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Abstract

We propose a robust method for detecting local planar regions in a scene

with an uncalibrated stereo. Our method is based on random sampling using

distributions of feature point locations. For doing RANSAC, we use the dis-

tributions for each feature point defined by the distances between the point

and the other points. We first choose a correspondence by using an uniform

distribution and next choose candidate correspondences by using the distri-

bution of the chosen point. Then, we compute a homography from the chosen

correspondences and find the largest consensus set of the homography. We

repeat this procedure until all regions are detected. We demonstrate that our

method is robust to the outliers in a scene by simulations and real image

examples.

1 Introduction

RANSAC [2] and LMedS [12] are very powerful methods for estimating parameters in

images and very robust to outliers in data. So, recently, many methods based on them

are proposed [13, 14, 15]. In their procedures, we usually use an uniform distribution

for sampling data. It is reasonable when we want to estimate global parameters over im-

ages. For example, for estimating the fundamental matrix of an image pair, RANSAC and

LMedS work very well. For estimating a homography to make a panoramic image, they

also work well. Because these matrices are global parameters between the two images.

However, if we want to estimate local parameters in a scene, such as the homography

for a small planar region, RANSAC or LMedS with an uniform distribution does not

works well. Because the probability of chosen four matches being on the same plane is

very small. Therefore, we need many iterations for estimating such local parameters. But

we often obtain the homography for a non-existing plane. So, we need some knowledge

about the existing planes in the scene.

Dick et al. [1] use the knowledge about the buildings in a scene. They use the perpen-

dicularity of the walls to the ground for finding existing planes. But, this knowledge is not

available in a general scene. Kanazawa et. al [9] use the knowledge that the points on the

same plane make a cluster in an image. They first put the circumscribed rectangle includ-

ing all feature points in one image and recursively divide the rectangle into sub-rectangles

vertically or horizontally using geometric AICs [5]. They repeat this procedure until each

sub-rectangle is regarded as a planar region. It is robust but it detects too many regions.

So, they merge the regions by using geometric AICs again. Zucchelli et al. [18] propose
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the method for detecting planar motion flow using LMedS. However, their method does

not work well when outliers are in the planar regions. They first choose one point by ran-

dom sampling and then choose the nearest four points of the first one. Then, they grow the

planar regions with the parameters chosen by LMedS. Matas et al. [11] first detect small

planar regions called MSER (maximally stable extremal regions) and then find matches

between the regions. Trucco et al. [16] find the plane parameter from from disparity space

with parallel stereo.

Once we detect two or more planar regions in a scene and compute the homographies

for them, we can compute the fundamental matrix from the homographies using compat-

ibility of them [4]. Luong et al. [10] have shown that the fundamental matrix computed

from homographies is not accurate, but Kanazawa et al. [9] show that the fundamental

matrix computed from the homographies is more accurate than that computed from point

matches if we optimally compute the homographies. So, detection of local planar regions

in a scene is very important task for reconstructing 3-D structure of the scene.

In this paper, we propose a robust method for detecting local planar regions in a scene

with an uncalibrated stereo. Our method is based on random sampling using distributions

of feature point locations. For doing RANSAC procedure, we use the distributions for

each feature point defined by the distances between the point and the other points. We

first choose a correspondence by using an uniform distribution and next choose candi-

date correspondences by using the distribution of the chosen point. Then, we compute a

homography from the chosen correspondences and find the largest consensus set of the

homography. We repeat this procedure until sufficient number of regions are detected.

We demonstrate that our method is robust to the outliers in a scene by simulations and

real image examples.

2 Compatibility of Fundamental Matrix and

Homographies

We take the first camera as a reference coordinate system and place the second camera in

a position obtained by translating the first camera by vector t and rotating it around the

center of the lens by matrix R. We call {t,R} the motion parameters. We assume that the

two cameras are modeled by the pinhole camera and their focal lengths are f and f ′.

Let (x,y) be the image coordinates of a 3-D point P projected onto the image plane

of the first camera, and (x′,y′) be those for the second camera. We use the following

three-dimensional vectors to represent them (the superscript ⊤ denotes transpose):

x =
(

x/ f0,y/ f0,1
)⊤

, x′ =
(

x′/ f0,y
′/ f0,1

)⊤
. (1)

Here, f0 is a scale factor for stabilizing computation.

