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ABSTRACT Defect detection is an essential requirement for quality control in the production of printed

circuit boards (PCBs) manufacturing. The traditional defect detection methods have various drawbacks, such

as strongly depending on a carefully designed template, highly computational cost, and noise-susceptibility,

which pose a significant challenge in a production environment. In this paper, a deep learning-based image

detection method for PCB defect detection is proposed. This method builds a new network based on Faster

RCNN. We use a ResNet50 with Feature Pyramid Networks as the backbone for feature extraction, to better

detect small defects on the PCB. Secondly, we use GARPN to predict more accurate anchors and merge the

residual units of ShuffleNetV2. The experimental results show that this method is more suitable for use in

production than other PCB defect detection methods. We have also tested in other PCB defects dataset, and

experiments have shown that this method is equally valid.

INDEX TERMS Defect detection, deep learning, residual network, feature pyramid, ShuffleNetV2.

I. INTRODUCTION

As the electronic device parts are shrinking down to minute

sizes, printed circuit boards (PCB) as a support for electronic

components is becoming more and more sophisticated and

delicate. PCB defects are one of the critical factors for a

high defect rate of electronic equipment. Therefore, defect

detection is an important quality control technique for printed

circuit boards (PCBs) industry. Different PCB defects can be

generated in various production processes, such as missing

values, lacking components, mistaken open circuits, and short

circuits, causing the yield to drop. Therefore, it is necessary to

achieve non-contact, accurate, and efficient automatic defect

detection in the PCBs production process.

In recent years, an automated optical inspection (AOI)

technique has been using to detect the defect during the

PCB manufacturing process [1]. Compared with traditional

manual detection, it has a series of advantages such as

high-speed detection, cost reduction, and accuracy. In the

evolution of AOI technology in the past decade, the methods

are mainly divided into three categories: reference compari-

son methods, non-reference inspection methods, and hybrid

inspection methods. The most widely used method is the ref-

erence inspection methods. In this defect detection method,

the correlation between the scene images and the two window

portions of the reference image is calculated. The difficulty of

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

this method is the precise alignment of the reference image

and the testing image. Performing the alignment operation

requires a complicated configuration process. At the same

time, the detection process is susceptible to light and noise,

and even small shadows can cause false alarms.

Compared with traditional machine vision methods, deep

learning-based methods can automatically extract image

features, simplify the image pre-processing process, and

can effectively improve the accuracy and efficiency of

object detection, which has attracted the attention of many

scholars.

In this paper, we propose an effective learning-based

method to detect PCB defects in run-time in the Surface-

mount technology (SMT) generation line, which belongs to

the non-reference category. It can be used to identify six

types of defects in the PCB production process. Base on the

experiment on our database, it is more accurate and faster

than other learning-based methods for detecting PCB defects.

We focus on three challenges:
a) Deep learning methods are more capable of detect-

ing large targets. In our scenario, the detect is always

present with a small part of the image, so it is nec-

essary to revamp the network structures to get a good

performance.

b) When using high-resolution pictures, the speed of the

convolution detection method is slow and cannot meet

the speed requirements of real-time detection, so it

needs to be improved.
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c) For the traditional AOI detection method, correspond-

ing fixtures and cumbersome parameter settings are

required, which entails a high cost. We need a new

inspection process and abandoned expensive acces-

sories to make it more suitable for production line use.

The rest of this paper is organized as follows. Section 2

reviews previous related research. Secondly, the associated

methods used in this paper are described. In Section 3,

we introduce the characteristics of defects and describe the

overall structure of the network. And detail the improvements

to the original Faster-RCNN in the feature extraction stage

and the RPN stage. In Section 4, we evaluate the proposed

network and compare it with other networks. Finally, we give

conclusions about our proposed network and the direction of

our future work in Section 5.

II. RELATED WORKS

In this section, we review the relevant methods of PCB defect

detection and introduce two methods applied in our proposed

network, which is used to extract the PCB features.

A. PCB DEFECTS DETECTION

The elimination-subtraction method is the mainstream detec-

tion method as a PCB defect detection technology before

using machine learning. This method calculates the pixel

distance between the target image and the template image

to detect obvious defects such as open circuit, short circuit,

magnetic flux leakage, etc [2], [3]. Hagi et al. [4] proposed

a new method to improve the classification accuracy of elec-

tronic circuit boards. The method first calculates the differ-

ence between the test image and the reference image and

then performs high-precision detection on the defect candi-

date region, and finally, it extracts the feature recognition

authenticity defect. Xie et al. [5] proposed a method using

statistical appearance modeling technology (SAM), which

obtains a more advantageous template than a rigid template.

