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Detection of Range Migrating

Targets in Compound-Gaussian

Clutter

NIKITA PETROV

FRANÇOIS LE CHEVALIER

ALEXANDER G. YAROVOY, Fellow, IEEE

Delft Technical University, Delft, The Netherlands

This paper deals with the problem of coherent radar detection of

fast-moving targets in a high-range resolution mode. In particular, we

are focusing on the spiky clutter modeled as a compound Gaussian

process with rapidly varying power along range. Additionally, a fast-

moving target of interest has a few range cells migration within the

coherent processing interval. Two coherent CFAR detectors are pro-

posed taking into account target migration and highly inhomogeneous

clutter. Both detectors involve solution of a transcendental equation,

carried out numerically in a few iterations. The performance evalua-

tion is addressed by numerical simulations and it shows a significant

improvement in detection of fast-moving targets in inhomogeneous

heavy tailed radar clutter.
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I. INTRODUCTION

A new generation of modern radars tends to increase

range resolution capabilities for better target detection and

classification. Surveillance radars are especially interested

in detection of moving targets—the situation, where the ad-

vantages of radars, being the sensors capable to distinguish

between stationary and moving targets, are essential.

The time on target in modern surveillance radars is

typically limited due to the need of scanning a large volume

of space with a finite update time of the system. This implies

a short time interval available for detection in every angular

sector, subject to range-velocity ambiguity removal. The

classical solution involves a combination of detection in a

few bursts with different pulse repetition intervals (PRI) Tr

in order to resolve ambiguities, resulting in a short coherent

processing interval (CPI) in each burst (4–16 Tr ) [1]. The

reduction of CPI, given other waveform parameters fixed,

leads to the following drawbacks: first, lower signal-to-

clutter ratio (SCR) as a consequence of shorter integration

time, which can be crucial for weak (e.g., stealth) target

detection; second, the poor velocity resolution, which limits

the capability of slow target detection.

On the other hand, long CPI can be used to improve

target detection, but with a price of having ambiguities in

narrow-band radars. Moreover, moving target observation

in high-range resolution mode during relatively long CPI

(say 50–100 ms) results in range migration phenomenon.

This effect is well studied for target feature extraction (e.g.,

[2], [3]) and it can be efficiently compensated via Keystone

[4] or Radon [5] transform. Such range-walk compensation

allows to transform Doppler ambiguities present in low

pulse repetition frequency (PRF) mode into the residual

ambiguous sidelobes of the targets. The level of these am-

biguous sidelobes is typically 6–20 dB, depending on the

time-bandwidth product of transmitted pulse train [6], [7].

High-resolution spectrum techniques applied to such data

benefit from range migration effect resulting in the ability

to estimate the range-velocity map in low PRF mode un-

ambiguously [7]–[9]. For weak targets of interest, a simple

compensation of the range-walk can be sufficient to remove

velocity ambiguities. In other words, for weak targets of

interest, we consider the ambiguous sidelobes to be below

the clutter or noise level and not generate additional false

alarms.

Wideband surveillance radars benefit from the improve-

ment in range resolution, which results in SCR gain, at least

up to meter range resolution, when each target of interest

(aircraft, car, etc.) can be considered as a point scatterer.

Further improvement in range resolution allows to model

each target as a set of point scatterers in a few adjacent

range cells [10], [11]. The detection in this case can be con-

sidered as a generalization of a point target detector, while

detection of a point target depends mostly on the clutter

model used [12], [13].

An increase in range resolution affects clutter char-

acteristics as well. The Gaussian model of clutter, used

in narrow-band radars, is found not applicable in the
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case of high-range resolution, see e.g., [13]–[17]. The

modern trend is to model high-resolution radar clutter as a

compound-Gaussian process (which belongs to the class of

spherically invariant random vectors [13], [18], [19]) i.e.,

a Gaussian process with power varying from one range

cell to another, but sharing the same correlation structure

in slow time [13], [20]. This representation provides a

mathematical tractable tool for clutter representation and

further derivation of detection algorithms.

Constant false alarm rate (CFAR) target detection in

compound-Gaussian clutter attracted significant attention

during the last decades. A number of studies have been

carried out on point (unresolved) target detection in

non-Gaussian clutter, assuming both known [21], [22] and

unknown [23], [24] probability density function (PDF)

of the clutter. The latter exploits very important feature

of being CFAR with respect to clutter power, which is

of major importance for radar applications. Moreover,

for long CPI the distribution-free test has been shown to

approach the performance of the optimal one, as shown

in [23] and [21]. The recent studies [18], [25]–[27] are

focused on implementation of adaptive CFAR detector in

compound-Gaussian clutter, which exploits the estimated

covariance matrix (CM) of clutter. The discussion there is

focused on strategies for CM estimation from the reference

cells in spiky clutter and on the threshold setting for

the adaptive detector. Also some studies investigate the

detection of range-extended targets in compound-Gaussian

clutter, e.g., [12] and [28]. A comprehensive overview of

detection structures for modern radars can be found in [13].

However, target migration is typically not accounted for

the detection, except of a few papers considering locally

Gaussian clutter along the target range walk [29], [30].

Consequently, the main objective of this paper is to de-

rive a CFAR detector for the case of range-migrating point

target embedded in highly heterogeneous clutter following

the compound-Gaussian model and to evaluate the benefits

of applying CFAR detectors to migrating targets.