We regard vectors xα and x′α as the projected images of 3-D points Pα , α = 1, ...,

N. Here, the vectors xα , Rx′α , and t are coplanar, so they satisfy the following epipolar

equation [4, 5]:

(xα ,Fx′α ) = 0. (2)

Here, (a,b) denotes the inner product of vectors a and b. The matrix F is a singular matrix

of rank 2 and is called the fundamental matrix.

When 3-D points Pβ , β = 1, ..., M, lie on a plane Π, the vectors xβ and x′β are related

in the following form [4, 5]:

x′β = Z[Hxβ ]. (3)



Here, Z[ · ] designates a scale normalization to make the third component 1. The matrix H

is a nonsingular matrix and is called the homography. The vectors xβ and x′β must satisfy

Eqs. (2) simultaneously, so we obtain the following equation:

(xα ,FHxα ) = 0. (4)

This equation means that the matrix product FH must be a skew-symmetric matrix, which

satisfies

FH+H⊤F⊤ = O. (5)

This time, the homography H is compatible to the fundamental matrix F [4].

When we detect two or more planar regions in a scene, we can compute the fundamen-

tal matrix F from the homographies for them using the compatibility (5). If we compute

the homographies by an optimal method [7], the fundamental matrix obtained from the

homographies are more accurately than that computed from the point matches [9].

3 Detection of Planar Regions

We first detect feature points in each image by a feature detector, such as Harris operator

[3], and then find point matches over two image by an automatic matching program, such

as [8] or [17].

In order to compute the homographies for local planar regions in a scene, we take a

double random sampling scheme; the first sampling with the uniform distribution is used

for choosing a local area in the image; the second sampling with the probabilities we

here defined is used for choosing four points almost in the local area. By introducing this

scheme, we can easily choose four points in the same plane.

3.1 Definition of Probabilities for Feature Points

Let Pλ , λ = 1, ..., N, be the feature points in an image I and (xλ ,yλ ) be their coordinates.

The Euclidean distance dαβ between two points Pα and Pβ is defined by the following

equation.

dαβ =
√

(xα − xβ )2 +(yα − yβ )2. (6)

Using the distance dαβ , we define the conditional probability p(β |α ) by

p(β |α ) =

{

1
Zα

e
−sα d2

αβ , α 6= β
0, α = β

, (7)

which indicates the probability of the point Pα under the point Pβ being chosen. Here,

Zα = ∑
β 6=α

e
−sα d2

αβ . (8)

The parameter sα is determined by solving the following equation.

N

∑
β=1

(dαβ − d̄α )e−sα d2
αβ = 0, (9)



where

d̄α =
1

N

N

∑
β=1

dαβ . (10)

This means that we determine sα to satisfy the identity ∑N
β p(β |α )dαβ = d̄α .

If a point Pβ is near a point Pα , the conditional probability p(β |α ) is high. If not,

p(β |α ) is low. So, if we first choose the point Pα by an uniform distribution, we can

choose a close point Pβ to Pα efficiently by using p(β |α ).

Here, in order to use the probabilities p(β |α ) in RANSAC procedure, we introduce

an index array kα (µ) and initialize them by

kα (µ) = µ, µ = 1, ...,N. (11)

We sort p(kα (β)|α ) in descending-order for each Pα . Then, by the following equation,

we define the conditional cumulative probabilities q(β |α ) when Pα is chosen.

q(β |α ) =
β

∑
µ=1

p(kα (µ)|α ). (12)

3.2 RANSAC using p(β |α )

Let P′
α in the image I′ be the feature point that correspond to Pα in the image I. The

RANSAC using the conditional probabilities (7) is done by the following procedure.

1. Let α be a pair chosen by using the uniform distribution from the set of the corre-

sponding feature points S ={Pλ ,P′
λ }, λ =1, ..., N.

2. Initialize S max
α =φ, Mα

max=0 and Hα
max = O.

3. Using the conditional probabilities p(β |α ), choose four pairs β1, β2, β3, β4. In

order to do random sampling using p(β |α ), first generate one random number r in

the range [0,1) using the uniform distribution, then, increase β from 1 and find β
satisfied

r ≤ q(β |α ). (13)

4. If the chosen four pairs are not-skewed, compute the homography Hα from them.

If the pairs are skewed, return the step 3 and choose four pairs again.

