt e d dπ ω ω ωω ω τ τ τ τ

∞ ∞ − + +

−∞ −∞
= + + ×∫ ∫ ∫  (31) 
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Fig. 6.  Symmetric region of bispectrum.  

A bispectrum has 12 symmetry regions [24], as shown in Fig. 
6. Therefore, it is possible to take a symmetrical area in the 
result of 𝐵𝐵𝑘𝑘(𝜔𝜔1,𝜔𝜔2) for analysis, to completely describe the 
whole bispectrum. Considering {(𝜔𝜔1,𝜔𝜔2)|0 ≤ 𝜔𝜔1 ≤ 𝜔𝜔2} , 
𝐵𝐵𝑘𝑘(𝜔𝜔1,𝜔𝜔2) is calculated as 

 ( ) ( ) ( )2
1 2 11 22 2, B B 2

4y i f fB π δ ω δω ω π ω π− −=  (32) 

where 𝛿𝛿(⋅) is the Dirac Delta function, which is described as 
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∫
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𝛿𝛿(𝑥𝑥) is a finite maximum at 𝑥𝑥 = 0 when the input signal is 
discretized. So in (32), if and only if 𝜔𝜔1 = 𝜔𝜔2 = 2𝜋𝜋𝑓𝑓 , 
𝐵𝐵𝑘𝑘(𝜔𝜔1,𝜔𝜔2) is a finite maximum, otherwise it is zero. Therefore, 
a peak can be observed at the x-y coordinate (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓) in the 
3-dimensional graph of ��𝜔𝜔1,𝜔𝜔2,𝐵𝐵𝑘𝑘(𝜔𝜔1,𝜔𝜔2)� |0 ≤ 𝜔𝜔1 ≤ 𝜔𝜔2�. 
Furthermore, considering symmetry, because (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓) is on 
the symmetry axis 𝜔𝜔1 = 𝜔𝜔2 , when the area is extended to 
{(𝜔𝜔1,𝜔𝜔2)|𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0} (Area 1 and 2 in Fig. 6), there is 
also only one peak at (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓). 

The power spectrum of 𝑦𝑦(𝑡𝑡) is derived as 
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From (27), (32) and (34), the bicoherence spectrum (in 
{(𝜔𝜔1,𝜔𝜔2)|𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0}) can be calculated as 
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Considering 𝔽𝔽−1�𝛿𝛿(𝜔𝜔)� = 1
√2𝜋𝜋

, it can be proved that if and only 
if 𝜔𝜔1 = 𝜔𝜔2 = 2𝜋𝜋𝑓𝑓, the bicoherence spectrum of 𝑦𝑦(𝑡𝑡) reaches 
its peak, which is calculated as 
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Obviously, 𝑏𝑏𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2) ≥ 0 in (35). Therefore, the range of 
the corresponding bicoherence value of each x-y coordinate in 
the bicoherence spectrum is [0,1]. The larger the bicoherence 
value, the stronger the nonlinear phase coupling between the 
two frequencies corresponding to the coordinate, that is, the 
stronger the nonlinearity. 

In (30), when 𝑦𝑦(𝑡𝑡) extends to 𝑦𝑦(𝑡𝑡) = ∑ 𝐵𝐵𝑛𝑛 sin 2𝜋𝜋 ⋅ 𝑛𝑛𝑓𝑓𝑡𝑡+∞
𝑛𝑛=1 , 

similarly, it can be proved that in the 3-dimensional graph of 
��𝜔𝜔1,𝜔𝜔2,𝑏𝑏𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2)� |𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0�, peaks exist at the 
x-y coordinate (𝑖𝑖 ∙ 2𝜋𝜋𝑓𝑓, 𝑗𝑗 ∙ 2𝜋𝜋𝑓𝑓)(𝑖𝑖, 𝑗𝑗 = 1,2,3, … ) , and their 
corresponding bicoherence value also equals to 1. Furthermore, 
it can be proved that when 𝑦𝑦(𝑡𝑡) = ∑ 𝐴𝐴2𝑛𝑛 cos 2𝜋𝜋 ⋅ 2𝑛𝑛𝑓𝑓𝑡𝑡+∞

𝑛𝑛=1 +
∑ 𝐵𝐵2𝑛𝑛+1sin2𝜋𝜋 ⋅ (2𝑛𝑛 + 1)𝑓𝑓𝑡𝑡+∞
𝑛𝑛=0  according to (11), which 

accurately represents the output of the unilateral saturation hard 
limit, the conclusion remains the same. 

