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In order to detect the linkage disequilibrium existing between alleles at a marker locus and 
alleles of a linked quantitative trait locus (QTL), a least squares interval mapping approach 
using multiple regression on marker data has been developed. It allows inclusion in the model 
of the parameters describing the experimental and environmental situation, so that the 
QTL x environment effects can be tested. The method can also be applied using any general 
statistical package to data for which the usual normal distribution assumption does not hold, 
and where the use of weighted approaches is therefore required. A method to cope with the 
frequent problem in biological experiments of missing data was also used. The analysis was 
performed on data concerning two components of maize pollen competitive ability, obtained 
from an experiment over 2 years. The method, in comparison with the traditional single 
marker approach, has been shown to be more powerful in detecting QTLs and more precise 
in determining their map position. The analysis has identified QTLs expressed across years, 
putative QTLs with major effects and QTLs accounting for genotype x environment 
interaction. 
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Introduction 

Strategies for detecting polygenes are based on the 
linkage disequilibrium existing, owing to their physi
cal linkage, between alleles at the marker locus and 
alleles of the linked QTL, and a number of methods 
for identifying the association between them have 
been proposed. A first approach is based on the 
analysis of single markers one at a time, comparing 
the marker class phenotypic means by analysis of 
variance or analysis of regression (Soller & Beck
mann, 1983; Edwards et al., 1987; Weller et al., 1988; 
Stuber et al., 1992; Zehr et al., 1992). In a second 
approach, two or more marker loci are considered 
simultaneously. For this, originally, the method of 
maximum likelihood was adopted, in a way that 
allows estimation of the phenotypic effect and 
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provides a test statistic for a putative QTL at any 
given genetic location between two flanking markers, 
the method being called interval mapping (Lander 
& Botstein, 1989). It is a powerful tool for the 
mapping of QTLs, but the underlying maximum 
likelihood method is relatively complex and requires 
a special computer program to be applicable in prac
tice. An alternative method, based on multiple 
regression, called least squares interval mapping, has 
been developed by Haley & Knott (1992). It has the 
advantage of being applicable with any general 
statistical package, e.g. GENSTAT in particular 
(Genstat 5 Committee, 1993). Moreover, it can 
easily be extended to more elaborate models, such 
as those with two or more QTLs, with environ
mental effects. When compared with the maximum 
likelihood method, it has given very similar results 
(Haley & Knott 1992). Apart from some simulation 
studies, the least squares interval mapping method 
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has been applied successfully to certain real multi
environment phenotype data from a double haploid 
population of barley (Hayes et al., 1993). Further 
extension of the single QTL interval mapping 
method has been considered independently by 
Jansen (1993, 1994), Jansen & Stam (1994), Zeng 
(1993, 1994) and Rodolphe & Lefort (1993). The 
main aim of these extensions is to increase the effi
ciency of detecting and the accuracy of mapping of 
multiple QTLs by employing multiple QTL models. 
The suggested general methods are based on regres
sion models involving a large number of parameters 
to be estimated. Therefore, their practical use is 
restricted by the population size. 

As the phenotype of an individual is also deter
mined by the interaction of its genotype with the 
environment, even although a substantial proportion 
of QTLs affecting a quantitative trait is expected to 
be expressed in different environments, some QTLs 
important in one environment may not be as 
important in determining the phenotype in another 
environment. The interactions of individual QTLs 
with environments have been studied by an ANOVA 

procedure (Paterson et al., 1988; Guffy et al., 1989; 
Stuber et al., 1992; Koester et al., 1994), by compar
ing the frequency of identification of significant 
marker-QTL associations in different environments 
(Paterson et al., 1991; Stuber et al., 1992; Bubeck et 
al., 1993; Schon et al., 1994) or by direct estimation 
of QTL location using the least squares interval 
mapping method (Hayes et al., 1993) and by the 
MOM mapping method (Jansen et al., 1995). In 
general, marker locus x environment interaction 
effects were found to be low, mainly concerning the 
magnitude of the effects detected in the diverse 
environments. 