This paper is organized as follows. In Section II we

recall the models of clutter and moving target observed

by a wideband radar and exploit them to formulate the

detection problem. Then, in Section III, two detectors uti-

lizing different interpretations of compound-Gaussian clut-

ter model are derived. The performance of the proposed

techniques is studied via numerical simulations and pre-

sented in Section IV. Finally, the conclusions are given in

Section V.

NOTATIONS Hereinafter, we use lowercase boldface letters

for vector and uppercase boldface letters for matrices. Su-

perscripts (·)T and (·)H stands for matrix/vector transpose

and Hermitian transpose, respectively. We use notation | · |
for matrix determinant, vec(·) for matrix vectorization, and

tr(·) for the trace of a matrix. Also, in the following, we

use the Heaviside step function − 1(·), the Dirac delta

function − δ(·), the Gamma function − Ŵ(·) and the mod-

ified Bessel function of the second kind of an order ν −
Kν(·).

II. SIGNAL MODEL

To provide a mathematical formulation of the detection

problem, the corresponding models of a migrating target

and clutter observed by a wideband radar are revised in this

section.

A. Target Model

The model of a migrating point target can be given con-

sidering K adjacent range cells including the target signa-

ture during the whole CPI. The signature of a moving target

observed by a wideband radar is commonly expressed af-

ter applying fast Fourier transform on fast-time, thus in

fast-frequency/slow-time domain, where it can be written

as a bidimensional complex sinusoid with the coupling

term modeling range migration [1], [7], [8]. With that said,

the target signature in fast-frequency/slow-time is given by

K × M matrix Tft defined element-wise:

Tft
n,m = exp

(

j2π

(

−
τ0B

K
n +

2v0fc

c
Tr

(

1 +
B

Kfc

n

)

m

))

.

(1)

Here m = 0 . . . M − 1 is the pulse (sweep) number, n =
0 . . . K − 1 is the fast-frequency index, Tr is PRI, fc is the

carrier frequency, and B is the waveform bandwidth, so the

signal occupies frequencies from fc to fc + B. The point

target has an initial time delay τ0 = 2R0/c depending on the

initial target range (R0), and constant velocity (v0). The last

term in (1) is specific for the wideband waveform, it models

the range migration of the moving target and depends only

on its radial velocity v0. The superscript of T indicates the

domain where the signal is described: “ft” stands to fast-

frequency/slow-time, “tt” conforms for fast-time/slow-time

domain.

The same target signature can be expressed in slow-

time/fast-time [7]:

Ttt
k,m = exp

(

j2π
2v0fc

c
Trm

)

up

(

k −
(

k0 −
v0Tr

δR

m

))

(2)

where Ttt is again K × M matrix, k = 0 . . . K − 1 is fast-

time (range) index, k0 stands for the initial range cell of the

target, δR = c/(2B) is the radar range resolution, and up(x)

denotes the normalized pulse response of the transmitted

waveform. Note that if the migration term (v0Trm/δR) tends

to zero, the signature of the target is present only in k0th

range cell and it folds into the one-dimensional sinusoid

along slow time with the narrowband Doppler frequency.

Hereinafter, we assume a waveform with a flat spectrum

over the band, so up(x) = sinc (πx).

Amplitude estimation of a range-velocity map can be

obtained by coherent summation of the target signature

in several adjacent range cells [1], [7]. Due to migration

effect, the matched filter should be applied to the low-range

resolution segment (LRRS) containing K range cells, such

that the condition on maximal target velocity (Vmax) holds:

K ≥ [VmaxMTr/δR] + �E (3)
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where [x] stands for the rounding toward integer operation

and �E defines the extent of the target in range cells. In

this paper, the problem of extended target detection is not

considered, thus �E = 1.

Consequently, coherent detection of migrating target

should be also performed on the LRRS of K range cells.

Similar to the narrow-band case, the detection will be per-

formed in fast-time/slow-time domain, so hereinafter we

refer to (2) as a target signature and use a = vec((Ttt)T ) for

its vectorized form.

B. Clutter Model

As discussed in the Introduction, the clutter response

in each range cell k is modeled as a compound-Gaussian

random vector, i.e., a product of two independent variables

[20]:

ck =
√

τkgk (4)

where M × 1 vector ck = [ckM . . . c(k+1)M−1]T represents

the clutter response in the kth range cell. The clut-

ter response in the whole LRRS is given by: c =
[c0

T , c1
T , . . . , cK−1

T ]T . The speckle component in the kth

range cell gk is modeled as complex multivariate Gaussian

M-vector with zero mean and CM E(gkgk
H ) = Mv, i.e.,

gk ∼ CN(0, Mv); and τk is the texture parameter in the kth

range cell. Therefore, in each range cell clutter CM is given

by E{ckck
H } = ET{τk}Mv. Subscript ET states that expec-

tation can be taken only over slow time, not over range.

Two models of the texture parameters τk have been

proposed so far: independent interference model, where

the textures τk, k = 0 . . . K − 1 are independent and iden-

tically distributed (IID) random variables; and dependent

interference model, where the parameters τk of clutter are

correlated over range [16]. The independent interference

model has been used to derive normalized matched filter

(NMF) [23], it was also exploited to infer the methods for

CM structure estimation, e.g., [25]. The analysis of real

data records in [16] shows its good fitness for the case

when the reference cells are taken away from the cell under

test (CUT) and in general for statistical analysis of high-

resolution radar clutter [15]. The results in [17] show that

this model fits well in the case of grass vegetation ground

clutter, but it is less suitable for the scene with trees and

forest. The dependent interference model results in the cor-

relation of texture parameters τk over range. Different mod-

els of range correlation of texture were studied in [17] and

[20], resulting in the conclusion that correlation behavior

is dependent on many factors: polarization, grazing angle,

wind speed, etc., and can be retrieved form the data. The

compromise between the aforementioned two models can

be obtained by clustering the clutter responses into groups

of a few range cells sharing the same local power, but vary-

ing from group to group [12]. The length of the cluster

can be evaluated from the average correlation interval over

range, a priori.