D. Tricoherence Spectrum and Bilateral Saturation Hard 
Limit Detection 

From the results in II.B, when the self-sustained oscillation 
occurs, the output 𝑦𝑦  of the bilateral saturation hard limit 
contains the 3-rd and 5-th harmonics of the oscillation 
frequency with the same phase as that of the fundamental 
frequency. Without loss of generality, let its initial phase be 0, 
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i.e.,  
 ( ) 1 3 5sin 2 sin 2 3 sin 2 5y t B ft B ft B ftπ π π= + ⋅ + ⋅  (37) 

where 𝑓𝑓  is the oscillation frequency. 𝐵𝐵1 , 𝐵𝐵3  and 𝐵𝐵5  are the 
cosine parts of the magnitude of the fundamental, 3-rd and 5-th 
Fourier harmonics, respectively.  

The Fourier transform is performed three times on the third-
order autocorrelation function of 𝑦𝑦(𝑡𝑡) and then the trispectrum 
of 𝑦𝑦(𝑡𝑡) can be derived as 
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A trispectrum has 96 symmetry regions [24]. Therefore, it is 
possible to take a symmetrical area in the result of 
𝑇𝑇𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) for analysis, to completely describe the whole 
trispectrum. Considering {(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3)|0 ≤ 𝜔𝜔1 ≤ 𝜔𝜔2 ≤ 𝜔𝜔3} , 
𝑇𝑇𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) is calculated as 
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 (39) 

If and only if 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓 or 𝜔𝜔1 = 𝜔𝜔2 = 2𝜋𝜋𝑓𝑓,𝜔𝜔3 =
6𝜋𝜋𝑓𝑓, 𝑇𝑇𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) is a finite maximum, otherwise it is zero. 
Therefore, two peaks can be observed at the x-y-z coordinate 
(2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓)  and (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓, 6𝜋𝜋𝑓𝑓)  in the 4-dimensional 
graph of ��𝜔𝜔1,𝜔𝜔2,𝜔𝜔3,𝑇𝑇𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3)� |0 ≤ 𝜔𝜔1 ≤ 𝜔𝜔2 ≤ 𝜔𝜔3� . 
To make it easier to generate intuitive graphs, when the area is 
extended to {(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3)|𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0,𝜔𝜔3 ≥ 0}, there will 
be 4 peaks at (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓) , (2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓, 6𝜋𝜋𝑓𝑓) , 
(2𝜋𝜋𝑓𝑓, 6𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓) and (6𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓, 2𝜋𝜋𝑓𝑓). 

The power spectrum of 𝑦𝑦(𝑡𝑡) is derived as 
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From (39) and (40), the tricoherence spectrum (in 
{(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3)|𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0,𝜔𝜔3 ≥ 0}) can be calculated as 
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In (41), if and only if 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓 , 𝜔𝜔1 = 𝜔𝜔2 =
2𝜋𝜋𝑓𝑓,𝜔𝜔3 = 6𝜋𝜋𝑓𝑓 , 𝜔𝜔1 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓,𝜔𝜔2 = 6𝜋𝜋𝑓𝑓  or 𝜔𝜔2 = 𝜔𝜔3 =
2𝜋𝜋𝑓𝑓,𝜔𝜔1 = 6𝜋𝜋𝑓𝑓, the tricoherence spectrum of 𝑦𝑦(𝑡𝑡) reaches its 
peak. 

When 𝜔𝜔1 = 𝜔𝜔2 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓, it is calculated as 
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When 𝜔𝜔1 = 𝜔𝜔2 = 2𝜋𝜋𝑓𝑓,𝜔𝜔3 = 6𝜋𝜋𝑓𝑓 , 𝜔𝜔1 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓,𝜔𝜔2 =
6𝜋𝜋𝑓𝑓 or 𝜔𝜔2 = 𝜔𝜔3 = 2𝜋𝜋𝑓𝑓,𝜔𝜔1 = 6𝜋𝜋𝑓𝑓, it is calculated as 
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 (43) 

Obviously, 𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3) ≥ 0  in (41). Therefore, the 
range of the corresponding tricoherence value of each x-y-z 
coordinate in the tricoherence spectrum is [0,1]. The larger the 
tricoherence value, the stronger the nonlinear phase coupling 
among the three frequencies corresponding to the coordinate, 
that is, the stronger the nonlinearity. 

In (37), when 𝑦𝑦(𝑡𝑡)  extends to 𝑦𝑦(𝑡𝑡) = ∑ 𝐵𝐵2𝑛𝑛+1 sin 2𝜋𝜋 ⋅+∞
𝑛𝑛=0

(2𝑛𝑛 + 1)𝑓𝑓𝑡𝑡 according to (9), which accurately represents the 
output of the bilateral saturation hard limit, similarly, it can be 
proved that in the 4-dimensional graph of 
��𝜔𝜔1,𝜔𝜔2,𝜔𝜔3, 𝑡𝑡𝑡𝑡𝑖𝑖𝑏𝑏𝑘𝑘(𝜔𝜔1,𝜔𝜔2,𝜔𝜔3)� |𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0,𝜔𝜔3 ≥ 0� , 
peaks exist at the x-y-z coordinate �(2𝑖𝑖 + 1) ∙ 2𝜋𝜋𝑓𝑓, (2𝑗𝑗 + 1) ∙
2𝜋𝜋𝑓𝑓, (2𝑘𝑘 + 1) ∙ 2𝜋𝜋𝑓𝑓�(𝑖𝑖, 𝑗𝑗, 𝑘𝑘 = 0,1,2,3, … ). 