5. Compute the reprojection errors for all pairs. Let Sα be the set of the pairs which

errors are less than the threshold d and Mα be the number of the elements of Sα .

6. If Mα ≥ Mmax
α , update

S
max
α = Sα , Mmax

α = Mα , Hmax
α = Hα . (14)

Otherwise, return the step 1.

7. Repeat the above computation until Mmax
α reaches its maximum1.

8. If Mmax
α is sufficiently large2, compute the homography Ĥα from S max

α optimally

[7]. Then, update S −Sα → S and return the step 1.

1In our experiment, we stopped the search when no update occurred 100 times consecutively.
2In our experiment, we use the threshold is 10.
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Figure 1: Examples of conditional cumulative probabilities q(β |α ) for (a): the horizontal axes are

the index number of the sorted points and the vertical axes is probabilities. (a) Example image. (b)

Solid line: probabilities for the point © in the central plane. Dashed line: probabilities for the point

© in the left plane. Dotted line: probabilities for the point ⊕ in left bottom.

4 Simulations and Real Image Examples

4.1 Conditional cumulative probabilities

We first illustrate the curves of some conditional cumulative probabilities by simulation.

We take three planes in a space and place 20 points randomly on each plane. They are

marked by circles (filled and not filled) in Fig. 1(a). We also place 90 points that are not

on these planes randomly in the space as outliers. These are marked by plus in Fig. 1(a).

The conditional cumulative probabilities of three points to the other points are shown

in Fig. 1(b). In this figure, the solid curve indicates the conditional cumulative probability

of the point marked by circle in the center plane; the dashed curve indicates that of the

point marked by circle in the left plane; the dotted curve indicates that of the point marked

by plus with circle. We can see that the probability of the point in dense area has gently

slope and the probability of the point in sparse area has steeply slope. So, the slope

becomes steeply as the density decreasing. We see that we can efficiently choose close

points to the first chosen point through the conditional probability for the chosen point.

In addition, we see that we can also apply the probability for choosing the first point;

we define a probability for choosing the first point by the angle of the curve of the con-

ditional cumulative probability. Generally, the number of sampling times in RANSAC

procedure is determined by the least number of data to compute a model and the percent-

age of outliers in data [4]. If we define the probability for choosing the first point using

the angle of its conditional probabilities, we can reduce the sampling times in RANSAC

and then reduce the cost of the computation.

4.2 Simulations

We next illustrate the effectiveness of our method by doing detection of planar regions in

some simulated scenes. We do simulations in various number of planes and various size

of planes in the scene. The results are shown in Fig.2.

We first simulate scenes that have from one to five planes. We place 150 points in the

scene; 20 points are on each plane and the others are in the space as outliers. After pro-

jecting the points onto the image planes of two cameras, we add Gaussian random noise

with standard deviation 0.0 to 0.4 (pixels) to each coordinates independently. Fig. 2(a)

shows an example image of the scenes and Fig. 2(c) shows the number of the detected
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Figure 2: Simulation for detecting planar regions. Upper: example images of simulated images.

(a) Example image at varying in the number of planes. (b) Example image at varying in heights

of planes. Middle: results at varying in the number of planes. (c) Number of detected planes. (d)

Detection rates of correct points. (e) Detection rates of wrong points. Lower: results at varying in

lengths. (f) Number of detected planes. (g) Detection rates of correct points. (h) Detection rates of

wrong points.

planes by our method and the standard RANSAC, for comparison. In this graph, the hor-

izontal axis indicates the number of planes in the scenes and the vertical axis indicates

the number of detected planes. Here, when 10 or more points on a plane are detected, we

regard that plane is detected successfully. We can see that the standard RANSAC detects

non-existing planes when the number of planes is small; for example, when the number of

planes is 2, but the number of the detected planes is larger than 2. However, our method

detects almost the correct number of planes. The detection rate of the correct points Pc

and the detection rate of the wrong points Pe are defined by the following equations.

Pc =
# of detected correct points

# of correct points
, Pe =

# of detected error points

# of detected points
(15)

In Fig. 2(d) and (e), the horizontal axes indicate the number of the planes and the vertical

axes indicate these rates. We can see that our method can detect more correct points on

the planes than the standard RANSAC.