The present study was based on data from a 
2-year experiment, performed on a population of 
recombinant inbred lines in order to detect QTLs 
controlling pollen competitive ability in maize. Our 
aims were: 

1 to compare the information given by different, but 
closely related, methodologies for identifying 
QTLs, i.e. the traditional single marker approach, 
a method based on a theoretical model that takes 
into account the flanking markers and a method 
based on the same model but using markers as a 
covariate; 

2 to identify QTLs expressed across years, putative 
QTLs with major effects and QTLs accounting for 
genotype x environment interaction; 

3 to evaluate the efficiency of the model in coping 
with the problem of missing marker observations. 
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The model 

Genetic model 
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Let us assume that for a recombinant inbred (RI) 
line the genotypes at a number of marker loci 
located on a chromosome of length D cM are deter
mined. Consider a fixed position, p, on this chromo
some (0 <p <D), at which a putative QTL, Q, is 
located. Denote by A and B two markers flanking Q 
from the left and right sides, respectively, and by PA 
and p 8 their positions on the chromosome. Inverting 
the procedure applied by Burr & Burr (1991) to 
construct the linkage map that was used in our 
study, we transform positions on the chromosome 
into expected fractions of recombinant RI lines by 
the formula (Haldane & Waddington, 1931): 

2ra 
Ra=--, 

l+2r8 

where rA = (p-pA)/100 and r8 = (p8 -p)/l00 denote 
recombination fractions per meiosis between A and 
Q and between Q and B, respectively. Thus, follow
ing the authors of the map, we assume linearity 
between the distance in cM and recombination frac
tions, and we accept the assumption that rA +r8 = r, 
the recombination fraction between A and B, which 
corresponds to the 'no double crossover' or 'full 
interference' model. 

Let the genotype, for any locus G on the chromo
some, be denoted by g(G). Possible values of g(A) 
are A 1A 1 and A2A2, of g(B) are B 1B1 and B2B2, of 
g(Q) are Q1Q1 and Q2Qz. Probabilities of the two 
possible genotypes at Q, conditional on the geno
types at A and B, are presented in Table 1 ( cf. 
Knapp et al., 1990), in which the standardization 
factor R is equal to RA + R8 . 

Assume that expected values of the trait, y, being 
observed are µ+ix for the genotype Q1Q1, and µ-ix 

Table 1 Probabilities of the two possible genotypes for the 
QTL,Q 

Probability of 

g(A)g(B) g(Q) =Q1Q1 g(Q) = Q2Q2 

A1A1B1B1 1 0 

A1A1 B2B2 R8 /R RAIR 

A2A2 B1B1 RAIR Rs!R 

A2A2 B2B2 0 1 

In the table, the standardization factor R is equal to 

RA+Rs. 
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for the genotype Q2Q2, where µ denotes a general 
mean and r:,. the genetic additive effect. Then, 
expected values for four possible genotypes at A and 
B can be expressed as 

e(y) = µ+x(g(A),g(B),p) r:1., 

where 

(1) 

x(g(A ), g(B), p) 

1, g(A) =A 1A1, g(B) = B,B1 

(RB-RA)IR, g(A) =A,A,,g(B) =B2B2 

= (RA-Ra)IR, g(A) =A 2A 2, g(B) = B1B1 

-1, g(A) =A 2A 2,g(B) =B2B2. 

If p is equal to the position of a marker A, obvi
ously the flanking markers are A and A, and the 
above formula gives: 

{ 

1, g(A) =A1A1 
x(g(A),g(A),P)=x(g(A)) = ) . 

-1, g(A =A2A2 

Model for experimental data 

The genetic model ( eqn 1) described above will now 
be used to construct the model of observations of 
the trait for / inbred lines, compared in an experi
ment conducted at J environments, with K complete 
blocks in each trial. Denoting by y;jk the observation 
concerning the ith line (i = 1, ... , /) coming from 
the jth environment (j = 1, ... , J) and the kth block 
(k = 1, ... , K), and assuming for observations from a 
block design experiment a fixed model, write: 

e(yijk) = µ+YJj+/Jjk+YiJ· (2) 

This model is a linear model involving a general 
mean µ, environmental effects Y/j, j = 1, ... , J, block 
effects /Jjk nested within the environments,j = 1, ... , J, 
k = 1, ... , K, and genotype effects YiJ, also nested 
within environments, i = 1, ... , /, j = 1, ... , J. Except 
for the constraints guaranteeing their uniqueness, 
parameters Yij are not assumed to have any special 
structure, so that is a maximal model with respect to 
the genotypic variation. Separation of genotype main 
effects and genotype x environment interaction 
effects can be achieved by taking a version of eqn 
(2) with y;j = yf0> + y~1>. On the other hand, the model 
with Y;J = 0, that is 

e(y;Jk) = µ + Y/J + /Jjk, (3) 

assumes no genotypic effects at all. 
Several models, intermediate between eqn (2) and 

eqn (3), cau be constructed using some decomposi
tion of the genotypic effects, as 

yij=</>iJ+bij. (4) 