Wang et al. [6] proposed the partial information correlation

coefficient (PICC) method to improve the traditional normal-

ized cross-correlation coefficient (TNCCC). These methods

are advantageous for detecting certain defects and computa-

tionally efficient. Therefore, it is widely used in production.

In thesemethods, it is necessary to control the deviation, color

change, and reflectance change of the target image from the

template. And even minor changes in the PCB design require

reconfiguration of the template. It increases production costs.

Therefore, feature matching is proposed as an improved

classic reference method. It extracts more robust features

from the entire image and establishes a registration mapping

relationship. Malhi and Gao [7] proposed a feature selec-

tion method based on principal component analysis (PCA).

It uses supervised and unsupervised methods to classify the

defects of the bearings. Local binary patterns (LBPs) are also

one of the methods commonly used for feature extraction.

Tajeripour et al. [8] proposed a fabric defect detectionmethod

based on LBPs. The method is divided into training and

detection stages. The pixel-by-pixel LBP operator is applied

to defect-free fabric images to calculate the reference feature

vector. By comparing with the reference feature vector, a

threshold suitable for defect-free windows is found. Then, a

defective window can be detected using this threshold. The

method has multi-resolution and grayscale invariance and can

be used for defect detection of pattern fabrics and non-pattern

fabrics. Ibrahim et al. [9] proposed an image difference algo-

rithm based on wavelet transform. The algorithm uses the

Haar wavelet and considers several different layers. One con-

clusion of this article is that in the application of PCB visual

inspection, the second stage Haar wavelet transform should

be selected. The common of these methods is uses a large

amount of prior information on features for object detection.

Because these features rely on hand-crafted features, there

are two shortcomings. (a) It may not be possible to describe

complex image scenes and objects structure. (b) cannot adapt

to new views and objectives, and its generalization ability

is reduced. Therefore, object detection based on traditional

feature extraction methods falls into a bottleneck period.

In recent years, some scholars have used Convolutional

Neural Networks (CNNs) [10] as a feature extraction method

for defects detection. CNN has obtained better results

compared with traditional feature extracts methods. It can

accurately capture defects regions without using any extra

information. Besides, even if there are shadows or reflec-

tions, it can still work well to locate the boundary of the

detected object area as it uses multi-level features as refer-

ence. Because of these advantages, the CNN-based object

detection method refreshes the historical record on almost

all existing data sets and becomes the mainstream method

in object detection. Su et al. [11] proposed a neural-network

approach for semiconductor wafer post-sawing inspection.

They introduced and tested three types of neural networks:

backpropagation, radial basis function network, and learning

vector quantization. This method can effectively shorten the

detection time to 1s per slice. Heriansyah et al. [12] manually

designed various defect patterns representing corresponding

defect types for training and testing. The results show the

effectiveness of neural network-based defect classification

technology. Ding et al. [13] proposed an approach is based on

Faster-RCNN to detect tiny defects of PCB and achieved high

precision. His method solves the shortcomings of deep con-

volutional networks in detecting small defect areas, obtains

good experimental results on an open PCB defect database,

and the method provides us with a good idea. Some scholars

have used the method based on Faster-RCNN [14]–[16] in

defect detection and achieved excellent results. However,

in some studies, more attention has been paid to improving

the accuracy of detection and ignoring the detection effi-

ciency, so that real-time detection cannot be achieved in

production.

Compared to traditional visual inspection methods using

neural networks to detect PCB defects do not have many

related types of research. One of the reasons is, the collection

of the PCB defect database requires a long-time accumula-

tion, which requires a lot of workforce andmaterial resources.
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In this article, we used a real PCB defect database that we

collected from the production line as the training set and

test set. The following section will introduce how we do the

collection in detail.

B. GROUP CONVOLUTION AND CHANNEL SHUFFLE

Group Convolution was first proposed in AlexNet [10].