Having defined the model of a range migrating tar-

get, we should clarify the impact of range migration effect

on clutter. Phenomenologically, clutter can be interpreted

as a reflection from nearly stationary objects, which are

out of interest for moving target detection. Therefore, the

migration term in the model (2) can be ignored for the

clutter scatterers. This assumption is used to distinguish

between clutter and targets in [6].

Moreover, the clutter texture in a range cell can slowly

vary in time, which is essentially important for modeling

sea clutter during moderate observation time. However, for

ground clutter or short CPI employed for moving target de-

tection, this effect can be neglected, resulting in constant τk

over the whole CPI. The latter model is commonly referred

as completely correlated texture, and used to derive most

detectors in compound-Gaussian clutter [21].

In this paper, we focus on the independent interference

model with completely correlated texture, which is consid-

ered as a tradeoff between fitting high-resolution real data

and complexity of the model. In particular, it does not re-

quire knowledge of the texture correlation along range and

slow-time, which can be difficult to estimate in real sce-

narios (e.g., urban areas). Independent interference model

satisfies E{ckci
H }|k �=i = 0 and, as the result, the clutter CM

in an LRRS has the block-diagonal structure:

M =

⎡

⎢

⎢

⎢

⎣

ET{τ0}Mv 0 · · · 0

0 ET{τ1}Mv · · · 0
...

...
. . .

...

0 0 · · · ET{τK−1}Mv

⎤

⎥

⎥

⎥

⎦

.

(5)

C. Problem Formulation

The detection problem consists of testing the hypothesis

of target presence H1 against the clutter only hypothesis H0:

y =

{

H0 : ck

H1 : αak + ck

k = 0 . . . K − 1 (6)

where y = [y0
T , y1

T , . . . , yK−1
T ]T is the received data

in the LRRS under test containing range cells k =
0 . . . K − 1. In every kth range cell, the received data

yk = [ykM , . . . , y(k+1)M−1]T includes an independent re-

sponse of clutter ck and possibly the target with the known

steering vector ak = [akM , . . . , a(k+1)M−1]T in this range

cell, but unknown complex amplitude α, constant within

CPI.

In order to obtain CFAR detector, we perform the

generalized likelihood ratio test (GLRT) [31]. The nearest

problem to the one we try to solve is the detection of

a nonmigrating point target in non-Gaussian clutter. As

previously stated, there are two competing models of the

clutter involved in the derivations of a coherent radar

detector for such interference. For radar applications, it is

more common to model clutter with compound-Gaussian

model, where the texture is a random variable with some

PDF. This approach is used, e.g., in [23], to derive NMF

with assumption that the structure of clutter CM Mv is

known. The second approach considers a realization of

the texture in the range CUT as an additional unknown
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Fig. 1. Target signature of: (a) a point nonmigrating target; (b) a point migrating target; (c) an extended nonmigrating target;

(d) an extended migrating target.

deterministic parameter (instead of a random variable). In

fact, this is tantamount considering Gaussian clutter with

unknown power in each range cell, but constant within CPI.

As a result, the latter approach leads to the same detection

structure as previously, thus NMF [24], [32]. The approx-

imation used to derive NMF under compound-Gaussian

model is fair only for large number of pulses in CPI, for

small M known clutter PDF results in performance gain

[21]. For a nonmigrating target detection, NMF is applied

to a single range cell, say k0, and it is given by

|ak0

H M−1
v yk0

|2
(

aH
k0

M−1
v ak0

) (

yH
k0

M−1
v yk0

)

H1

�
H0

TNB−NMF (7)

where ak0
= [ak0M , . . . , a(k0+1)M−1]T is the narrow-band

(without migration) steering vector in the range cell k0,

derived from (2) assuming |v0|TrM/δR ≪ 1. This model

is shown in Fig. 1(a).

In case of range-extended target with no migration, the

adjacent range cells of the target response are considered

to be independent from each other. Moreover, due to the

absence of range-walk, the scatterers are assumed to be

present in the same range cells during the whole CPI, as

shown in Fig. 1(c). The decision rule then becomes a com-

bination of the statistics (7) estimated from the range cells

on the target [13], [28].

On the other hand, fast-moving targets do not satisfy

the requirement on the scatterer presence in one range cell

during the whole CPI, so the migration should be consid-

ered for detection as shown in Fig. 1(b). So far, detection

of range migrating targets has been considered in locally

Gaussian environment only [29], [30], assuming τ0 = . . . =

τK−1 = τ . In this case, the detection is performed by NMF

with the correct (taking into account range migration) target

signature a applied to the whole LRRS directly:

|aH M−1y|2
(

aH M−1a
) (

yH M−1y
)

H1

�
H0

TLRR−NMF. (8)

However, if the locally Gaussian assumption is not valid,

because of rapidly varying texture along range, this test

is not CFAR anymore. Moreover, real fast-moving targets,

observed by a wideband radar, are both extended and

range migrating, as shown in Fig. 1(d). However, the

detection of extended target is not considered in this study,

so we focus on the model shown in Fig. 1(b). Finally, in

practical applications, the aforementioned detectors exploit

CM estimated from the reference cells, resulting in the

appropriate change of the threshold [18], [26].