E. Nonlinearity Detection and Classification of VSC Control 
System 

To sum up, from IV.B, the nonlinearity inside the VSC 
control system can be detected by transforming the current 
waveform into 𝑖𝑖𝑑𝑑  and 𝑖𝑖𝑞𝑞  at the terminal of the VSC and 
performing HOS (i.e., bicoherence/tricoherence) analysis on 
them. The nonlinearity of 𝑖𝑖𝑑𝑑  represents the nonlinearity in d-
axis control loop of the VSC control system, while the 
nonlinearity of 𝑖𝑖𝑞𝑞 represents the nonlinearity in q-axis. 

Combining the conclusions in IV.C and IV.D, Table I is 
summarized. Essentially, the bicoherence spectrum is applied 
to detect “phase coupling” in the analyzed signal, which means 
there exist harmonics whose frequencies 𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓3  and 
phases 𝜑𝜑1 + 𝜑𝜑2 = 𝜑𝜑3  are satisfied at the same time. 
Meanwhile, the tricoherence spectrum is applied to detect if  
𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 = 𝑓𝑓4 and 𝜑𝜑1 + 𝜑𝜑2 + 𝜑𝜑3 = 𝜑𝜑4 are both satisfied. It 
is worth noting that the phase equation is actually a sufficient 
and unnecessary condition of the phase coupling phenomenon, 
which will be explained in detail in the case study. 

As is shown in Table I, the output of the unilateral saturation 
hard limit contains each order harmonic, so it satisfies both 
quadratic and cubic phase coupling, which means peaks exist 
both in its bicoherence and tricoherence spectrums. As a result, 
the bicoherence spectrum should be first examined, and then the 
tricoherence spectrum. The nonlinearity can be judged and 
classified as shown in Fig. 7. 

TABLE I 
CHARACTERISTICS OF BICOHERENCE AND TRICOHERENCE 

 Phase 
Coupling 

Unilateral 
Saturation 

Bilateral 
Saturation 

Fourier 
Series / 

𝑦𝑦(𝑡𝑡) =
∑ 𝐴𝐴2𝑛𝑛 cos 2𝜋𝜋 ⋅+∞
𝑛𝑛=1

2𝑛𝑛𝑓𝑓𝑡𝑡 +
∑ 𝐵𝐵2𝑛𝑛+1sin2𝜋𝜋 ⋅+∞
𝑛𝑛=0

(2𝑛𝑛 + 1)𝑓𝑓𝑡𝑡  

𝑦𝑦(𝑡𝑡) =
∑ 𝐵𝐵2𝑛𝑛+1 sin 2𝜋𝜋 ⋅+∞
𝑛𝑛=0

(2𝑛𝑛 + 1)𝑓𝑓𝑡𝑡  

Bicoherence 
𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓3 
𝜑𝜑1 + 𝜑𝜑2
= 𝜑𝜑3 

peaks no peaks 

Tricoherence 
𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3
= 𝑓𝑓4 
𝜑𝜑1 + 𝜑𝜑2
+ 𝜑𝜑3 = 𝜑𝜑4 

peaks peaks 
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Fig. 7.  Flow chart of nonlinearity detection and classification.  

V. CALCULATION PROCESS FOR DNB OF VSC CONTROL 
SYSTEM 

In this section, the specific procedure for applying DNB to the 
VSC control system in engineering based on the theoretical 
analysis in the previous section.  

To get the time series for calculation, first collect the accident 
waveform record of current at the terminal of the VSC. The 
studied signals 𝑥𝑥𝑎𝑎(𝑘𝑘), 𝑥𝑥𝑏𝑏(𝑘𝑘) and 𝑥𝑥𝑑𝑑(𝑘𝑘) are sampled from the 
three-phase currents 𝑖𝑖𝑎𝑎(𝑡𝑡), 𝑖𝑖𝑏𝑏(𝑡𝑡) and 𝑖𝑖𝑑𝑑(𝑡𝑡). Start sampling from 
the initial time 𝑡𝑡0 and set the sampling interval to 𝛥𝛥𝑡𝑡. Denote 
the sampling point with 𝑘𝑘 and the sample length is 𝐿𝐿, i.e.,  
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Step 1: Perform dq transformation on the three-phase 
sampling signals 𝑥𝑥𝑎𝑎(𝑘𝑘), 𝑥𝑥𝑏𝑏(𝑘𝑘) and 𝑥𝑥𝑑𝑑(𝑘𝑘) and the initial phase 
𝜃𝜃0 can be obtained by applying a PLL algorithm. 
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 (45) 

where 𝜃𝜃(𝑘𝑘) = 𝜔𝜔0𝑘𝑘𝛥𝛥𝑡𝑡 + 𝜃𝜃0, and 𝑥𝑥𝑑𝑑(𝑘𝑘), 𝑥𝑥𝑞𝑞(𝑘𝑘) and 𝑥𝑥0(𝑘𝑘) are 
the transformation results in dq0 coordinate system. 