Due to limited hardware resources at the time. The author

distributed feature maps to multiple GPUs for processing and

finally merged the results. As shown in Fig.1 (a), the tra-

ditional convolution performs convolution operation on the

input data’s whole. For example, the input data size is:

H1 × W1 × C (H is the height, W is the width, and C is the

number of the channel) and there are N convolution kernels,

each of which has a size of K × K , the number of channels

is the same as the input, then the output data obtained by

convolution is H2 ×W2×N , so the total parameter amount is

K×K×N×C . As shown in Fig.1 (b), the input data is divided

into 3 groups (g= 3), and each group size is:H1×W1×C1/g,

the convolution kernels size is K ×K×C1/g, and the number

of convolution kernels per group is N/g, and the total parame-

ter amount isK×K×N×C1/g. The total parameter amount is

reduced to 1/g of the original. However, there is a significant

shortage of this method, which is that the connection between

groups is ignored, whichmeans the operation ofmerging only

happens inside an individual group. In a bid to solve this,

Xception [17], MobileNet [18], and other similar networks

add an extra convolution layer with the size of 1 × 1 to

merge the output from different groups. Similarly, some other

networks, such as ShuffleNetV2, proposed a more advanced

method called ‘channel shuffling.’ As shown in Fig.2 (b),

the ‘reorganization’ of the feature map after group convolu-

tion ensures that the next group convolution input is from a

different group so that information can be exchanged between

different groups. Fig.2 (c) shows this ‘‘uniformly disrupted’’

process. The results show that the method effectively solves

the problem of insufficient fusion of the features map without

reducing the performance.

FIGURE 1. Comparison between the traditional convolution and the
group convolution.

C. CHANNLE SPLIT AND DEPTHWISE CONVOLUTION

ResNet [19] is a residual learning framework, which ismainly

used to solve a series of problems such as the deep neural

FIGURE 2. Channel Shuffle with two stacked group convolutions. (The
figure is modified from [29]).

network gradually saturates and then rapidly degenerates

with the increase of network depth, including gradient dis-

sipation and gradient explosion. It fundamentally breaks the

symmetry of the network, thereby improving the ability of

the representation network. The ShuffleNetV2 uses a resid-

ual block structure, such as ResNet. Instead of using group

convolution, it splits the feature into two branches. The left

branch is mapped equally, and the right branch contains three

consecutive convolutions.

Depthwise Separable convolution (DWconv) contains two

steps, Depthwise Convolution, and Pointwise Convolution.

The first step is to convolve the input data with the convo-

lution of the number of the same filters as the depth of the

input data, while the second step is to convolve the input data

with convolution kernel size 1 × 1. For example, in contrast

to a traditional convolution operation, the input data size is

64 × 64×3, and the convolution kernel size is 3 × 3×4. The

output feature map size is 64 × 64×4 (assume that the input

and output sizes are the same), the number of parameters of

the convolutional layer can be calculated by the following

formula N1 = 3×3×3×4 = 108. After using the ‘DWconv’

operation, the number of convolution layer parameters is

N2 = 3×3×3+3×1×1×4 = 39. The same input also output

4 feature maps, the number of parameters of DWconv is about

1/3 of the conventional convolution. Therefore, under the

premise of the same number of parameters, the number of

neural network layers using ‘DWconv’ can be made deeper.

III. PCB DEFECTS AND DETECTION NETWORK

In this section, we observed and analyzed the characteristic

of PCB defects and proposed a novel defect detection net-

work for these characteristics. We will introduce the overall

architecture of the network and detailed the core components:

residual units and multi-scale regional proposal. Finally,

we will introduce the industrial deployment of the network.

A. PCB DEFECTS

We focus on six common types of PCB defects in our

research: (a) open circuit, (b) short course, (c) mouse bite,

(d) spur, (e) pinhole, (f) solder ball, as shown in Fig.3. First,

defects often only account for a small part of the PCB.

Second, different mechanisms cause these defects, thus show-

ing different characteristics, mainly including (color char-

acteristics, shape characteristics, regional characteristics).
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FIGURE 3. Example images of six types of PCB defects.

For example, compared with the normal mode, the short-

circuit mode reduces the number of areas contained in the

image. Similarly, for the open-circuit mode, the number of

zones will increase. Mouse bite refers to the irregular notch

on the edge of the line after etching, just like the bite by a

mouse. Pinhole is due to the adsorption of hydrogen on the

surface of the plated article, and it will not be released slowly.