In this formula, the parameter cpij describes geno
typic variability attributable to the regression of the 
phenotypic trait on the genotypes in L putative 
QTLs located !t positions Pz, ... , PL (possibly on 
different chromosomes), and has the form: 

L 

cpij = L X (g;(A1), gi(B1),P1) r:l.j(p,), (5) 
/=! 

where g;(A1) and gi(B1) denote genotypes observed 
for the ith line at markers A1 and B1 flanking the 
position p1, and r:1.}P1> denotes the additive genetic 
effect characteristic for this position at the jth 
environment. Thus, Dij in eqn ( 4) represents the 
genotypic variation not explained by the QTLs 
included in the construction of ¢iJ- Different forms 
of cpij are considered below. Generally speaking, 
searching for the QTL model consists of looking for 
cp ii such that the model 

e(yijk) = µ+tv+ {Jjk+ cpij (6) 

is not far, in terms of the goodness of fit, from the 
model ( eqn 2), which means that D;; is negligible. 
Alternatively, the aim of the analysis can be 
described as looking for such terms constituting eqn 
(5), which gives the best improvement of the model 
in eqn (6) over the model in eqn (3). 

Positions pi, ... , PL considered in eqn (5) can 
coincide with the positions of markers, which corre
sponds to assuming QTLs at marker loci, or can be 
taken as the positions of putative QTLs assumed to 
exist in the intervals between markers. We consider 
the intervals one at a time so that the number of 
QTLs of the first kind (marker covariates) is equal 
to L -1 = M and the number of QTLs of the second 
kind is equal to 1. Thus, eqn (5) can be written as 

M 

c/J;J= LX(g;(A1)) r:1.?1>+x(g;(A),gi(B),p) ix?>, (7) 
/=I 

which, when inserted into eqn (6), leads to the linear 
model assuming QTL x environment interaction (i.e. 
the possibility of environment-specific additive 
genetic effects) at M marker loci and one locus 
located at some position p. 

In the following, two models, simpler than eqns 
(6) and (7), will also be used. These are the model 
constructed under the hypothesis 
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having the parameter <piJ of the form 

M 

</J;1= Ix(g;(A1)) et;"'l+x(g;(A),g;(B),p) et1pl, (8) 

i=l 

and therefore stating that the genetic additive effect 

of a putative QTL at the position p is not modified 

by the environment, and the model constructed 

under 

H: etY' l = et'f l = ... = et'fl = 0, 

having 

M 

<piJ = Ix(g;(A 1)) et;"'l, 

l=l 

(9) 

which says that no genetic additive effects exist at p . 

Finally, to complete the formulation of the statis

tical model of observations, we assume that for all i, 

j andk 

YiJk = e (y iJk) + eiJk, 

where e;Jk denotes uncorrelated normally distributed 

experimental errors, each with expected values equal 

to O and a corresponding variance aik· With these 

assumptions, the parameters of the model in eqn (2) 

and genetic additive parameters appearing in eqn 

(7) can be estimated using the weighted least 

squares (WLS) method. Also, the fit of any pair of 

nested models can be compared using the appro

priate F-statistic, constructed using as the denomi

nator the residual mean square obtainable from the 

model in eqn (2). Of particular interest are compari

sons of the following pairs of models: 

1 eqn (3) vs. eqn (2), to test the general hypothesis 

about the existence of genotypic variation; 

2 eqn (3) vs. eqn (6) with <piJ as in eqn (9), for 

different values of M and different selections of 

markers, to find their subset absorbing an appreci

able portion of genotypic variation; 

3 eqn (6) with <p;1 as in eqn (9) vs. eqn (6) with <piJ 

as in eqn (7), for different positions p, to find 

those positions of loci that considerably improve 

the model, thus locating QTLs; 

4 eqn (6) with <p;1 as in eqn (8) vs. eqn (6) with <p;1 

as in eqn (7), for positions p at which a QTL has 

been declared, to assess the dependence of its 

additive effect on the environment. 

To avoid estimation of parameters in models that 

describe the genotypic variation poorly, one can 

control the goodness of fit of models selected in 2 

and 3 by comparing them with the model in eqn (2). 