Coming back to the problem of migrating target detec-

tion in a highly inhomogeneous clutter, the GLRT for the

compound-Gaussian model can be written in the following

form:

	(Z, y) =
maxτK,τL,Mv,α f1(y, Z; α, τK, τL, Mv)

maxτK,τL,Mv
f0(y, Z; τK, τL, Mv)

H1

�
H0

T (9)

where f0(y, Z; τK, τL, Mv) stands for the joint PDF of

LRRS and the reference cells under H0 and its counter-

part under H1 is f1(y, Z; α, τK, τL, Mv). The matrix Z of

size M × L contains M-dimensional data from the refer-

ence range cells zL, L : l = 0 . . . L − 1 as columns, where

L is the number of reference cells for estimation of Mv. The

unknown parameters involved in both PDFs are the texture

in the LRRS under test τK, where K : k = 0 . . . K − 1, the
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texture in the reference cells τL, the structure of clutter CM

in slow time Mv, and the amplitude of the target α under

hypothesis H1. Note that in general clutter texture τ is a

random variable defined by its PDF, but the particular re-

alizations τK, τL are unknowns, because they are random

quantities.

In order to proceed further, we assume that the structure

of clutter CM in one range cell, i.e., Mv, is known and we

look for a detector capable to deal with range migrating

targets. This simplification allows us to remove τL, Z, and

Mv from the GLRT (9). The proposed detection algorithms

are presented in Section III.

III. MIGRATING TARGET DETECTOR

In this section, we focus on a design of CFAR detec-

tor for a range migrating target in compound-Gaussian

clutter using aforementioned simplification of the GLRT.

Two strategies are studied: first, we consider a compound-

Gaussian model, where the texture τ is a random variable

with known PDF. Second, we perform a suboptimal ap-

proach by considering texture as an unknown parameter in

GLRT, and substitute its estimation into the test. In fact,

the second approach considers compound-Gaussian clutter

as being Gaussian with unknown power in each range cell

and leads to a distribution-free test, which is of practical

interest.

A. Texture is a Realization of Random Variable With
Known PDF

The independent interference model considered in this

study allows us to represent the PDF of the data in the

absence of a target (H0) in each range cell separately. The

clutter, being compound-Gaussian, satisfies the following

PDF in every range cell [20], [33], assuming Mv is known

and satisfies tr (Mv) = M:

f0(yk) = E{f0(yk|τk)} =
∫ ∞

0

1

(πτk)M |Mv|
exp

(

−
yH

k M−1
v yk

τk

)

pτ (τk) dτk (10)

where pτ (τk) is the known PDF of clutter texture in kth

range cell of the LRRS under test. Due to independent

interference model used, the PDF of the whole LRRS under

H0 can be given as a product of the PDFs over K range cells:

f0(y) =
K−1
∏

k=0

∫ ∞

0

exp
(

−τ−1
k yH

k M−1
v yk

)

(πτk)M |Mv|
pτ (τk) dτk. (11)

Under hypothesis H1, the PDF of the LRRS under test is

derived from the PDF under H0 by setting the mean value of

the Gaussian form to be equal to the present signal s = αa,

where a is known steering vector and α is unknown, but

constant withing CPI complex amplitude of the target. The

PDF of the LRRS under hypothesis of target presence (H1)

is then written using the known steering vector of the target

in the kth range cell ak as

f1(y; α) =
K−1
∏

k=0

∫ ∞

0

pτ (τk)

·
exp

(

−τ−1
k (yk − αak)H M−1

v (yk − αak)
)

(πτk)M |Mv|
dτk.

(12)

The PDFs under both hypotheses being defined, the

GLRT (9) reduces to the test:

	(y) =
f1(y; α)

f0(y)

H1

�
H0

T (13)

where the dependence on the texture within LRRS τK is

removed assuming its PDF is known. On the other hand,

no prior information about α is available, thus it should be

substituted with its maximum likelihood estimation (MLE).

Furthermore, we assume the clutter to be IID (hence

compound-Gaussian), which implies equal distribution

of texture along range: pτ (τ0) = . . . = pτ (τk) = . . . =
pτ (τK−1) = pτ (τ ). This fact allows us to simplify the PDFs

under both hypotheses (11), (12) by means of the following

function [16], [25]:

hM (x) =
∫ ∞

0

τ−M exp
(

−
x

τ

)

pτ (τ ) dτ (14)

resulting in the following expression for PDF of the LRRS

under H1:

f1(y; α) =
∏K−1

k=0 hM

(

(yk − αak)H M−1
v (yk − αak)

)

|Mv|K πKM
.

(15)

As usually, the PDF under H0 is: f0(y) = f1(y; α)|α=0. The

PDF of texture is included in the function hM .

Next, the PDF under H1 should be maximized over

the unknown deterministic target amplitude α. Instead of

maximization of the likelihood function, its logarithm can

be maximized by taking the derivative and setting it to

zero. It is done using the relation for derivative of func-

tion hM (x): ∂hM (x)/∂x = −hM+1(x) and constructing the

function cM (x) = hM+1(x)/hM (x). Finally, the amplitude

estimation has the form:

α̂ =

∑K−1

k=0
cM

(

(yk − α̂ak)H M−1
v (yk − α̂ak)

)

ak
H M−1

v yk

∑K−1

k=0
cM

(

(yk − α̂ak)H M−1
v (yk − α̂ak)

)

ak
H M−1

v ak

.