We next simulate scenes that have two planes which sizes are 1/6 to 1/2 of the height

of the image. Fig. 2(b) shows an example image of the scenes and Fig. 2(f), (g), and (h)

show the number of the detected planes, the rate of the detected correct points, and the rate

of the detected error points respectively. We can also see that the standard RANSAC de-
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Figure 3: Real image examples for detecting planar regions. (a) Real images. (b) Planes detected

by the standard RANSAC. (c) Planes detected by our method. (b) 3-D reconstructed shape (side

view) using the fundamental matrix computed from homographies of the planes detected by our

method.

tects non-existing planes when the planes are small but our method detects almost correct

planes in every size.

4.3 Real Image Examples

We finally show some real image examples.

Fig. 3(a) shows a stereo image pair of an outdoor scene. We determine point matches

by the automatic matching method [8]. Fig. 3(b) shows the result obtained by the stan-

dard RANSAC and Fig. 3(c) shows the result obtained by our method. In these figures,

we plot the points on the same plane by the same marks, for example, circles plotted in

the image are regarded be on the same plane. We can see that the standard RANSAC

detects a wrong planes (stone steps). However, our method detects correct three planes

and the points on each plane are almost correct. We compute the fundamental matrix

from the obtained homographies using the compatibilities (5) and decompose it into the

camera parameters by the method of Kanatani and Matsunaga [6]. Using the homogra-

phies obtained by our method, we obtained the 3-D reconstruction shown by Fig. 3(d).

We can see it is very accurate. However, we could not decompose the fundamental matrix

from the homographies detected by the standard RANSAC. We could not decompose the

fundamental matrix computed from point matches either. So, for obtaining an accurate

3-D reconstruction, it is very important to detect planar regions accurately in the scene.

Fig. 4(a) shows an example for a building scene. Fig. 4(b) and (c) show the planes

detected by the standard RANSAC and our method, respectively. In this example, we

can see that the standard RANSAC detects wrong planes and points, but our method

detects almost correct planes and points. Fig. 4(d) shows the 3-D shape reconstructed

from the fundamental matrix computed from point matches. Fig. 4(e) shows the 3-D shape

reconstructed from the fundamental matrix computed from the homographies detected by

the standard RANSAC. Fig. 4(f) shows the 3-D shape reconstructed from the fundamental
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Figure 4: Real image examples for detecting planar regions. Top: (a) Real images. Middle:

Detected planes. (b) The standard RANSAC. (c) Our method. Bottom: 3-D reconstructed shape (top

view). (d) Using the fundamental matrix computed from point matches. (e) Using the fundamental

matrix computed from homographies of the planes detected by the standard RANSAC. (f) Using

the fundamental matrix computed from homographies of the planes detected by our method.

matrix using the homographies detected by our method. We can see that the 3-D shape

obtained from homographies detected by our method is more accurate than the others.

Fig.5 shows an example for another building scene. We can see that our method detect

almost correct planar regions, but the standard RANSAC detect wrong planes. So, we can

see the resulted 3-D shape from the fundamental matrix using the homographies by the

standard RANSAC is wrong, for example, the red signboard on the upper left has been

reconstructed in back of the building on the right. We can also see the 3-D reconstruction

obtained from the fundamental matrix using point matches is also wrong.

5 Conclusion

We proposed a robust method for detecting local planar regions in a scene with an uncal-

ibrated stereo. Our method is based on random sampling using distributions of feature

point locations. For doing RANSAC procedure, we use the distributions for each feature

point defined by the distances between the point and the other points. Using these prob-

abilities we can detect planar regions robustly and efficiently. We demonstrated that our

method is robust to the outliers in the scene by simulations and real image examples.
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Figure 5: Real image examples for detecting planar regions. Top: (a) Real images. Middle:

Detected planes. (b) The standard RANSAC. (c) Our method. Bottom: 3-D reconstructed shape (top

view). (d) Using the fundamental matrix computed from point matches. (e) Using the fundamental

matrix computed from homographies of the planes detected by the standard RANSAC. (f) Using

the fundamental matrix computed from homographies of the planes detected by our method.

In future work, for obtaining more accurate correspondences between two images, we

will build our method into image matching.
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