Stages 1, 2, and 3-4 constitute the analysis which, 
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together with its results and specific properties, is 

described in detail in the next section. At stage 2, a 

version of the forward selection procedure was used, 

whereas for stage 3-4 the analysis of relevant 

models for all chromosomes and for p = 0, 1, ... , D 

was performed. 

Application 

Data description 

The data were produced in an experiment carried 

out in 2 years, with two blocks, on a set of 44 RI 

lines, kindly supplied by B. Burr, obtained from 

inbreds T232 and .CM37 (Sari-Garia et al., 1992, 

1995). 

Two pollen traits were evaluated: pollen germin

ability and early growth, and late pollen tube growth 

rate, up to fertilization. The pollen characters were 

measured in vivo by means of a mixed pollination 

technique: equal amounts of the pollen to be tested 

and the pollen of a standard genotype (W22), carry

ing a genetic marker for coloured aleurone, were 

mixed and used to pollinate a female plant. As, in 

maize, the style length varies according to the posi

tions of the flowers on the ear, increasing from the 

apex to the base, relative pollen tube growth rate 

(PTGR) can be expressed as the increase in the 

proportion of uncoloured kernels on the resulting 

ear. Each ear was divided into four or five segments 

eight kernels long, according to their length, in 

which the proportion of uncoloured kernels was 

computed. The regression surfaces were fitted by the 

WLS method (Grizzle et al. , 1969) . 

The proportion of uncoloured kernels in the 

apical segment of the ear gives a measure of pollen 

germinability (in terms of time and rate) and of 

early tube growth, which will b~ referred to as pollen 

grain germination (PGG). 

Because of some experimental failures, the 'lines 

x years' experimental design was not orthogonal. 

Variances of observations were calculated for PGG 

(on the basis of their binomial distribution) and for 

PTGR (taking into account that this trait is evalu

ated as the coefficient of regression of the propor

tion of uncoloured kernels on the ear segment). 

Reciprocals of the variances were used as weights to 

perform the WLS analysis for the models described 

previously. 

For all lines included in the experiment, genotypes 

at 183 RFLP loci, located on 10 chromosomes, were 

known (Burr et al., 1988); the number of markers on 

one chromosome varied from 14 to 26. The posi

tions of markers in cM were determined using the 

linkage map published by Burr & Burr (1991). 
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Some practical solutions 

Heterozygosity The model described in eqn (1) 
assumes that the material is homozygous. Residual 
heterozygosity, caused probably by some uninten
tional selection, was, however, observed at marker 
loci, and at a level much greater than the level 
expected for the generation of selfing beyond . the F2 
(six) (Burr & Burr, 1991). A simple extension of the 
genetic model specified in eqn (1), based on theoret
ical expectations would not account for observed 
heterozygote frequencies. Therefore, for this analysis 
all marker observations classified as heterozygous 
were taken as missing, even although this could lead 
to biased estimates of location and effect, because 
heterozygous marker loci may well indicate hetero
zygous QTLs. 

Missing marker observations For 60 markers, the 
genotypes of some lines (from 1 to 6) were unknown 
(1.8 per cent of marker observations were missing). 
Owing to the treatment of heterozygotes described 
above, the effective number of missing values in the 
data set taken was even higher and amounted to 6.6 
per cent. 

An approach to the problem of missing marker 
data was described by Jansen & Stam (1994). Their 
model can be analysed using the WLS method, with 
weights calculated as conditional probabilities of 
genotypic states, given the phenotype and genotypes 
at other marker loci. Because our model involves 
application of WLS with weights based on variances 
of observations, this approach would require double 
weighting and was not used in order to avoid further 
complications. 

The method of treating missing marker observa
tions proposed by Martinez & Curnow (1994), in the 
context of models using neighbouring markers, is 
more relevant for our analysis. The use of their 
approach means taking as flanking markers A and B, 
for the position p under consideration and for the 
line affected by the missing value, the nearest 
markers for which data are not missing. Thus, for 
some positions, the values of x(g;(A), g;(B), p) in 
eqn (7) are not determined on the basis of the same 
flanking markers for all i = l, ... , I. The situation for 
which one of the flanking markers cannot be found 
(missing observations at the chromosome ends), or 
is too far ( > 50 cM), requires further considerations. 
For all such cases, the calculation of the value of the 
explanatory variable x in eqn (7) is based on just one 
flanking marker, according to the formula (Simpson, 
1989): 

x(g(A ), g(B), p) 

= 

l-2R8 , g(A) unknown,g(B) =B1B1 

-l+2R8 , g(A) unknown,g(B) =B2B2 

g(A) =A 1A 1, g(B) unknown 

g(A) =Ai,4 2,g(B) unknown. 

