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Background: Medical laboratory reference data may be
contaminated with outliers that should be eliminated
before estimation of the reference interval. A statistical
test for outliers has been proposed by Paul S. Horn and
coworkers (Clin Chem 2001;47:2137–45). The algorithm
operates in 2 steps: (a) mathematically transform the
original data to approximate a gaussian distribution;
and (b) establish detection limits (Tukey fences) based
on the central part of the transformed distribution.
Methods: We studied the specificity of Horn’s test
algorithm (probability of false detection of outliers),
using Monte Carlo computer simulations performed on
13 types of probability distributions covering a wide
range of positive and negative skewness. Distributions
with 3% of the original observations replaced by ran-
dom outliers were used to also examine the sensitivity
of the test (probability of detection of true outliers).
Three data transformations were used: the Box and Cox
function (used in the original Horn’s test), the Manly
exponential function, and the John and Draper modulus
function.
Results: For many of the probability distributions, the
specificity of Horn’s algorithm was rather poor com-
pared with the theoretical expectation. The cause for
such poor performance was at least partially related to
remaining nongaussian kurtosis (peakedness). The sen-
sitivity showed great variation, dependent on both the
type of underlying distribution and the location of the
outliers (upper and/or lower tail).
Conclusion: Although Horn’s algorithm undoubtedly is
an improvement compared with older methods for out-

lier detection, reliable statistical identification of outli-
ers in reference data remains a challenge.
© 2005 American Association for Clinical Chemistry

Medical laboratory reference data may be contaminated
with erroneous values that should be eliminated before
estimation of the reference interval and other types of
statistical treatment (1, 2). If erroneous values are hidden
within the distribution of reference data, these values can
be detected and removed only by following a strict
protocol for production of reference values. However,
erroneous values that deviate significantly from the
proper reference values (outliers) might be identified by
statistical techniques. The ideal algorithm for outlier de-
tection should find any number of deviating values in
each tail of the reference distribution and should operate
equally well when applied to various forms of probability
distribution. The plethora of proposed statistical outlier
tests (3, 4) shows that it is difficult to find a single
algorithm that can handle all relevant situations.

The simple Dixon range test (5 ), i.e., identify the
extreme value as an outlier if the difference between the 2
highest (or lowest) values in the distribution exceeds one
third of the range of all values, was proposed by the IFCC
in the recommendation for statistical treatment of refer-
ence values (1 ) and included in previous versions of the
RefVal program (6, 7). This method is reasonably insen-
sitive to distribution type, but it has the major drawback
of being unable to successfully handle clusters of 2 or
more outliers.

A more promising method was proposed by Horn et
al. (8 ). This method (hereafter referred to as Horn’s
algorithm) is based on 2 general assumptions: (a) that the
central part of the distribution contains most of the
information of the genuine reference values; and (b) that
outliers may be detected as values lying outside limits
based on the properties of this central part. The algorithm
operates in 2 steps: In the first step, the original data are
transformed to approximate a gaussian distribution, to
the extent this is possible in the presence of outliers. Horn
et al. (8 ) used for this purpose the Box–Cox function (9 ).
In the second step, 2 detection limits (fences) are estab-
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lished based on the middle 50% of the transformed
distribution, as suggested earlier by Tukey (10 ). Possible
outliers are identified as the values located outside of
these fences.

As we wanted to include Horn’s algorithm in the
RefVal program (6, 7), which implements the IFCC-rec-
ommended methods for statistical treatment of reference
values (1 ), we used Monte Carlo computer simulations in
a study of the specificity and sensitivity of the algorithm:

Specificity. In the absence of outliers, the ideal statistical
test for outlier detection should provide a low and pre-
dictable probability of false detection regardless of the
underlying distribution type. We studied this by means of
simulation experiments using computer-generated distri-
butions with known statistical properties and varying
positive and negative skewness. We compared the speci-
ficity of the original Horn’s algorithm with that observed
for 2 modified versions of this algorithm, using other data
transformations.

Sensitivity. Although the probability of detection of true
outliers should ideally be high, one must—for inevitable
statistical reasons—accept a compromise between sensi-
tivity and specificity. When increasing the former, the
latter decreases, and vice versa. We studied the sensitivity
properties of the outlier test algorithms in similar exper-
iments.