The plating solution cannot wet the surface of the plated parts

so that the electroplating layer cannot be electrolyzed. As the

thickness of the coating around the hydrogen evolution point

increases, a pinhole is formed in the hydrogen evolution point

and characterized by a shiny round hole, sometimes with

a small upward tail. Solder balls will narrow the distance

between the wires due to the protrusion. We need to design a

reasonable network for these characteristics.

B. ARCHITECTURE OVERVIEW

Compared with the traditional convolutional neural network,

which only uses strong semantic information, our proposed

method also takes advantage of detailed information that

contains weak features due to the PCB defects often appear

with different properties. Therefore, we adapt the multi-scale

features to fuse information from a multi-scale context.

The overall network framework is shown in Fig.4. The

input of the model is an image in RGB format. We adopt

Faster RCNN as the detector and ResNet50 [19] as the back-

bones. We applied the feature pyramid network (FPN) to the

feature extraction part to merge deep features and shallow

features, which can also improve the accuracy of small defect

detection. Since a deeper network ResNet50 is used, we use

Shuffle V2 residual units to replace the basic residual units to

decrease the computation of the whole network. Further, we

use the GARPN to gain a more accurate region proposal and

reduce unnecessary anchor points, and then use ROI pooling

to get object proposals. After that, use the fully connected

layer to classify and bounding box regression to achieve the

final defect detection results.

C. FEATURE EXTRACTION

FPN generates feature pyramids with robust semantic infor-

mation at various scales to get more useful details on small

objects without increasing the amount of calculation and

the occupied memory significantly so that the accuracy of

detecting minor defects can be dramatically improved. It uses

convolutional neural networks to generate a set of hierar-

chical features that encode semantic information at different

scales in the pyramid. The different levels of features in

this hierarchical pyramid represent the objects in the image

and their contextual information from different views. In our

network, we use conv2, conv3, conv4, and conv5 blocks to

build the pyramid model’s feature map from the backbone.

The reason why conv1 is not included is that it is too close

to the input data, and a vast memory footprint. We choose

the output of the last residual unit of each block as the

bottom-up feature map, and constructed the top-down feature

map by up-sampling the spatial resolution by 2×, which

is expressed as M2, M3, M4, M5, corresponding to conv2,

conv3, conv4, conv5. After the corresponding bottom-up fea-

ture map is convoluted by 1 × 1 to reduce the channel size

and add the up-sampled map to the corresponding bottom-up

map element by element. The shallow feature map contains

more accurately localized information because it has not been

down-sampledmany times, [2]. Finally, a 3 × 3 convolutional

layers are appended on each merged map to generate the final

feature map. With purpose of eliminating the aliasing effect

of up-sampling. The last sets of feature maps are denoted as

P2,P3,P4, and P5 corresponding to conv2, conv3, conv4,

and conv5, which are of the same spatial sizes but with more

semantic information, as shown in Fig.5. Unlike the original

RPN [20], where classification and bounding box regres-

sion is performed only on a single-scale signal scale, in our

network, RPN takes multi-scale features as input. We will

discuss it in the following subsections.

FIGURE 4. The overview of the network architecture.
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FIGURE 5. The feature pyramid structure used in this paper.

D. RESIDUAL BLOCK

The ResNet results on the ImageNet dataset [21] show that

the classification performance of the residual structure is sig-

nificantly better than the traditional convolution framework.

This is because ResNet has a deeper convolutional layer.

The small objects are unable to obtain salient features due

to the downsampling effect in the traditional convolutional

neural network. Furthermore, ResNet uses residual learning

to connect the deep feature map and the previous shallow

one. The high-level and low-level features are effectively

utilized to combine their advantages, which can better adapt

to the detection of small targets. In this paper, we use the

residual unit structure based on ShuffleNetV2 to accelerate

the network. In the network, each block consists of several

basic units and a spatial down-sampling unit. As shown

in Fig.6(a). At the beginning, ‘‘Channel Split’’ divides the

channel dimension of the input data into two branches. One

branch remains unchanged, while the other is add three extra

convolutional operations. After merging the output of the

two branches by the ‘‘Concat’’ operation, they can exchange

information by ‘‘Channel Shuffle’’. In Fig.6(b), ‘‘channel

splitting’’ is removed, and spatial down-sampling is per-

formed with stride = 2.