Thus, the line is excluded from calculations only if 
no flanking markers can be found which are closer 
to p than 50 cM. In our data set, this situation 
happened only on chromosome 1, for line no. 1, 
positions p = 0, l, ... , 6. 

Selection of markers Note that, for models invol
ving multiple markers, a method of correcting 
missing observations is also needed at the marker 
selection stage. For this purpose, the method 
described above is equally suitable and was properly 
extended. All missing observations of marker geno
types were corrected on the basis of homozygous 
'flanking' markers. The selection of markers consti
tuting eqn (9) was then accomplished using the 
forward selection procedure, starting with M = 0, 
and adding at each step the marker that gave the 
best improvement of the model in terms of the 
F-statistic. The multiple correlation of each candi
date marker with the ones already in the model was 
checked, and candidates with high correlation were 
rejected in order to avoid collinearities (Weisberg, 
1985, p. 211). The selection process was stopped 
before nonsignificant F-values were obtained, taking 
into account possible overestimation of the markers' 
parameters while using the forward selection proce
dure (Weisberg, 1985, p. 214). 

The forward selection procedure is certainly not 
the best method of selecting explanatory variables in 
multiple regression. Better algorithms, especially the 
methods of selecting the best subset of given size, 
are, however, numerically prohibitive for the number 
of variables involved here. 

Handling of selected markers The mapping algo
rithm described earlier was enforced by the tempo
rary elimination of markers included in the model 
and flanking the interval of current interest, as advo
cated by Jansen (1994) and Zeng (1994). It allows 
the role of markers to be re-examined, in the sense 
that the possibility of no marker x environment 
interaction is studied in the same way as for all 
other positions. In a way, it corrects the overparame
trization of the model, possible with the algorithm 
used at the marker selection stage. 
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Controlling error rates The first stage of mapping 

consists of testing the hypothesis of no QTL effect 

for all positions on the chromosome. We treat all 

these hypotheses as a family and test them simulta

neously by the sequentially rejective Bonferroni 

procedure as described by Hochberg & Tamhane 

(1987, p. 57). This procedure allows control of the 

family-wise Type I error rate in the sense that it 

assures the probability of declaring no false QTLs to 

be at least 1-e, with a small e chosen in advance. In 

our calculations, the value of e = 0.2 was used, as a 

smaller value would make the family-wise Type II 

error rate too large. 

At the second stage, positions of QTLs are 

checked for the presence of interaction with years. 

Here, far fewer hypotheses are tested on the 

chromosome, so the problem of controlling the Type 

I error rate for the family of no-interaction hypoth

eses is not so important. Additionally, for a fixed 

position, the two hypotheses tested on the first and 

the second stage form a family closed under inter

section, and so, when testing at the level e = 0.01, 

say, the probability of making no Type I error will 

be at least 1-e (Hochberg & Tamhane, 1987, p. 54). 

Results 

Full analysis of the data set was performed accord

ing to the methodology given earlier. At the first 

stage, the model in eqn (2) (with separation of geno

typic main and interaction effects) was analysed for 

both traits (see Table 2). The presence of the geno

type x year interaction was established on the basis 

of the F-test. 

The second stage consisted of the selection of 

markers that should be included in the model in eqn 
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(9). Results of the selection are presented in Table 

3. The .final model comprises regression on 10 

markers for PGG and on six markers for PTGR. For 

both the traits, its fit is significantly better than that 

with the model with no markers, but not completely 

satisfactory when compared with the maximal 

model. Note that the percentage of genotypic varia

tion explained by markers f measured by the ratio of 

the sum of squares for markers in eqn (9) and the 

sum of squares for genotypes in eqn (2)] is high. 

Finally, the mapping of all 10 chromosomes was 

performed. For each position p = 0, 1, ... , D, the 

following values were calculated. 

• F1: value of the F-test statistic for the comparison 

of the model involving a QTL interacting with the 

years vs. the no-QTL model, as indicated in eqn 

(3) for the experimental data, with the corres

ponding P-value for that statistic. 