Materials and Methods
generation of random data
We implemented the Monte Carlo simulations of this
study by adding appropriate pascal source code to the
standard RefVal program (6 ), using Borland Delphi 5
(Inprise Co.) as the development system. Gaussian-dis-
tributed pseudo-random numbers were generated by use
of Delphi’s built-in RandG function, initialized by a single
call to Delphi’s Randomize procedure, which takes a seed
value from the system clock. Validation experiments
(results not presented) showed that the quality of the
gaussian distributions produced was sufficiently high for
the present study. To avoid problems with negative data
values when transforming the generated distributions
and performing the outlier detection experiments, we
displaced these distributions so as to make them also lie
safely above zero at their lower end, except when �2

distributions were produced (see below).
Asymmetric distributions with various degrees of

skewness were produced from the computer-generated
gaussian distributions. To cover the spectrum of asym-
metric distributions that is typical for clinical biochemical
reference data, the following nongaussian distributions
were examined in this study: the square root gaussian
distribution, the logarithmic gaussian distribution, and �2

distributions of df � 3, 4, 8, and 16. The square root
gaussian and the logarithmic gaussian distributions were
produced by use of the transformations x � g � g and x �

exp(g), respectively, where x is a value of a transformed
distribution and g a gaussian-distributed random value
with mean � 100 and SD � 25.51. The �2 distributions
with df degrees of freedom were produced by summing
up the squares of standard gaussian values (gi): x � �gi

2

(i � 1,. . . , df; df � 3, 4, 8, and 16). All of these asymmetric
distributions were positively skewed. To obtain corre-
sponding distributions with negative skewness, values of
the generated distributions were transformed into those
of mirror distributions: x�i � w � xi, where w � xmin �
xmax.

The details of these distributions are shown in Table 1.

transformations
Mathematical functions can transform data of nongauss-
ian distributions to approximate the theoretical gaussian
distribution. Three functions of this kind were used in our
study. One of these, the Box–Cox transformation function
(9 ), which was used in the original Horn’s algorithm for
outlier detection (8 ), is as follows: y � (x� � 1)/� if � � 0;
y � ln(x) if � � 0. The parameter � of this transformation
was determined by maximizing likelihood [formula 8 in
Ref. (9 )]. The 2 other transformations considered in the
present study are those of the 2-stage normalization
procedure recommended by the IFCC for parametric
estimation of reference limits (1 ). Manly’s exponential
function (11 ) corrects for nongaussian skewness: y �
{exp(� � x) � 1}/� if � � 0; y � x if � � 0. The John and
Draper modulus function (12 ) rectifies remaining non-
gaussian kurtosis: z � sign[{(�y� � 1)� � 1}/�] if � � 0; z �
sign[ln(�y� � 1)] if � � 0. [Here the sign (� or �) is that
associated with the value y, previously transformed by
Manly’s exponential function.] The 2 latter functions have
always been part of the RefVal program (6 ). The function
parameters (� and �, respectively) were determined by
use of an iterative “brute force” method, guided by
monitoring the coefficient of skewness (the exponential
function) or the coefficient of kurtosis (the modulus
function).

horn’s algorithm and its modifications
The algorithm described by Horn et al. (8 ) has the
following consecutive steps:

(1) Transform the original data so as to achieve a distri-
bution that is as close as possible to gaussian shape.
The original algorithm used the Box–Cox transforma-
tion for this purpose.

(2) Estimate the lower and upper quartiles (Q1 and Q3,
respectively) and the interquartile range (IQR � Q3 �
Q1) for the transformed data.

(3) Define 2 Tukey fences (10 ): Q1 � 1.5 � IQR and Q3 �
1.5 � IQR.

(4) Identify as possible outliers all reference values lo-
cated outside the 2 fences.

We also studied 2 modifications of Horn’s algorithm.
In the first step of the algorithm, we replaced the Box–Cox
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transformation either with the exponential transformation
or with a 2-stage transformation consisting of the expo-
nential transformation followed by the modulus transfor-
mation.

simulation experiments
Pseudo-random data were generated for the distributions
described above (Table 1). All experiments presented here
were based on distributions with n � 1000 values each.
When studying the sensitivity of the outlier algorithm, we
replaced 3% of the random values in the distributions by
outliers, keeping the sample size fixed at 1000 values.
Outliers were generated as uniform random values in the
interval from 2.7 to 3.9 SD below and/or above the mean
of the original gaussian distribution and then transformed
(see section on generation of random data above).