(16)

Therefore, in order to find α̂, we have to solve the tran-

scendental equation (16), which can be solved iteratively,

subject to known PDF of the clutter texture pτ (τ ). The

derived estimation of α̂ should be substituted into GLRT

	̂(y) =
K−1
∏

k=0

hM

(

(yk − α̂ak)H M−1
v (yk − α̂ak)

)

hM

(

yk
H M−1

v yk

)

H1

�
H0

T (17)

in order to perform detection.
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Fig. 2. Weighting coefficients for different values of clutter shape ν, M = 32: (a) hM (x), (b) cM (x).

Note that the functions cM (x) and hM (x) are identi-

cal to the ones used for clutter CM structure estimation in

compound-Gaussian clutter, when the distribution of tex-

ture is known [25]. For practical application this means that

estimation of Mv and detection can be done on the same

(or identical) chain.

A particular case of compound Gaussian distribution

is K-distribution, used to describe high-resolution radar

clutter [14], [17], [20]. In this case, the texture parameter

follows Gamma distribution:

pτ (τ ) =
1

Ŵ(ν)

(

ν

µ

)ν

τ ν−1 exp

(

−
ν

µ
τ

)

1(τ ) (18)

where µ and ν are the scale and shape parameters of Gamma

distribution, respectively. Then, the joint PDF of the LRRS

can be expressed by substitution (18) into (14) and (15)

and nonlinear functions hM (x) and cM (x) can be written

analytically:

hM (x) =
2x

ν−M
2

Ŵ(ν)

(

ν

µ

)
ν+M

2

Kν−M

(

√

4νx/µ
)

;

cM (x) =
√

ν

µx

Kν−M−1

(√
4νx/µ

)

Kν−M

(√
4νx/µ

) . (19)

The plots of these functions involved in (16) and (17) are

shown in Fig. 2 for M = 32 and µ = 1.

It is interesting to consider two extreme cases of

K-distribution shape parameter, i.e., ν → 0 and ν → ∞.

If ν → ∞, then the clutter tends to Gaussian distribution

with power pτ (τ ) = δ (τ − µ), where µ is the known mean

power of clutter. By definition (14), the nonlinear memory-

less function hM (x) reduces to h∞
M (x) = µ−M exp (−x/µ),

which is linear in a logarithmic scale, and, accordingly,

cM (x) degenerates to a constant: c∞
M (x) = µ−1 (superscript

of functions hM and cM stands for specific value of K

distribution shape parameter ν). As it can be expected,

in this case, MLE of α̂ simplifies to its form in Gaussian

interference:

α̂ =
∑K−1

k=0 aH
k M−1

v yk
∑K−1

k=0 aH
k M−1

v ak

=
aH M−1y

aH M−1a
(20)

where the second equality is obtained using the model

of the CM of clutter in LRRS (5) with equal values of

texture parameter E{τk} = µ, ∀k ∈ K. Straightforward

simplification of the GLRT (17) by means of (20) leads to

the following expression of the logarithm of GLRT:

ln
(

	̂(y)
)

=
∣

∣aH M−1y
∣

∣

2

µ aHM−1a
(21)

which is a general form of a scale-invariant detector used in

[32]. The particular case of clutter scale parameter µ = 1

then degenerates to the matched filter detector [31].

The other limiting case appears when ν → 0. Gamma

PDF is not defined for ν → 0, but we expect to have an

effect just opposite to the previous case, thus the PDF of

the texture should have some noninformative prior. For ex-

ample, it can be assumed flat over all possible values of

τ bounded above by τmax: pτ (τ ) = (1(0) − 1(τmax)) /τmax,

and now the upper limit of the integral in (14) is τmax. The

integral (14) then can be solved by letting τmax → +∞
and changing the variable z = 1/τ (see [34, 3.351.3]). The

resulting nonlinear functions are h0
M (x) = Ŵ(M) x−M and

c0
M (x) = M/x. In this case, amplitude estimation reduces

to

α̂ =

∑K−1
k=0

aH
k M−1

v yk

(yk−α̂ak)H M−1
v (yk−α̂ak)

∑K−1
k=0

aH
k M−1

v ak

(yk−α̂ak)H M−1
v (yk−α̂ak)

(22)

and the GLRT (17) has a form:

	̂(y) =
K
∏

k=1

(

(yk − α̂ak)H M−1
v (yk − α̂ak)

yH
k M−1

v yk

)−M
H1

�
H0

T .

(23)
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Note that in case of any value of ν < +∞ (so, except of the

Gaussian clutter), the estimation of α̂, required in the GLRT,

is defined by the transcendental equation, and so it has to be

solved iteratively. Two limiting cases ν → 0 and ν → ∞
with µ = 1 are also shown in Fig. 2 for comparison.

B. Texture is an Unknown Parameter

In many cases no knowledge about clutter texture is

available, so the test can be reformulated in terms of GLRT,

considering the realization of texture in each range cell as

an unknown parameter. Even though substitution of un-

known parameter with its estimation typically leads to a

suboptimal detection strategy, the resulting detectors are

often practical due to their simple implementation. Con-

sidering clutter texture as being an unknown parameter de-

generates compound-Gaussian clutter toward the Gaussian

model with unknown power in each range cell [24]. For

clarity, in this section, we denote local power of clutter (a

realization of the texture) in the kth range with σ 2
k (instead

of τk).