Step 2:  Take the transformation result 𝑥𝑥𝑑𝑑(𝑘𝑘) of the previous 
step as the subsequent signal processing object, i.e., 

 ( ) ( )dx k x k=  (46) 

Step 3: Divide 𝑥𝑥(𝑘𝑘)  into 𝑀𝑀  segments, and each segment 
length is 𝑁𝑁 (𝐿𝐿 = 𝑀𝑀 × 𝑁𝑁). Record each segment as 𝑥𝑥(𝑖𝑖)(𝑙𝑙)(𝑖𝑖 =
1,⋯ ,𝑀𝑀; 𝑙𝑙 = 1,⋯ ,𝑁𝑁). 

Step 4: Select an appropriate window function, such as a 
Hanning window, which is described as 

 ( ) 1 1 cos 2
2 1

lw l
N

π  = + ⋅  −  
 (47) 

Multiply each segment of the signal by the window function, 
and use the obtained results 𝑥𝑥′(𝑖𝑖)(𝑙𝑙) for subsequent calculations 
to reduce leakage errors: 

 ( ) ( ) ( ) ( ) ( )' i i lx wl x l= ⋅  (48) 

Step 5: For each segment 𝑥𝑥′(𝑖𝑖)(𝑙𝑙), subtract its mean: 
 ( ) ( ) ( ) ( ) ( ) ( )ˆ 'i i ix l x l x l= −  (49) 

Step 6: Perform the Fast Fourier Transform (FFT) on each 
segment 𝑥𝑥′(𝑖𝑖)(𝑙𝑙): 

 ( ) ( ) ( ) 2 /

1

1 ˆ 1, , / 2 1, ,
N

i i i kl N
k

l
X x l e k N i M

N
π−

=

= = =∑  ，  (50) 

Step 7: Deal with the FFT results. Take a small parameter 𝜎𝜎 
(such as 𝜎𝜎 = 0.001), traverse 𝑖𝑖 = 1,⋯ ,𝑀𝑀, for any 𝑘𝑘, if 𝑋𝑋𝑘𝑘

(𝑖𝑖) <
𝜎𝜎 max
𝑘𝑘=1,⋯,𝑁𝑁/2

�𝑋𝑋𝑘𝑘
(𝑖𝑖)�, then let 𝑋𝑋𝑘𝑘

(𝑖𝑖) = 𝜎𝜎2 max
𝑘𝑘=1,⋯,𝑁𝑁/2

�𝑋𝑋𝑘𝑘
(𝑖𝑖)�. This step 

can further increase the difference of the order of magnitude 
between the white noise and the peak value in the spectrum, so 
the judgment and analysis of the peak value will not be affected 
by the appearance of values close to 0

0
 in the area other than the 

peaks in the bicoherence spectrum. 
Step 8: The estimated values of the power spectrum, 

bispectrum and trispectrum of 𝑥𝑥(𝑡𝑡) are calculated as 
 ( ) ( ) ( )*
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Step 9: Calculate the bicoherence spectrum: 

 ( )
( )

( ) ( ) ( )

ˆ ,ˆ ,
ˆ ˆ ˆ
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=

+
 (54) 

Step 10: The obtained bicoherence spectrum is a 3-
dimensional graph whose x-y coordinates are the frequencies 
(𝑚𝑚,𝑛𝑛), and the 𝑧𝑧 coordinate is the corresponding bicoherence 
value whose theoretical value range is [0,1]. 

Step 11: Calculate the tricoherence spectrum: 

 ( )
( )

( ) ( ) ( ) ( )

ˆ , ,
ˆ , ,

ˆ ˆ ˆ ˆ
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 (55) 

Step 12: Define 𝜎𝜎𝑏𝑏 as the nonlinear threshold (preferably 0.3). 
A peak in the bicoherence or tricoherence spectrum whose 
value is greater than 𝜎𝜎𝑏𝑏 (generally close to 1) is considered to 
characterize the existence of a quadratic or cubic phase 
coupling, and the coordinates of the peak represent the 
corresponding frequencies. The judgement and classification of 
the nonlinearity can be completed following the process in Fig. 
7.  

Step 13: The steps above implement DNB on the d-axis 
control loop of the VSC control system. To study the q-axis 
control loop, back to Step 2, let 𝑥𝑥(𝑘𝑘) = 𝑥𝑥𝑞𝑞(𝑘𝑘) and repeat Step 
3-Step 12.  

After applying the procedure above, the nonlinear behavior 
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caused by the bilateral or unilateral saturation hard limits in the 
d- or q-axis control loop can be detected. Among the steps, there 
are several treatments to increase the resolution and 
effectiveness of HOS: Step 4 is to reduce spectrum leakage, 
Step 6 is to eliminate the effect of random phases and Step 7 
adds credibility to the presence of peaks. 