• F2: value of the F-test statistic for the comparison 

of the model of a QTL x year interaction vs. the 

model of no interaction for that QTL, as indi

cated in eqn ( 4), with the corresponding P-value. 

• Estimates of environment-specific genetic additive 

parameters ix1 (first year) and ix2 (second year) in 

the model in eqn (7). 

• Estimate of the common, for 2 years, genetic 

additive parameter ix in eqn (8). 

Detailed results of mapping for PGG for chromo

some 2 are presented graphicaUy in Fig. 1. For the 

moment, suppose that the hypotheses are tested 

separately (not simultaneously). When testing at 

level 0.01, one interval, from 6 to 9 cM, can be 

declared as containing a QTL showing significant 

modification of its effect by the environment. This is 

indicated by significant values of both F1 and F2 

(Fig. lb, c). The estimate of a in the first year is 

Table 2 Analysis of variance for the maximal model of genotypic variation 

Source of variation 

Years 
Blocks within years 

Genotypes 
Genotype x year interaction 

Residual 

Percentage of variance 
explained by the model 

**P~0.01, ***P~0.001. 
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Mean square for 

Degrees of freedom PGG 

1 7429.20*** 

2 1648.43* ** 

43 246.92*** 

38 39.08** 

71 17.34 

88 

PTGR 

46.63** 
120.73*** 

43.30*** 

10.56** 

5.44 

71 
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Table 3 Results for the model of regression on marker genotypes obtained by the forward selection procedure (markers 

enumerated in order of inclusion) 

Trait 

PGG PTGR 

Markers included 
(marker no./chromosome no.) 

2/8, 3/9, 16/1, 9/8, 13/2, 
15/1 , 3/12, 10/2, 13/10, 9/6 

6/3, 3/7, 11/1, 

3/4, 9/6, 3/9 

F for comparison with 
the maximal model (equation 2) 

Degrees of freedom 

F for comparison with 
the model with no markers (equation 3) 

Degrees of freedom 

Percentage of variation 
explained by the model 

Percentage of genotypic variation 
explained by markers 

*P,;;;0.05, ***P,;;;0.001. 

Q) 
::, 

20 

ro 10 
> 

2.19*** 

61, 71 

28.33*** 

20, 71 

83 

81 

a 

LL 
.. ······· ... 

0 L-j=--~r==·. ~$.-...:4'.~~::3..~~~~~ 

g:g6~ i ... --,--_v_-....,=--;;;:-;;....::;;;-:,-=D:...==-==-==--=-;:::...:-=H:..!::ii~-=-==-=-:;::n-=..-=-=-:::::i-hJI b 
ro I I I I ;. 7 · 
> 

0. g_-g~~ t_--r½7'_-__ -.-------.------r------.,......~---:;-;.:..--~=-;;;;;:-~-=..;;-~I C r===:-= I I I I I I 7 

:·:1 ················:= ·· ~· Id * -o:, - : : ---=- z: . 
E 

_: :r'--+--+----+------+---+I --41-----+-----+-'' e 
0 20 

I I 
1 2 3 

40 60 80 100 

Centimorgans 
I t I I I 

4 5 67 8 9 10 11 

Marker positions 

120 

12 14 
13 15 

140 

16 

1.70* 

69, 71 

24.94*** 

12, 71 

62 

72 

Fig. 1 Results of the analysis for 
pollen grain germination (PGG), 
chromosome 2 of maize. (a) Value of 
F 1 (the F-statistic for the existence of 
a QTL, solid line) and F2 (the F-stat
istic for the QTL x year interaction, 
dotted line). (b) P-value correspond
ing to F1• (c) P-value corresponding 
to F 2• (d) Estimate of the genetic 
effect IX, in the first year (solid line) 
and in the second year ( dotted line). 
( e) Estimate of the genetic effect IX 

common for 2 years. Diagram below 
shows position of markers on the 
chromosome; markers acting as 
covariates are indicated by 9. 
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negative, and the estimate of a in the second year is 

positive (Fig. ld). Another interval, from 44 to 

48 cM, can be reported as containing a QTL with 

the positive effect (Fig. le) common for 2 years, the 

conclusion being implied by significant values of F1 

and nonsignificant values of F2• Then two intervals 

appear that contain markers included in the model 

in the previous stage, namely the interval 

92-102 cM, containing marker 10, and the interval 

119-122 cM, containing marker 13. In both the 

intervals, the QTL x year interaction is not present, 

which exemplifies the case of the re-examination of 

the marker's role in the model, as mentioned earlier. 