As before, we assume clutter with completely correlated

texture and known structure of CM in slow-time Mv, but the

target migrates within a few range cells including the clutter

of different (unknown) powers σ 2
K

. Under H1, the target is

present in the LRRS under test with known signature a, its

complex amplitude α is constant within CPI, but unknown.

Moreover, we consider independent interference model of

clutter, which results in the following PDF of LRRS under

H1:

f1(y; α, σ 2
K

)

=
exp

(

−
∑K

k=1 σ−2
k (yk − αak)H M−1

v (yk − αak)
)

πKM |Mv|K
∏K

k=1 σ 2M
k

(24)

and the PDF of LRRS under H0 is given by f0(y; σ 2
K

) =
f1(y; α, σ 2

K
)|α=0. Under H0, the PDF of the LRRS f0(y; σ 2

K
)

involves unknown local powers in each range cell σ 2
K

. Under

H1, the PDF of LRRS in addition depends on the unknown

target amplitude α. In these terms, the GLRT is given by

	(y) =
f1(y; α, σ 2

K
)

f0(y; σ 2
K

)

H1

�
H0

T . (25)

To derive a detector, all unknown parameters should be

substituted by their MLEs. We start with MLE of local clut-

ter power in each range cell σ 2
k under both hypotheses. It can

be obtained by maximizing the logarithm of the likelihood

functions under both hypotheses. Then, the estimation of

the local power of clutter in each range cell is given under

H1:

σ̂ 2
1k =

1

M
(yk − αak)H M−1

v (yk − αak) , ∀k ∈ K. (26)

Similarly under H0: σ̂ 2
0k = σ̂ 2

1k|α=0.

Using these values in the GLRT (25) it can be simplified

to

	̂(y) =

(

K−1
∏

k=0

σ̂ 2
0k

σ̂ 2
1k

)M

=

(

K−1
∏

k=0

yH
k M−1

v yk

(yk − αak)H M−1
v (yk − αak)

)M
H1

�
H0

T .

(27)

In order to find α, we need to maximize the logarithm of

(27), which can be done by taking the derivative and setting

it to zero. Finally, the amplitude estimation α̂ is written

by the transcendental equation in the form (22). Equivalent

representation can be given using the local power of clutter

under H1 (26):

α̂ =
∑K−1

k=0 σ̂−2
1k aH

k M−1
v yk

∑K−1
k=0 σ̂−2

1k aH
k M−1

v ak

. (28)

The coincidence of the results (22) and (28) [using σ̂ 2
1k

from (26)] can be explained as follows. The derivations for

random texture can be considered as a Bayesian Neyman–

Pearson detector, for which the distribution of τK is given,

while α has a noninformative prior. Thus, if we assume τK
to have noninformative prior as well (see ν → 0 before),

the detector (17) becomes equivalent to GLRT [31].

On the other hand, from (26) and (28), we can write the

transcendental equation with respect to σ̂ 2
1k, ∀k ∈ K:

σ̂ 2
1k =

1

M

(

yk −
∑K−1

i=0 σ̂−2
1i aH

i M−1
v yi

∑K−1
i=0 σ̂−2

1i aH
i M−1

v ai

ak

)H

M−1
v

·

(

yk −
∑K−1

i=0 σ̂−2
1i aH

i 0M−1
v yi

∑K−1
i=0 σ̂−2

1i aH
i M−1

v ai

ak

)

(29)

where the whole set of σ̂ 2
1K should be updated at each itera-

tion. Both (22) and (29) have a form of a fixed point iteration

and can be solved iteratively. The local convergence of the

estimator (22) is proven in the Appendix.

Similarly to the approach in [25], the iterative procedure

can be represented in two equations:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α̂ =
∑K−1

k=0 σ̂−2
1k aH

k M−1
v yk

∑K−1
k=0 σ̂−2

1k aH
k M−1

v ak

,

σ̂ 2
1k =

1

M
(yk − α̂ak)H M−1

v (yk − α̂ak) , ∀k.

(30)

In this case, the system should be solved using two-step

person-by-person alternate maximization (AM) algorithm,

similar to CM estimation in compound-Gaussian clutter

[25]. The iterative algorithm at each step assumes one un-

known σ̂ 2
1K or α̂ to be fixed and calculates the MLE of

the other. The output of the iterative procedure should be

substituted into the GLRT (27).

C. False Alarm Regulation

The derivations presented above constrain target veloc-

ity only with a requirement of its physical presence in the
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LRRS during the whole CPI. If this condition is satisfied, the

detection structures presented above are independent on the

target velocity. Therefore, in order to set the threshold, we

can consider the particular case of nonmoving and, what

is more important, nonmigrating target, i.e., v0 = 0. The

target, being a point scatterer, is thus present in one range

cell, say ki, 0 ≤ ki ≤ K − 1. In the other range cells, the

target signature is zero: ak = 0M , ∀k �= ki . Consequently

both tests (17), (27) reduce to their narrow-band counter-

parts and amplitude estimation can be obtained directly:

α̂ = aH
ki

M−1
v yki

/aH
ki

M−1
v aki

. As a result, the test (17) has a

form:

	(y) =
hM

(

yH
ki

M−1
v yki

− |aH
ki

M−1
v yki |2

aH
ki

M−1
v aki

)

hM

(

yH
ki

M−1
v yki

)

H1

�
H0

T . (31)

For well-behaved pτ (τ ) and large M , which is considered

herein, GLRT (31) can be replaced with

	(y) =
(

1

1 − γ

)M

= (1 − γ )−M (32)

where γ =
∣

∣aH
ki

M−1
v yki

∣

∣

2
/
(

yH
ki

M−1
v yki

aH
ki

M−1
v aki

)

[16],

[35]. Note that GLRT in case of texture considered as an

unknown parameter (27) reduces to the same test. Under

H0 variable γ follows beta distribution with parameters

γ0 ∼ β (1, M − 1), for detection γ has to be compared with

Tγ = 1 − P
1/(M−1)

FA [16], [23].