We analyzed each data set by applying 2 (sensitivity
study) or 3 (specificity study) of the versions of Horn’s
algorithm for outlier detection that were presented above,
the original one (using the Box–Cox transforming func-
tion) and the 2 modifications (using the exponential
transformation and the 2-stage transformation, respec-
tively). The output monitored was the estimated transfor-
mation parameters, the coefficients of skewness and kur-
tosis of the transformed distributions, and the number of
transformed values located below and above the lower
and upper Tukey fences, respectively. The simulations
were always iterated 6000 times for each distribution
type.

statistical analysis
We computed the coefficients of skewness and kurtosis by
applying established routines of the RefVal program (13 ).
The output from simulation experiments was analyzed
with Microsoft Excel.

Results
specificity study
We studied the specificity of outlier detection in simula-
tion experiments performed on 13 computer-generated
distributions of various shapes (Table 1) without added

outliers. The mean percentages of data values located
outside the 2 Tukey fences, i.e., values falsely identified as
outliers, are shown in Fig. 1. The top panel in Fig. 1 shows
the results obtained for the original Horn’s algorithm,
which is based on Box–Cox transformation. The results
for the 2 modifications of this algorithm described above
are shown in the middle and bottom panels.

The observed percentages in Fig. 1 should be compared
with the theoretical expected probability of false detec-
tion. For a gaussian distribution, the quartiles (Q1 and Q3)
are located at a distance of 0.674 � SD on both sides of the
mean, giving IQR � 2 � 0.674 � 1.349 � SD. According to
the formulas given above, the Tukey fences are thus 0.674
� 1.5 � 1.349 � 2.698 � SD below and above the mean. The
cumulated gaussian probability at �2.698 � SD is 0.0035.
The expected frequency of false detection is thus 0.70%.
This is shown as a horizontal line in each panel of Fig. 1.

For the same simulation experiment, the remaining
kurtosis after transformation by the Box–Cox and expo-
nential functions is shown in Fig. 2. (The results for the
2-stage transformation are not shown because the coeffi-
cient of kurtosis necessarily always is zero.) The Box–Cox
transformation failed to make negatively skewed distri-
butions symmetric (see the coefficients of skewness in the
top panel of Fig. 2).

sensitivity study
We studied the sensitivity of outlier detection in simula-
tion experiments using probability distributions 4–10
described in Table 1, each having 3% of the values
replaced by random outliers. Three types of experiments,
with different locations of the outliers, were performed:
(a) all outliers placed in the interval (�3.9 � SD to
�2.7 � SD) of the lower tail of the distribution; (b) all
outliers placed in the interval (2.7 � SD to 3.9 � SD) of the
upper tail of the distribution; and (c) one half of the
outliers, i.e., 1.5% of the observations, placed in each of
these 2 intervals. The inner limits of these intervals,
�2.7 � SD, were set to coincide with the Tukey fences (see
above). The cumulative gaussian probabilities at the limits
3.9 � SD and 2.7 � SD are 0.00005 and 0.0035, respectively,

Table 1. Properties of computer-generated probability distributions.a

Distribution type

Original Mirrored

Sequenceb Skewness Kurtosis Sequence Skewness Kurtosis

Gaussian 7 0.01 0.00
Square root gaussian 6 0.41 0.23 8 �0.41 0.22
�2 (df � 16) 5 0.70 0.73 9 �0.70 0.72
Logarithmic gaussian 4 0.87 1.38 10 �0.87 1.32
�2 (df � 8) 3 0.99 1.47 11 �1.00 1.47
�2 (df � 4) 2 1.41 2.94 12 �1.40 2.91
�2 (df � 3) 1 1.61 3.80 13 �1.62 3.92

a For each of the 13 distribution types used in this study, 1000 distributions with 1000 values were generated, as described in the text. The coefficients of skewness
and kurtosis were estimated by established procedures of the RefVal program (13). The values shown are the observed mean values for these coefficients. The
distributions are presented in the order of increasing absolute value for the skewness.

b Sequence number used for identification of distributions in graphs (Figs. 1–3).
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which shows that by setting the outer limits at �3.9 � SD,
the suggested intervals for outliers will cover practically
all probability outside the inner limits. The expected total
percentage of observations identified as outliers will now
be 0.70% (false outliers) � 3.0% (true outliers) � 3.7%. Of
this total percentage, 3.35% (in absolute terms) should
originate from the tail in which the generated random
outliers were placed and 0.35% from the other tail, as far
as experiment types (a) and (b) are concerned, whereas for

the experiment type (c), the expectation is 1.85% from
each tail.

The mean percentages of data values located outside
the 2 Tukey fences, i.e., values identified as outliers, true
or false, are shown in Fig. 3. The filled columns show
results for the original Horn’s algorithm (using Box–Cox
transformation); the open columns show the correspond-
ing results obtained for a modified algorithm (exponential
transformation).