One more interval shown in Fig. 1 requires special 

attention, despite the fact that the F-values in it are 

not significant. This is the interval 124-127 cM, in 

which untypically low estimates of a in the first year 
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were obtained. This interval starts with the marker 

15, which is located 4 cM from marker 13. Examina

tion of the marker data showed substantial correla

tion ( > 0.9) among markers 13, 14 and 15. It was 

concluded that the outlying estimates were obtained 

because of the failure of the WLS method to esti

mate properly parameters with two highly correlated 

explanatory variables in the model: marker 13, 

included in the model at the selection stage, and 

marker 15, serving as the flanking marker in the 

interval of interest. Such numerical problems did not 

occur in the other situations studied, and therefore 

it was not necessary to modify the analysis for this 

reason. 
The amount of information obtained from the 

mapping performed is quite large and a way of 

summarizing it for practical purposes is needed. 
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Fig. 2 Estimates of the genetic addi

tive parameter o: - summary of the 

analysis undertaken for pollen grain 
germination (PGG), for 10 chromo

somes of maize. Two lines indicate 
regions with significant QTL x years 

interaction: the dotted line corre

sponds to estimates obtained for the 
first year and the thin line to esti
mates for the second year. The thick 

line indicates regions in which no 

interaction was detected but the 

common parameter o: was significant. 

Marks show markers' positions and "v 

indicates markers acting as covari
ates; the scale in cM is shown below. 
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tive parameter rx - summary of the 
analysis undertaken for pollen tube 
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regions with significant QTL x years 
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sponds to estimates obtained for the 
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in which no interaction was detected 
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Figure 2 shows such a summary for PGG, for all 10 
chromosomes, obtained on the basis of the simulta
neous testing procedure described earlier. 

In Fig. 2, the lines are drawn only within intervals 
in which the hypothesis of no QTL effect was rejec
ted at the overall significance level of 0.2. In inter
vals in which significant (at the level 0.01) 
QTL x year interaction was found, there are two 
lines, corresponding to estimates of r:t. in the two 
years. If interaction was not significant, just one line, 
corresponding to the estimate of r:t., is shown. The 
graph allows regions suspected for the presence of 
QTLs, and regions in which the genetic effect of a 
putative QTL is modified by the environment (year), 
to be quickly identified. Owing to the testing proce
dure used, the probability of committing no error by 
declaring a false QTL on a given chromosome is at 

200 

least 0.8. Comparison of results obtained for 
chromosome 2 with those shown in Fig. 1 reveals 
that only the regions of markers 10 and 13 can be 
said to contain a QTL, if the family-wise Type I 
error rate is to be controlled. 

A similar summary of results obtained for PTGR, 
for all 10 chromosomes, is shown in Fig. 3. For this 
trait, a modification of the mapping procedure, 
consisting of two runs, was tried. The first run was 
performed with the base model specified in Table 3, 
that is with the model involving marker x year inter
action parameters for all selected markers. The map 
obtained was checked, and significant interaction 
was found at the positions of marker 3 on chromo
some 7 (3/7) and 3 on chromosome 9 (3/9). For the 
rest of the markers serving as covariates, the inter
action was not significant. Thus, a new model with 
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main effects of markers 6/3, 11/1, 3/4 and 9/6 and 

interaction effects of markers 3/7 and 3/9 was 

constructed and used as the base model in the 

second run of mapping. In terms of the goodness of 

fit, this model is not appreciably different from the 

model shown in Table 3; it explains 70 per cent of 

the genotypic variation. The results of both mapping 

runs were virtually the same. So, for PTGR, very few 

intervals not containing markers acting as covariates 

were actually found. 

Discussion 

Localization of QTLs for two components of 

competitive ability of maize pollen has been 

obtained from a 2-year experiment. The data had 

first been analysed using a one-at-a-time approach 

by means of regression analysis; only the loci that 

were significant but uncorrelated were included in a 

multiple regression model, in order to evaluate the 

cumulative contribution of the loci to the trait varia

bility (Sari-Gorla et al., 1992, 1995). In the present 

work, a different methodological approach was 

applied, in which the information derived from the 

flanking markers is taken into account, so that the 

estimates and test results for a putative QTL are 

obtained at any given genetic location between two 

flanking markers, providing a significance level 

profile for the presence of a QTL at any position on 

the chromosome covered by the markers. 