VI. CASE STUDY 
In this section, three cases will be illustrated and discussed.  
Case 1 depicts an artificially constructed signal, which is 

abstracted from the harmonic characteristics of the unilateral 
saturation hard limit in II.C, to further discuss if 𝜑𝜑1 + 𝜑𝜑2 = 𝜑𝜑3 
is a necessary condition of phase coupling in HOS.  

Case 2 sets up a grid-connected PMSG model to prove the 
effectiveness of the proposed process in detecting nonlinearity 
from a unilateral saturation hard limit by collecting accident 
waveform records at the terminal of VSCs. In the same case, 
nonlinearity from a bilateral saturation hard limit is detected 
using a tricoherence spectrum. 

Case 3 sets up an IEEE 9-bus system with three SVGs and 
one SVC, where the self-sustained oscillation is induced by two 
SVGs, to demonstrate that HOS can only detect the presence of 
nonlinearity but can’t locate the source of nonlinear oscillation. 

A. Case 1 
Considering the following signal: 
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 (56) 

where 𝑓𝑓1 = 0.6381 𝐻𝐻𝑧𝑧, 𝑓𝑓2 = 0.8345 𝐻𝐻𝑧𝑧, 𝑓𝑓3 = 𝑓𝑓1 + 𝑓𝑓2 and 
𝑤𝑤𝑖𝑖(𝑛𝑛)(𝑖𝑖 = 1,2,3) is -20 dB Gaussian white noise.  

In (56), let 𝜑𝜑1 = 𝜑𝜑2 = 𝜑𝜑3 = 0, recorded as 𝑥𝑥1(𝑛𝑛). Then, let 
𝜑𝜑1 = 𝜑𝜑2 = 0,𝜑𝜑3 = 𝜋𝜋/2 , recorded as 𝑥𝑥2(𝑛𝑛). 

Fig. 8(a) is the frequency spectrum of 𝑥𝑥1(𝑛𝑛) , from which 
three frequency components 𝑓𝑓1, 𝑓𝑓2 and 𝑓𝑓3 can be found, but the 
relationship among them can’t be determined. Fig. 8(b) is the 
bicoherence spectrum of 𝑥𝑥1(𝑛𝑛). Its peak appears at (𝑓𝑓1,𝑓𝑓2) and  
(𝑓𝑓2,𝑓𝑓1), and the peak value is 1.0, which means the power of 
the frequency component 𝑓𝑓3  entirely comes from quadratic 
phase coupling of 𝑓𝑓1  and 𝑓𝑓2 , which proves the conclusion in 
IV.C. 

Fig. 8(c) and Fig. 8(d) are the frequency spectrum and the 
bicoherence spectrum of  𝑥𝑥2(𝑛𝑛), which are almost the same as 
Fig. 8(a) and Fig. 8(b), respectively. In our initial setting, 
however, 𝜑𝜑1 + 𝜑𝜑2 = 𝜑𝜑3  in 𝑥𝑥1(𝑛𝑛) , while 𝜑𝜑1 + 𝜑𝜑2 ≠ 𝜑𝜑3  in 
𝑥𝑥2(𝑛𝑛).  

Most of the previous researches [25]–[27] consider quadratic 
phase coupling equivalent to 𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓3 and 𝜑𝜑1 + 𝜑𝜑2 = 𝜑𝜑3, 
which is actually a sufficient and unnecessary condition. As 
long as 𝜑𝜑1 + 𝜑𝜑2 keeps a fixed difference with 𝜑𝜑3 , i.e., 𝜑𝜑1 +
𝜑𝜑2 −  𝜑𝜑3 is constant, the phase coupling exists and peaks can 
be seen in the bicoherence spectrum. This conclusion is 
important because according to (11), the output of the unilateral 
saturation hard limit can be expressed as 
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 (57) 

Therefore, its peaks appear in the bicoherence spectrum like 
a “chessboard”, because any two integer multiples of the 
fundamental frequency have the property of quadratic phase 
coupling. Otherwise, if the bicoherence can only detect those 
satisfying  𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓3  and 𝜑𝜑1 + 𝜑𝜑2 = 𝜑𝜑3  at the same time, 
there will be no peaks in the bicoherence spectrum at all, which 
does not match the actual situation. 
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(a) Frequency spectrum of 𝑥𝑥1(𝑛𝑛)  (b) Bicoherence spectrum of 𝑥𝑥1(𝑛𝑛) 
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(c) Frequency spectrum of 𝑥𝑥1(𝑛𝑛)  (d) Bicoherence spectrum of 𝑥𝑥1(𝑛𝑛) 

Fig. 8.  Detection of quadratic phase coupling.  