FIGURE 6. Residual units. (a) is basic residual units (b) is spatial
down-sampling residual.

E. MULTI-SCALE RPN

Rather than setting different scale anchors on the final map in

Faster-CNN, out proposed network assigns multi-ROI of sim-

ilar size on different levels of the feature map. These anchors

will interfere with choosing the right ROI to get the necessary

information. So, it does not have to set multi-scale anchors at

each feature level. It is common practice to use a single scale

anchor on each feature map. For example, the corresponding

scale of anchors on P2,P3,P4,P5 is 82, 162, 322, 642 and

the multiple aspect ratio remains 1 : 2, 1 : 1, 2 : 1. Therefore,

each level feature map pixel will generate 3 anchors in the

original picture. However, most of these anchors are still

wrong and do not contribute to ROI.

In this paper, we used ‘‘Guided anchor,’’ which was pro-

posed by Wang et al. [22]. It consists of two branches and

a ‘‘feature adaption as shown in Fig.7. This method can

produce a small number of useful anchors. Firstly, In the

position prediction branch, on the feature map at each level,

the area corresponding to the center of the ground truth box

is divided into the object center area, the ignored area, and

the negative area according to the distance from the center.

To make the feature map of each level only valid for target

objects with a fixed scale range, the same area of adjacent

levels is defined as the ignored area. Then at the process of

position prediction, a small part of the region can be selected

as the candidate center point position of the anchor, which

significantly reduces the number of anchors. After predicting

the position, masked Conv is used instead of Conv. The calcu-

lation is only performed at the anchors, which can accelerate

the network.
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FIGURE 7. Agriculture of GARPN.

The purpose of the shape prediction branch is to predict

the w and h of each anchor at a given center point using IoU

as supervision. Different from original RPN, w and h here

are variable and not predefined. However, the search range of

w, h, for the anchor is too extensive, and it is challenging to

predict directly. Therefore, use the following formula ‘‘(1),’’

for conversion.

w = σ · s · edw, h = σ · s · edh (1)

The dw and dh output from the shape prediction branch

can be mapped to (w, h), where s is the stride, and σ is

a hyperparameter, which is set to 8 in this paper. With

s = 32 down-sampling feature map, dw and dh in the range

of [−1, 1] can search for objects in the range of [94, 696], and

other levels of feature layers are similar. Finally, the anchor

shape of each position of each levels of feature layers is

obtained (one position has only one anchor).

After predicting the anchors’ shape of each position,

we use deformable convolution to transform it and integrate

the shape information into the feature map, so that the new

feature map can be adapted to the shape of the anchors

at each position. The offset field is predicted in the shape

prediction branch. Then the original featuremapwith offset is

subjected to deformable convolution to obtain adapted feature

maps, and then classification and bounding box regression are

implemented on this basis.

F. INDUSTRIAL DEPLOYMENT

In this work, we use a deep learning-based method for PCB

defect detect system. One of the most significant advantages

is that it cuts off the effort in designing pre-templates and pre-

configurations, and it also eliminates the reliance on jacks and

fixtures that make them tightly aligned. In Fig.8, we com-

pare the traditional system flow with the flow of the system

proposed in the paper. We omitted the most time-consuming

template configuration process and did not use costly fixtures

to align them. After the industrial camera capture the PCB

image to be tested, it is sent to the defect detect program. The

type of defect is classified by the frozenweight file and finally

output to the display terminal for manual inspection.

We apply the detection algorithm proposed in this paper

to the industrial production environment. The programmable

logic controller (PLC) drives the industrial camera to move

quickly on the PCB and sends a part of the PCB image

captured each time to the inspection unit. After the test, the

system outputs the results containing the original image and

the coordinates and types of defects to the center console,

which is manually reviewed to distinguish the qualified and

unqualified products and then flow to the next process.

To ensure that the details of the acquired images are rich

enough to avoid unrecognized defects due to low resolution.

The resolution of our industrial camera is 2592 × 1944, and

the camera’s field of view is 50mm × 40mm. Therefore, the

size of each pixel is 0.02mm × 0.02mm.We control the cam-

era to move horizontally and vertically, capturing six images

per PCB. Furthermore, there is a 10% overlap between each

adjacent picture, to avoid distortion caused by the edges of the

image and not to capture the complete defect information. So,

our system is suitable for detecting PCBs with a maximum

size of 120mm × 100mm. Then we sent each picture to the

distributed detection system to perform parallel processing of

multiple model detection using multiple processes. In each

detection task, we use our proposed network that has been

trained and frozen.