The approach adopted here follows that of Haley 

& Knott (1992), with some extension to include in 

the model parameters reflecting the experimental 

and environmental situation. In that sense, the 

approach is similar to that of Hayes et al. (1993 ). In 

particular, the adopted model allows the QTL x en

vironment effects to be tested. Also, as far as the 

model construction and the mapping algorithm are 

concerned, the idea of using markers as covariates 

given by Jansen (1994) and Zeng (1994) was 

followed. The characters studied in the present work 

are intrinsically difficult to measure: this leads to 

data sets of variables for which the usual independ

ence, constant variance and normal distribution 

assumptions do not hold. This requires sufficiently 

large samples on which the observed data (the 

proportions) are based, a suitable transformation of 

the data and the use of the weighted least squares 

method, with weights related to the unequal vari

ances (Koch et al., 1977). Therefore, it was desirable 

to apply a statistical technique that would account 

for the weights and would not require an additional 

system of weighting to be used, making the analysis 

too complex. 
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The statistical approach adopted, keeping the 

analysis relatively simple, at the same time indicates 

how various experimental and environmental situa

tions can be taken into account in modelling the 

analysis. With regard to this, the present research 

can be considered as a step towards bringing the 

theoretical results on mapping of QTLs closer to 

plant breeding practice. 

Comparisons between the results obtained by 

using a one-at-a-time analysis and interval mapping 

on the same set of data are reported in the literature 

(Paterson et al., 1988; Stuber et al., 1992; Bubeck et 

al., 1993); they indicated that the two methods 

yielded virtually the same results; however, interval 

mapping was revealed to be more powerful. On the 

other hand, the methods involving markers as 

covariates are believed to be not sufficiently power

ful when applied to limited experimental material 

(Zeng, 1994). For the present experiment, all three 

methods of analysis were used. The comparison of 

results reveals that, in general, similar chromosomal 

regions were detected; however, frequently the clus

ters of significant loci produced by the one-at-a-time 

analysis were resolved into two or more specific 

areas of significance. 

Despite the limited experimental material and 

some imbalance of the data, the method adopted 

here has appeared to be sufficiently effective for 

revealing regions of chromosomes that might be of 

interest for marker-assisted selection. 

Classical studies on quantitative traits measured 

G x E interaction averaged across the entire 

genome; in recent studies, attempts have been made 

to discern the degree of G x E interaction by indivi

dual QTLs by means of different approaches (Stuber 

et al., 1992; Hayes et al., 1993; Koester et al., 1993; 

Schon et al., 1994). 

In the present study, G x E interaction effects were 

detected for both the pollen characters. In some 

cases, the estimate of the genetic additive effects 

was negative in one of the years and positive in the 

other; in others, interaction was caused by different 

degrees of expression in the two years. Even 

although some QTL x E effects could be identified 

by comparing the 2-year experiment results, others 

are not detectable in this way, as the single additive 

effects were not significant. Moreover, the statistical 

approach used allowed us to identify the more prob

able position on the chromosomes of the factor 

involved, whereas the bare comparison of the 

marker loci with different effects in the two years 

only indicates the presence of this type of effect in 

that chromosomal region. 

Although data analysis and types of progeny can 
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provide improvements in the power of the experi
ment to detect QTLs, this is largely related to the 
number of progeny per marker class (Soller et al., 
1976; Beavis et al., 1994). Thus, only a fraction of 
QTLs segregating for a given trait is expected to be 
identified in an experiment with a limited number of 
genotypes. However, our results, obtained from a 
small RI population, revealed an appreciable 
number of QTLs for both of the traits and in both 
the years, suggesting that the power to detect QTLs 
is also related to the presence of segregating 
progeny with high heritability for the character, as in 
the present case (Sari-Gorla et al., 1992). 

On the whole, the analysis allowed the identifica
tion and the localization on chromosomes of 
different categories of QTLs: those in which expres
sion is modulated by the environmental effects and 
those that are expressed, albeit with variable expres
sivity, in both years, or that are independent of the 
environmental effects. The latter are probably 
'major genes', QTLs on which the variation of the 
character mainly depends. This is important infor
mation in practical applications: the magnitude and 
the nature of QTL x E interaction indicate the 
appropriateness of basing selection decisions on 
average QTL effects or environment-specific effects. 
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