B. Case 2 
Set up a detailed grid-connected PMSG model in 

PSCAD/EMTDC, the structure of the VSC control system is 
shown in Fig. 9. Adjust the parameters to make the hard limit 
of the PI in the d-axis outer control loop of voltage take effect. 
The setting of the parameters is listed in Table II.  

The simulation is implemented as follows: 
𝑡𝑡 = 0.0 𝑠𝑠: use a voltage source to charge the DC capacitor; in 

the initial state, the PMSG is off-grid and the active power and 
reactive power references are both 0. 
𝑡𝑡 =  0.2 𝑠𝑠: the DC capacitor side is switched to the power 

source, and the PMSG is connected to the grid. 
𝑡𝑡 =  1.0 𝑠𝑠: the active power is set to 0.34 MW. 
𝑡𝑡 =  2.0 𝑠𝑠: 𝐺𝐺𝑖𝑖(𝑠𝑠) is set to 0.2 +  20/𝑠𝑠. 
𝑡𝑡 =  4.0 𝑠𝑠: 𝐺𝐺𝑖𝑖(𝑠𝑠) is set to 0.012 +  12.5/𝑠𝑠. 
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Fig. 9.  The PMSG model for DNB. 
 
 

TABLE II 
PARAMETERS IN CONTROL BLOCKS OF PMSG  

Symbol Description Value 

Vg Grid line voltage 0.69 kV 

f0 Fundamental frequency 50 Hz 

PN Rated capacity of PMSG 1.5 MW 

HPLL(s) Phase-locked loop 500 + 900/s 

P Active power 0.34 MW 

C DC link capacitor 200 mF 

R Connection resistance 0.001Ω 

L Connection inductance 0.35 mH 

Rg Grid-side resistance 0.005Ω 

Lg Grid-side inductance 0.4 mH 

Gdc(s) DC-voltage controller 9 + 500/s 

Gq(s) Reactive power controller 0.3 + 50.28/s 

Gi(s) Inner-loop current controller 0.012 + 12.5/s 

Fig. 10 is the current reference 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 .With the parameters 
listed in Table II, after 𝑡𝑡 =  4.0 𝑠𝑠 , the system has a pair of 
characteristic roots on the right side of the imaginary axis, 
which induces a divergent oscillation. When the oscillation 
causes 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 to reach the hard limit of the PI in the d-axis outer 
control loop of voltage, it becomes unilateral saturated. 
Meanwhile, at PCC, an equal-amplitude self-sustained 
oscillation of 33.8Hz can be observed, as is shown in Fig. 11. 
Considering the transient process is short, the collected accident 
waveform record may only contain the equal-amplitude part, 
which is of superficial resemblance with the linear weakly-
damped oscillation. 

Fig. 12 is the bicoherence and power spectrums of 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 and 
𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The bicoherence spectrums are figured as contour maps, 
whose x-y axis range is restricted in {(𝑓𝑓1,𝑓𝑓2)|𝜔𝜔1 ≥ 0,𝜔𝜔2 ≥ 0}. 
As is shown in Fig. 12(a), the bicoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 
presents as a “chessboard”, which means quadratic phase 
coupling exists between any two integer multiples of the 
fundamental frequency. Normally, the transfer function of the 
VSC control system is lowpass, which can be seen by 
comparing Fig. 12(b) and Fig. 12(d). The bicoherence spectrum 

of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, however, still keeps the property of quadratic phase 
coupling, as is shown in Fig. 12(c). It is acceptable that the 
peaks of higher harmonics disappear because their amplitudes 
are too small to maintain distinction from background noise. 
Therefore, Fig. 12(c) proves that nonlinearity from a unilateral 
saturation hard limit can be detected by collecting accident 
waveform records at the terminal of VSCs based on HOS 
analysis. Especially in this case, nonlinearity exists in the d-axis 
control loop of the VSC control system.  
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Fig. 10.  Current reference in d axis. 
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Fig. 11.  Voltage and current at PCC in d axis. 
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(a) Bicoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑   (b) Power spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 
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(c) Bicoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    (d) Power spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 12.  Bicoherence and power spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑 and 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  
In the same case, unloose the hard limit of the PI in the d-axis 

outer control loop of voltage, and set the upper and lower limit 
of the PI in the d-axis inner control loop of current 𝑣𝑣𝑑𝑑𝑑𝑑𝑘𝑘𝑑𝑑  to 
±0.08, which takes effect and induces a bilateral saturation 
sustained oscillation.  