Discussion
The results presented here are all based on simulation
experiments with a sample size of 1000. Although this size
may be larger than that in many real-life studies of
reference values, we chose it because it was large enough
to reduce unwanted sample variation. Other experiments
with smaller and larger samples (results not presented)
gave similar findings, showing that the results of this
study are valid regardless of the number of values in the
distributions.

specificity study
A low and predictable probability of false detection is a
basic requirement of statistical tests for outliers. In our
specificity study, we tested Horn’s algorithm and 2 mod-

Fig. 1. Specificity of Horn’s outlier algorithm.
Shown are mean percentages of false outliers (y axis) in simulation experiments
in which 13 computer-generated distributions (x axis; see Table 1) were
mathematically transformed with 3 functions, as explained in the text. Each
distribution had 1000 data values. The simulation was iterated 6000 times. The
horizontal lines indicate the expected percentage of data values located outside
the Tukey fences (0.70%).

Fig. 2. Coefficients of skewness and kurtosis of transformed distribu-
tions.
Shown are mean values of the coefficients (y axis) for the 13 distributions (x
axis), as obtained in the simulation experiment described in the legend of Fig. 1.
f, kurtosis; o (top panel only), skewness.
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ifications of it, using 13 different types of computer-
generated probability distributions without generated
outliers. These distributions were all unimodal, and they
had a coefficient of skewness varying between �1.6 and
1.6 (Table 1). The distribution types with zero or moder-
ately large positive skewness (distributions 3–7) are typ-
ical of distributions found in clinical chemistry. Empirical
distributions with negative skewness (distributions 8–13)
are admittedly very rare in laboratory medicine, but
because they may potentially occur, they were included in
the study to make it comprehensive.

None of the outlier tests studied, neither the original
Horn’s algorithm that uses Box–Cox transformation nor
the 2 modifications of this algorithm involved in the
present study and based on other transformations, ful-
filled the basic requirement for outlier tests stated above,
as is shown in Fig. 1. The theoretical expectation of 0.70%
values falsely identified as outliers was obtained only
when the distribution was gaussian (distribution 7) and,
for the original Horn’s algorithm, using the �2 distribution
with df � 8 (distribution 3). With Horn’s original algo-
rithm (Fig. 1, top panel), the probability of false identifi-

Fig. 3. Sensitivity of Horn’s algorithm (original and modified).
Shown are the mean percentage of values identified as outliers (y axis) in simulation experiments in which 3% of the random values in computer-generated distributions
(types 4–10; see Table 1; x axis) were replaced by outliers. The outliers were located in the upper tail (top row), in the lower tail (bottom row), or in both tails (middle
row). The panels at the right and in the middle show the percentages of values located above the upper and below the lower Tukey fences, respectively; the sum is
shown at the left. The solid horizontal line in each panel shows the respective theoretical expectations that would be obtained for a gaussian distribution. Two series
of simulations are shown: f, results with the original Horn’s algorithm (Box–Cox transformation); �, modified algorithm (exponential transformation). Each distribution
had 1000 data values, including the outliers. The simulation was iterated 6000 times.
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cation was too high for distributions 4–6, which have the
moderate positive skewness frequently found in medical
data. It was particularly high for the logarithmic gaussian
distribution (distribution 4), a very typical distribution in
laboratory medicine. This test was very conservative for
extreme positive skewness (distributions 1 and 2) and for
all negatively skewed distributions (distributions 8–13).
In contrast to this asymmetric behavior, the modified test,
using the exponential transformation (middle panel of
Fig. 1), handled positively and negatively skewed distri-
butions in the same, conservative way. When the modu-
lus transformation was added for correction of remaining
kurtosis (bottom panel of Fig. 1), the percentage of false
outliers was only slightly increased (0.77%–0.96%) from
the expected value of 0.7%, assuming that the skewness
was moderate (positive or negative; distributions 3–6 and
8–11).

The main cause for the varying performance of the
outlier tests based on the Box–Cox and exponential func-
tions was the remaining kurtosis after the transformation
of data (Fig. 2). A symmetric distribution with negative
kurtosis has a flat, central peak and fewer values in the
tails than does the gaussian distribution. Therefore, the
percentage of values outside Tukey fences will be lower
than expected when the distribution after transformation
has negative kurtosis. Positive kurtosis has the opposite
effect. Comparison of the 2 upper panels of Fig. 1 with the
respective panels of Fig. 2 illustrates this kurtosis effect.