IV. EXPERIMENTS AND DISCUSSION

We performed the above method to the PCB pro-

duction environment to validate whether the expected

goals can be achieved. All experiments were imple-

mented in Python3.6 using a model developed based on

Tensorflow2.0 [23], which provides a library for building an

architecture for deep learning models. The experiment was

performed on an Intel Core i7-8700K CPU @ 3.70 GHz,

NVIDIA GeForce GTX 1080 GPU, and 16G RAM on

Windows10.

A. DATA COLLECTION AND ANNOTATION

The data set was retrieved from a LED electronics factory in

Wuxi, China, 2019. We use a CCD camera to take pictures

for each PCB and manually screen out the pictures contain-

ing defects. We collected 1750 images with a resolution of

2592 × 1944, which includes multiple defects in them. Since

this high resolutionmay cause a large amount of computation,

we picked up all the defects in each picture and resized them

into 600 × 600.

To balance the data samples of various types of defects,

we removed some of the defects at the edges and unclear pic-

tures to avoid adverse effects on training and finally cropped
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FIGURE 8. Traditional defect detection process and our propose system flow. (a) traditional system, (b) our system.

out 1500 defect pictures. However, in the production process,

defects are generated as low-probability events, the labor and

time costs of collecting defect data are high, so we use data

enhancement methods to increase the number of PCB defect

images. Rotation and brightness adjustment were introduced

to our dataset to wrap the original data. Finally, 12000 defect

pictures in our dataset.

In the process of labeling data, we use the image anno-

tation tool called LabelImage [24] to mark every defect in

the image. After labeling each defect has a ground-truth

bounding box and a class label. The tool will generate an

XML file containing information about the annotation object

and the bounding box of each image, and the XMLfile is used

as the ground-truth label for the detection model. Each defect

on the picture is labeled (x1, y1), (x2, y2) and type, where are

the upper left and lower right corners of the defect bounding

box, and the defect type. The type is an integer ID that follows

the match: 0-open, 1-short, 2-mouse bite, 3-spur, 4-pinhole,

5-solder balls.

B. EVALUATION METHOD

The detection of the defect area is performed by the greedy

overlap criterion of the ground truth bound (area(G)) and the

candidate bound (area(C)), that is, cross-over-union (IoU),

as shown in Eq.(2). It ranges from 0 to 1, where 0 means no

intersection between the area(G) and the area(C), and 1means

they are identical. In this paper, the defect area detection

acceptable threshold is 0.5.

IoU =
area(C) ∩ area(G)

area(C) ∪ area(G)
(2)

The Mean Average Precision (mAP) is our primary indica-

tor for evaluating model performance our main indicator for

evaluate model performance. It is the average of the Average

Precision (AP) values of C different defects, and it reflects the

accuracy of defect detection

mAP =

∑C
i=1 APi

C
(3)

The AP value is calculated by the precision rate and the

recall rate. The general definition for the Average Preci-

sion (AP) is finding the area under the precision-recall curve

above.

AP =

∫ 1

0

p(r)dr =

∑N

k=1
P(k)1r(k) (4)

Accuracy measures the number of samples correctly clas-

sified cent of all proportion the number of samples.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(5)

The Recall measures the ability of the model detection for

positives.

Recall =
TP

TP+ FN
(6)
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The Precision measures the accurate of the model

prediction.

Precision =
TP

TP+ FP
(7)

TP, TN, FP, and FN denote true positive, true negative, false

positive, and false negative, respectively.

C. RESULTS AND EVALUATION

In the experiment, we use the cross-validation method, which

aims to extract as much information as possible from the

limited data and avoid local extreme values [25]. In this

process, both the training samples and the test samples are

learned as much as possible. We randomly selected 10%

samples of each subset as test data. The remaining 90% of

the pictures were equally randomly divided into six parts.

In each round of training, five parts were used as training

sets, and 1 part was used as a validation set. The number

of each defect in the database are shown in Table 1. A total

of 40,000 iterations are trained, to avoid training time is too

long, we set the learning rate to 0.1 when the training step

is less than 5000, and if the training step is less than 20000,

the learning rate is set to be 0.01. The larger learning rate

can speed up network convergence in early training. In the

remaining 20,000 training sessions, we used 0.0001 as the

learning rate.