Unfortunately, γ is not defined in the presence of tar-

get migration, when only iterative estimation of ampli-

tude is available. In order to proceed further, we can use

the likelihood ratio transformed via monotonic function

ψ(x) = x−1/M . Under H0, the PDF of transformed likeli-

hood ratio can be derived using the mirror-image symmetry

of beta distribution:

(	0(y))−
1
M = (1 − γ0) ∼ β(M − 1, 1). (33)

Note that because of using monotonically decreasing func-

tion ψ(x) the inequality sign for comparison (	(y))−
1
M with

the threshold should be changed. Obviously, the statistics

	(y) is now defined for any velocity, independently on tar-

get migration, and the decision rule for 	(y) can be written:

	(y)
H1

�
H0

P
− M

M−1

FA . (34)

Note that the threshold for both detectors is independent on

users parameter K—the number of range cells in the LRRS.

The only restriction is that the target should be present in

the LRRS under test during the whole CPI.

Implementation of an adaptive detector will require to

adjust the threshold according to the CM estimation em-

ployed in the detector. However, adaptive detection in struc-

tured interference with block-diagonal CM (5) was shown

to be a challenging task [30], [36]. Therefore, we leave the

problem of threshold setting for an adaptive detection for

the future research.

TABLE I

Parameters of Simulated Data

Waveform

Carrier frequency fc 10 GHz

Bandwidth B 1 GHz

Range resolution δR 0.15 m

PRI Tr 1 ms

Ambiguity velocity Va 15 m/s

Pulses M 32

Migration per ambiguity in δR µa 3.2

Processing parameters

Range cells in LRRS K 6

Number of ambiguities Na 3

Maximum velocity Vmax 22.5 m/s

IV. PERFORMANCE ASSESSMENT

Due to iterative nature of the developed algorithms, it

is not possible to derive their performance analytically. In-

stead, we employ Monte-Carlo simulations to evaluate the

performance of the presented techniques. All the simula-

tions within this section are done with the radar parameters

given in Table I. Also, for all the simulations, we exploit

the true structure of CM in slow-time Mv, known a priori

and identical for all the range cells within the LRRS.

An important question is the initialization of the algo-

rithms, which can affect their performance. In particular, it

can influence the number of iterations required for conver-

gence. Recall that in both cases the iterative procedure is ap-

plied to obtain an estimation of α̂ present in the scene under

H1, see (16) and (28). In this light, both algorithms should

be initialized with some noniterative estimation of α̂. As

was stated before, noniterative estimation of α̂ exists only in

case of no texture variation within LRRS (locally Gaussian

assumption) and it is given by: α̂ = aH M−1y/aH M−1a,

where τk = 1, ∀k ∈ K. The other strategy efficient under

both hypotheses would be to use for initialization in each

range cell the power estimated at the previous angle scan

(similar to the clutter map technique [11]), especially if the

PDF of the texture is unknown a priori. Good initial es-

timation will result in fast convergence of the algorithm,

assuming clutter power does not vary significantly from

scan to scan.

In view of the foregoing we study the ability of the pro-

posed techniques to keep PFA at the designed level. In par-

ticular, the number of iterations required to perform CFAR

detection is of interest. In order to check the ability of the

algorithms to keep the designed PFA, detection is applied to

a target-free scene. Therefore, we initialize both algorithms

with α̂ = aH M−1y/aH M−1a and apply AM (27) and max-

imum likelihood (ML) (17) algorithms with a priori known

PDF of clutter texture.

For the simulations herein, we focus on K-distributed

clutter with shape parameter ν = 0.5 or, equivalently, the

exponentially distributed clutter, with known CM and white

spectrum in slow-time Mv = I [37]. The ability of ML

and AM algorithms to keep the designed PFA [used to
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Fig. 3. False alarm regulation in K-distributed clutter, ν = 0.5: (a) Maximum likelihood algorithm, (b) alternate maximization algorithm.

set the threshold according to (34)], is estimated from 103

Monte-Carlo trials and shown in Fig. 3. For each trial ,PFA

is evaluated over all range-velocity hypotheses, thus in

K × (MNa) = 576 cells. False alarm regulation of NMF

applied to an LRRS (LRR NMF) (8) is added for compari-

son to the plots. The performance of LRR NMF shows that

wrong assumption on texture variation within LRRS results

in unsatisfactory degradation of PFA. On the other hand,

ML algorithm provides designed PFA already after the first

iteration, given the shape parameter of K-distribution is

known. Similar result is obtained with AM algorithm after

two iterations without prior knowledge of the clutter PDF.

In practice, the PDF of clutter is unknown, but it can be es-

timated from data in homogeneous environment, resulting

in a faster convergence of the detector. If a reliable esti-

mation of texture PDF cannot be retrieved from the data

due to fast-varying radar scene, such as urban environment,

AM approach provides a more attractive solution. Thus,

the choice between two algorithms should be done based

on prior knowledge of the texture and tractability of calcu-

lation the functions cM (x) and hM (x).