Another problem with the original Horn’s algorithm
was that the Box–Cox transformation failed to produce a
symmetric distribution when the original distribution was
negatively skewed (Fig. 2, top panel; distributions 8–13).
In such cases the algorithm will not handle values equally
in the 2 tails of the distribution.

Horn et al. (8 ) correctly pointed out that automatic
elimination of 0.70% of the reference values in a gaussian
distribution may cause biased reference limits. They ac-
cordingly suggested to estimate a nominal 95% reference
interval as a 95.67% interval. However, this recommenda-
tion is valid only if the transformation step of Horn’s
algorithm gives a truly gaussian distribution. Our results
show that this is not the case for the majority of the
distributions studied here.

In summary, the specificity of neither the original
Horn’s outlier test nor its modified versions will be
predictable when analyzing empirical data because the
performance of these tests is dependent on the underlying
distribution type, which usually is unknown a priori.

sensitivity study
To get a manageable study of sensitivity for the outlier
tests, we restricted it to the symmetric and moderately
skewed distributions (distributions 4–10 in Table 1). In
addition, we omitted the 2-stage transformation, which
uses the exponential and modulus functions in sequence.
This might seem surprising because the specificity study
showed that it had relatively stable performance for

symmetric and moderately skewed distributions (Fig. 1,
bottom panel); however, the modulus transformation will
necessarily corrupt the test in the presence of real outliers.
Extra values in one or both tails of a distribution will
increase the coefficient of kurtosis, but this is precisely
what the modulus transformation attempts to correct.
Test simulations (results not shown) confirmed that this
was in fact the case.

When the underlying distribution was positively
skewed or gaussian (distributions 4–7), the original
Horn’s outlier test (Fig. 3, filled columns) identified only
slightly fewer values outside the Tukey fences than the
expected total percentage (leftmost panels of Fig. 3) if the
outliers were located in the upper tail or both tails of the
distribution (top and middle rows). However, in the case
of the upper tail, approximately one third of these values
were low false outliers (top row, middle panel), whereas
a corresponding percentage of the true outliers located in
the upper tail remained unidentified (top row, rightmost
panel). The outlier test based on Box–Cox transformation
showed a rather poor performance when the outliers were
located in the lower tail of the distribution (Fig. 3, bottom
row), and this was true for negatively skewed distribu-
tions (distributions 8–10) in particular.

We did not observe this kind of asymmetric behavior
when we used the exponential transformation in a mod-
ified Horn’s algorithm (Fig. 3, open columns). It underes-
timated somewhat the percentage of outliers when they
were located in both tails (middle row of Fig. 3). The
sensitivity was unacceptably low when the outliers were
located in 1 tail only (Fig. 3, top and bottom rows).

conclusions
The results of our Monte Carlo simulation experiments
concerning outlier detection based on the original Horn’s
algorithm and 2 modifications of it were rather disap-
pointing. In the specificity study, none of the outlier tests
fulfilled the basic requirement of low and predictable
probability of false detection. The sensitivity study sug-
gested that the sensitivity tends generally to be too low.
The main underlying problem seems to be that the
calculation of Tukey fences in Horn’s algorithm assumes
that the transformed distributions are close to gaussian in
shape. Our results indicate that this is most often not the
case, as judged from the coefficients of skewness and
kurtosis after transformation, not even when outliers
were absent (see, for example, the specificity study). The
presence of true outliers only increases the problems with
the transformations.

We assumed that the following modifications of
Horn’s algorithm could possibly help to eliminate some of
the negative effects of outliers on the transformation: (a)
truncate the distribution to eliminate possible outliers by
temporarily excluding, e.g., 5% of the extreme values at
each tail; (b) then estimate the transformation parameter
on the truncated distribution; and (c) finally transform all
data, including the outliers, with this parameter and
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continue with steps 2–4 of Horn’s algorithm (see the
Materials and Methods). However, test runs using this
modification showed that the performance of Horn’s
algorithm still was not acceptable (results not docu-
mented).

Horn’s algorithm for outlier detection is based on a
promising idea (8 ) to determine outliers using criteria that
are calculated from the central part of a hopefully close-
to-gaussian distribution. However, our simulation exper-
iments suggest that the normalization of distributions
achieved by use of the transformation functions involved
in the present study is not good enough to allow Horn’s
algorithm to work as it is expected to do. Although Horn’s
algorithm undoubtedly is an improvement compared
with older methods for outlier detection, reliable statisti-
cal identification of outliers in reference data remains a
challenge.
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