TABLE 1. Number of defects in the training, validation, and testing sets,
respectively.

Like the ShuffleNetV2, our proposed network can also set

the complexity scale factor by changing the number of chan-

nels of each unit, so we evaluate the impact of using different

values on the performance of the model by calculating the

accuracy and training speed of the algorithm. For example,

when s = 1, the standard network structure, when s = 0.5,

the output and input channels of each stage are half of the

number of channels in the standard network, and others are

similar. The experimental results are shown in Table 2.

TABLE 2. The network with different complexity.

By comparing the results of the network under different

complexity, we conclude that as the complexity of the model

increases, the parameters involved in the calculation will

increase, and with a lower complexity of the model. At the

same time, the accuracy of the model will increase. In dif-

ferent object detection tasks, it is often necessary to make

various choices in terms of faster speed and higher accuracy.

In the industrial environment, reliability is paramount, so in

the subsequent experiments, we chose our network with a

complexity factor of 1.0 as the detection model.

Here we compared our method with state-of-the-art

defect detection algorithms, including the FasterRCNN,

RetinaNet [26], and YOLOv3 [27] with different backbones,

table 3 lists details of varying performance indicators (mAP,

recall, Efficiency).

As we can see from table 3, deeper networks with com-

bined FPN contributemost to the performance of the network.

For Faster RCNN with Resnet101-FPN as the backbone net-

work, our proposed network improved the mAP and recall

increased by 3.4% and 3.3%, respectively, which verified that

GARPN had a small backbone could achievemuch better per-

formance than RPN with larger backbones. Although, when

using Resnet101 as the backbone of our proposed network

can increase mAP by 1.4%, we did not use it, because, in an

industrial production environment, we must make a balance

between detection accuracy and detection efficiency. Yolo3+

MobileNet [18] has faster detection speed, which is also bene-

fited from its use of the depthwise separable convolution, and

the backbone network has only 28 layers. Still, it cannot meet

the industrial requirements in terms of detection accuracy.

Therefore, our network is more suitable in general.

We also obtained the precision and recall values

under different confidence thresholds by calculating the

precision-recall curve, as shown in Fig.9, our proposed net-

work is better than the Faster RCNN and RetinaNet with

the same ResNet50-FPN backbone. However, all of the net-

works we proposed cannot get a good result of detecting the

defects with type ‘‘open’’, there are some false positives.

We found that due to the different causes of the ‘‘open’’

defect, the image defects in the training set show different

characteristics. The reasons for the formation of this defect is

as the follows, (a) An Open circuit is produced by damage

to the copper sheet and scratches, (b) Uncoppered in the

production process due to poor plating or other reasons,

(c) Open circuit at a specific location due to film damage.

For (a), (c), the edge of the ‘‘open’’ position is rough, and the

position forming the ‘‘open’’ is occasionally accompanied

by trachoma or bubbles. These characteristics are available

for learning. For (b), the resulting ‘‘open’’ tends to be edge

smooth, so that it cannot be distinguished from the normally

open path by feature learning. Therefore, we remove all the

images belonging to the (b) type and re-add new (a), (c) type

pictures to the defect data set, and then re-train. For (b),

we detection by assisted non-deep learning method. After

testing from the new training, the detection accuracy and

recall rate was improved, and the false positive rate was also

significantly reduced. The overall result was acceptable.

To verify that using GARPN can effectively reduce

low-quality anchors while still being able to high-precision

detection, we compare it with the traditional RPN method.
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TABLE 3. Detection results on PCB data set.

FIGURE 9. Precision-recall curve for each class drawn in different color. (a) Faster RCNN. (b) RetinaNet. (c) Our proposed.

FIGURE 10. Examples of RPN proposals (middle) and GARPN proposals
(right).

As shown in Fig.10, the anchors generated by GARPN can

generate anchors around the defect location more accurately

than the anchors generated by RPN+9 anchors (three scales

and three ratios). Anchors generated by GARPN are densely

distributed around the defect and sparsely distributed in other

non-target areas.