Fig. 13(a) shows the bicoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , which 
has no peaks in the contour maps, with the global maximum 
value only 0.002134(≪ 1) , meaning there’s no unilateral 
saturation. Fig. 13(b) shows the tricoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
which has a peak at (33.8𝐻𝐻𝑧𝑧, 33.8𝐻𝐻𝑧𝑧, 33.8𝐻𝐻𝑧𝑧). The aliasing 
expands the peak range and makes the maximum value larger 
than 1, but it still clearly points out the bilateral saturation in the 
system, which proves the effectiveness of the calculation and 
classification process proposed in IV.E and V. 
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(a) Bicoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (b) Tricoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

Fig. 13.  Bicoherence and tricoherence spectrum of 𝑖𝑖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

C. Case 3 
Fig. 14 illustrates the topology for the case-study system 

deriving from the IEEE 9-bus system, where the parameters of 
the network composed of buses 1 to 9 are consistent with the 
IEEE 9-bus system. Different from the IEEE benchmark system, 
an SVC is located at medium-voltage bus 13 for reactive power 
adjustment, and two grid-connected wind farms and their 
corresponding SVGs are located at the bus 14 and bus 15, 
respectively. The PMSGs and SVGs adopt the double-loop 
VSC control as shown in IV.A, and the parameters of control 
are listed in Table III. 

The case-study system is implemented by PSCAD/EMTDC 
simulation, and the self-sustained oscillation is induced by the 
mismatch of the reference terminal voltage of SVG1 and SVG2, 
which are denoted by  𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑1  and 𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑2 , respectively. Fig. 15 
shows the oscillation-related waveforms of voltages and 
currents. In Fig. 15(a), when 𝑡𝑡 <  2 𝑠𝑠, set 𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑1 =  𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑2, and 
the voltage amplitudes 𝑉𝑉14 , 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃1 , and 𝑉𝑉𝑃𝑃𝑃𝑃𝑃𝑃2  are stable; by 
contrast, when 𝑡𝑡 ≥  2.45 𝑠𝑠 , set 𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑1  ≠  𝑉𝑉𝑑𝑑𝑘𝑘𝑑𝑑2 , then the 
voltage amplitude 𝑉𝑉14 deviates from the previous equilibrium 
point, which fluctuates and ranges from 0.97 to 1.04 pu. 
Meanwhile, according to Fig. 15 (b), the current amplitude of 
𝑖𝑖14  increases significantly when 𝑡𝑡 ≥  2.45 𝑠𝑠 . The major 

harmonic frequencies of instantaneous current 𝑖𝑖14 are 17.5 𝐻𝐻𝑧𝑧 
and 82.5 𝐻𝐻𝑧𝑧 (50 ±  32.5 𝐻𝐻𝑧𝑧), so that it is demonstrated that 
there is a sub-synchronous current injection flowing from VSCs 
to networks. As is shown in Fig. 15(c), the static VAR 
compensator (SVC) is stimulating a linear LC resonance, whose 
combination of the capacitive reactance and the network 
inductance matches the sub-synchronous frequency of the 
VSCs. The figure shows the waveform of current for SVC, and 
it is demonstrated that the SVC works as a harmonic amplifier. 

 
 

 
Fig. 14.  The topology of the case study system. 

TABLE III 
PARAMETERS OF NETWORK AND VSC CONTROL FOR CASE-STUDY SYSTEM 

Parameters Values 
SVG voltage control loop 
(KPυd, KIυd, KPυq, KIυq) 

2.5 pu, 1000 pu, 2 pu, 20 pu 

Reference of terminal voltage control  
(Vref1, Vref2, Vref3) 

1.005 pu, 1.005 pu, 1.005 pu (t < 2 s) 
1.005 pu, 1.000 pu, 1.005 pu (t ≥ 2 s) 

Current control loop (KPi , KIi) 40 pu, 6250 pu 
Connection impedance (Xl1, Xl2, Xl3) 0.0051 pu, 0.0038 pu, 0.0256 pu 
Line resistance (R6-10, R8-11) 0.0017 pu, 0.0054 pu 
Line impedance (X6-10, X8-11) 0.0092 pu, 0.0178 pu 
Transformer impedance (XT1, XT2, 
XT3) 

0.0586 pu, 0.0586 pu, 0.0576 pu 

 

0 1 2 3 4 5 6 7 8
-1

0

1

2

3

Time(s)

V
ol

ta
ge

(p
.u

.)

 

 

V14

V PCC1

V PCC2

2 2.5 3 3.50.96
1

1.04

 

 

 
(a) Voltage amplitudes  

 

 
(b) Three-phase currents 𝑖𝑖14 and the corresponding spectrum.  
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(c) Three-phase currents of SVC 

Fig. 15.  Waveforms of voltages and currents. 
TABLE IV 

VALUE COMPARISON OF µ  FOR HARMONIC SOURCE SEARCHING 

Index SVG1 SVG2 SVG3 SVC 
μ (p.u.) 0.3727 0.1598 0.1043 0.0079 

 
A nonlinear index 𝜇𝜇 for checking the flatness of bicoherence 

spectrum could be defined as [28] 

 ( )2
2 2

ˆmax
ˆ 2ˆ

bic
bic bicµ σ− +  (57) 

where, 𝑏𝑏�𝚤𝚤𝑏𝑏2������ is the average of the estimated squared bicoherence; 
𝜎𝜎𝑏𝑏�𝑖𝑖𝑑𝑑2 is the standard deviation of 𝑏𝑏�𝑖𝑖𝑏𝑏2. In (57), if 𝜇𝜇 ≫ 0, the 
signal generating process is nonlinear. 