We use ablation experiments to verify the advantages of the

network proposed in this article. We designed 4 experiments.

a) The original Faster-Rcnn based on ResNet as the

backbone.

b) The addition of FPN on faster-Rcnn+ ResNet50.

c) Added APRPN based on previous design.

d) The addition of ShuffleNetV2

Table 4 shows the ablation experiment results. The addition

of the FPN has better accuracy in detecting small defects

TABLE 4. Ablation experiment on our network.

FIGURE 11. Precision-recall curve for different detector.

than the first network. After adding GARPN, the detection

accuracy has been improved significantly, and the detection

speed has also been improved. It can reduce 90% unnecessary

anchors then RPN and generate more accurate proposals [22].

After using ShuffleNetV2, the network’s detection efficiency

is improved, which can meet the needs of real-time detection.

To verify the robustness of the method, we apply this

method to an open PCBdefect database (http://robotics.pkusz.

edu.cn/resources/dataset/) [28]. The database contains

639 PCB images and 2953 defects that have been correctly

labeled. It contains six types of defects. (missing hole, mouse

bite, open circuit, short, spur, and spurious copper). We only
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FIGURE 12. Detection results. (a) and (c) are the original pictures, (b) and (d) are test results.

used the same four types of defects as in our defect database.

We first selected 400 images for each defect dataset for

testing. We used three networks for comparison, the results

are shown in Fig.11 (a). The results show that our proposed

network has higher accuracy and recall than other networks,

but the results are not as good as expected from the original

test set. Although the defect characteristics context informa-

tion of the defect caused by the different PCB, meanwhile the

model is trained from a single data set, so the detection effect

is not good.

In another experiment, we cropped 400 sub-images for

each defect type in the dataset because one imagemay contain

multiple defect types. A total of 650 images were collected

and resize to 600 × 600. The collected pictures are added

to the training and test data sets. As shown in Fig.11(b),

the result is better than the above experiment. This may be

because the model trained by adding a new defect picture to

the training set incorporates more defect information, so it

has better robustness in defect detection. The number of new

effect pictures added in the new training set is too small

compared to the original data set, the results are not as good

as those in Experiment 2. However, they are still available.

Some detection results of our method in Fig.12.

V. CONCLUSION

In this paper, a PCB automated inspection method based

on a convolutional neural network is proposed. In response

to the characteristics of PCB defects, we modified the

original Faster RCNN. Firstly, we use a deeper backbone

ResNet50 for feature extraction, and we used a Feature

Pyramid Networks method to detect smaller defects better.

We replace RPN with GARPN to generate anchors adap-

tively. To speed up the network, we also use the residual unit

in ShuffleNetV2. In our method, no external mechanical fix-

tures needed and strict template alignment operations, which

reduced testing cost. The experimental results show that the

mAP of the improved model is 94.2, and the detection speed

is 0.08s/img, which is improved by 9% and 0.042 s/img in

accuracy and speed compared to the original Faster R-CNN

with ResNet50, respectively. And it performs better than

other detection networks for our database.

We also use other defect data sets for testing our network.

When we use our pre-trained model, the detection perfor-

mance has declined, which because even the same type of

defects will show different characteristics due to different

materials and processes in PCB production. When we join

these pics to our training set, the result was as good as we

expect. In the future, we will collect more defect samples

to join the training set and fine-tune the network to adapt to

defects detection of more types.

LIST OF ABBREVIATIONS

PCB Printed Circuit Boards

AOI Automatic Optical Inspection.

SMT Surface-Mount Technology

FPN Feature Pyramid Network

RPN Region Proposal Network

SAM Statistical Appearance Modeling

PICC Partial Information Correlation Coefficient

TNCCC Traditional Normalized Cross-Correlation

Coefficient

PCA Principal Component Analysis

LBPs Local Binary Patterns

CNNs Convolutional Neural Networks

GPU Graphics Processing Unit.

DWconv Depthwise Separable convolution

RGB Red, Greeb, Blue.

ROI Regions of Interest.

PLC Programmable Logic Controller

CPU Central Processing Unit.

LED Light-emitting Diode.

CCD Charge-Coupled Device.

XML Extensible Markup Language
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IoU Intersection over Union.

mAP Mean Average Precision

AP Average Precision

TN True Negative.

TP True Positive.

FN False Negative.

FP False Positive.

MB Mouse Bite

SB Solder Balls
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