Table IV reports that the μ values for SVGs are significantly 
higher than that of SVC, meaning that the nonlinearity is 
detected in the system and the SVGs are the major contributor 
to the nonlinearity. However, hard limits take effects in only 
two of the SVGs. So, the proposed method can only detect the 
existence of nonlinear behavior in the system, but it cannot 
locate it. Precise localization requires the introduction of other 
methods, which will be elaborated in another article. 

VII. CONCLUSION AND DISCUSSION 
This paper proposes a method based on HOS analysis for 

DNB of the VSC control system in wind farms, where PMSGs 
and VSGs are modeled as a unified VSC control model. The 
paper establishes a corresponding relationship between the 
bicoherence spectrum and the unilateral saturation hard limit, 
as well as the tricoherence spectrum and the bilateral saturation 
hard limit. Based on it, the DNB and classification of the VSC 
control system are studied and proved, and the detailed 
calculation and estimation process is proposed. The 
bicoherence spectrum and the tricoherence spectrum actually 
look for the quadratic and cubic phase coupling in the analyzed 
signal, which is further illustrated in the case study part. 

Further work may include two aspects. Firstly, the HOS 
analysis can be applied to no matter what the measurement 
signal is, but whether the proposed method can be extended to 
any equipment needs further examined. This paper proves the 
applicability in the VSC, which exists in energy storage 
equipment and DC transmission systems in addition to wind 
power systems. Other devices may have other parts from the 
hard limit to the terminal, and whether the effects of these parts 
can be eliminated is not demonstrated in this paper. Secondly, 

as is discussed in VI.C, DNB is not enough to form an effective 
control measure and generator tripping strategy when a self-
sustained oscillation accident occurs. So, a nonlinear oscillatory 
source localization method needs to be further studied. 

APPENDIX 
TABLE A 

N-TH COMPONENTS OF BILATERAL SATURATION HARD LIMIT OUTPUT 

𝑛𝑛 𝐴𝐴𝑛𝑛 𝐵𝐵𝑛𝑛 

0 0 0 

1 0 2𝑎𝑎�1 − 𝑎𝑎2

𝐴𝐴2
+ 2𝐴𝐴 sin−1 𝑎𝑎

𝐴𝐴

𝜋𝜋
 

2 0 0 

3 0 4𝑎𝑎(1 − 𝑎𝑎2

𝐴𝐴2
)3 2⁄

3𝜋𝜋
 

4 0 0 

5 0 4𝑎𝑎�1 − 𝑎𝑎2

𝐴𝐴2
(8𝑎𝑎4 − 11𝑎𝑎2𝐴𝐴2 + 3𝐴𝐴4)

15𝐴𝐴4𝜋𝜋
 

6 0 0 

7 0 48𝑎𝑎 cos �7 sin−1 𝑎𝑎
𝐴𝐴

 � + 28𝐴𝐴 sin �6 sin−1 𝑎𝑎
𝐴𝐴
� − 21𝐴𝐴 sin �8 sin−1 𝑎𝑎

𝐴𝐴
�

84𝜋𝜋
 

 
TABLE B 

N-TH COMPONENTS OF UNILATERAL SATURATION HARD LIMIT OUTPUT 

𝑛𝑛 𝐴𝐴𝑛𝑛 𝐵𝐵𝑛𝑛 

0 𝑎𝑎 + 2A0 −
2
𝜋𝜋
�1 −

𝑎𝑎2

𝐴𝐴2
𝐴𝐴 −

2a
𝜋𝜋

sin−1
𝑎𝑎
𝐴𝐴

 

1 0 2𝑎𝑎�1 − 𝑎𝑎2

𝐴𝐴2
+ 𝐴𝐴𝜋𝜋 + 2𝐴𝐴sin−1 𝑎𝑎

𝐴𝐴

2𝜋𝜋
 

2 2�1 − 𝑎𝑎2

𝐴𝐴2
(−𝑎𝑎2 + 𝐴𝐴2)

3𝐴𝐴𝜋𝜋
 

0 

3 0 2𝑎𝑎(1 − 𝑎𝑎2

𝐴𝐴2
)3 2⁄

3𝜋𝜋
 

4 2�1 − 𝑎𝑎2

𝐴𝐴2
(6𝑎𝑎4 − 7𝑎𝑎2𝐴𝐴2 + 𝐴𝐴4)

15𝐴𝐴3𝜋𝜋
 

0 

5 0 2𝑎𝑎 �3 + 8𝑎𝑎4

𝐴𝐴4
− 11𝑎𝑎2

𝐴𝐴2
��1 − 𝑎𝑎2

𝐴𝐴2

15𝜋𝜋
 

6 2�1 − 𝑎𝑎2

𝐴𝐴2
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