The analysis presented above consider fixed clutter

shape parameter ν. Similarly to results for CM estimation

[25], we expect that the number of iterations for conver-

gence of the algorithms depends on the clutter shape. In

order to prove this statement, the ratio of the estimated PFA

to designed PFA is evaluated via Monte-Carlo routine for

the threshold corresponding to PFA = 10−3. Independently

of clutter shape parameter, ML algorithm becomes CFAR

detector after one iteration. At the same time, the number

of iterations in AM algorithm depends on the clutter shape

parameter ν, as proved by simulations in Fig. 4. The plots

show that for practical values of ν = 0.5 ÷ 10, two itera-

tions of AM algorithm are enough for convergence. This

value is used for further simulations.

The other important characteristic of CFAR is the de-

tection probability. Two crucial factors influence detection

Fig. 4. False alarm loss of alternate maximization algorithm versus

iterations.

performance: correct model of clutter and representative

model of target motion. Incorrect model of clutter results in

a detector not satisfying CFAR property, as shown above.

On the other hand, to avoid iterative techniques, one can

ignore the migration term in target model (2) and apply

NMF for every range cell. Note that this approach pre-

serves PFA at the designed level. For example, consider a

target with v0 = 0.5Va (where Va = c/ (2fcTr ) is the radar

ambiguous velocity), which migrates µ|0.5Va
= 1.6 range

cells during CPI. As in the previous simulations, we con-

sider K-distributed clutter with shape parameter ν = 0.5.

In Fig. 5, the detection performance of NMF applied to one

range cell with narrow-band target signature (NB NMF) is

compared with the two proposed techniques (AM and ML)

together with the clairvoyant detector. Clairvoyant detec-

tor is implemented via GLRT (25) using known values of

α and σ 2
K

. The horizontal axis shows SCR after coherent
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Fig. 5. Detection probability of a migrating target in K-distributed

clutter with ν = 0.5 using different algorithms, v0 = 0.5Va ,

PFA = 10−6.

integration. The detection curves of all the algorithms are

obtained via Monte-Carlo routine. The results clearly show

that not accounting for target migration results in severe loss

in the detection performance. This loss diminishes for slow

targets and increases for fast-moving targets proportionally

to the smearing of the target due to migration.

By the wideband assumption, a moving target migrates

through a number of range cells conditional on its veloc-

ity. If the clutter texture in these range cells varies rapidly

over range, a fast target will experience diverse interference

within CPI. Contrary, a slow and therefore nonmigrating

target will be present in one range cell during the whole

CPI [see Fig. 1(a) and (b)]. Such an implicit averaging of

the clutter texture, intrinsic for a migrating target, suggests

that the detection performance of a migrating target will

be velocity-dependent in inhomogeneous clutter. On the

contrary, this phenomenon does not exist for nonmigrating

targets, where the detection performance in spectrally white

clutter (or noise) does not depend on the velocity of the tar-

get. This effect is similar to performance improvement of

an extended target compared to a point target [12], [28].

The major difference between the two models is that for

range migrating target, its signature is summed up coher-

ently along the range walk, while the responses of a range-

extended target are integrated incoherently along range.

The detection performance is studied in Fig. 6 using AM

algorithm with PFA = 10−6 and wideband target signature;

the horizontal axis shows SCR after coherent integration.

The ML algorithm shows identical performance and there-

fore it is not plotted. By definition of target model, the test

for a target with v = 0 is equivalent to NMF applied for one

range cell. Note the improvement in detection of a fast tar-

get (v0 = 1.5Va , which migrates µ|1.5Va
= 4.8 range cells)

with respect to the nonmigrating target is about 8 dB for

clutter with shape parameter ν = 0.5. Let us remark that

the Pd curves in Fig. 6, corresponding to different values

Fig. 6. Detection probability of alternate maximization and maximum

likelihood algorithms for a target with different velocity, PFA = 10−6

and clutter shape parameter (a) ν = 0.5; (b) ν = 1; (c) ν = 10.
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Fig. 7. ROC curves for a target with SCR = 0 dB after coherent integration in K-distributed clutter: (a) v0 = 0.5Va, ν = 0.5;

(b) v0 = 0.5Va, ν = 1; (c) v0 = 1.5Va, ν = 0.5; (d) v0 = 1.5Va, ν = 1.

of clutter shape parameter, have different SCR scale. The

presented results emphasize that the detection performance

depends on target velocity more in case of spiky clutter and

this effect gradually vanishes as ν increases. In the limit-

ing case ν → +∞, the clutter is locally Gaussian and the

detection performance does not depend on target velocity.

To emphasize the advantages of the proposed techniques

with respect to the existing approaches, we estimate their

performance in terms of ROC curves. In particular, we fo-

cus on a weak target scenario in highly inhomogeneous and

spiky clutter. For comparison, we consider all the detectors

discussed above, namely: ML, AM, LRR NMF, NB NMF,

and the clairvoyant detector. For performance assessment,

we simulate a target with SCR = 0 dB after coherent in-

tegration moving with velocity v0 = 0.5Va or v0 = 1.5Va

embedded in a K-distributed clutter. Also, we consider two

values of clutter shape parameter: ν = 0.5 and ν = 1. Sim-

ulation results are shown in Fig. 7, each plot corresponds

to a specific combination of ν and v0. The results show

significant improvement of the proposed techniques with

respect to LRR NMF and NB NMF. Note the different na-

ture of performance degradation of these algorithms: LRR

NMF suffers from the incorrect model of clutter and there-

fore loses CFAR property. Contrary, NB NMF keeps CFAR

property, but brings significant loss in detection because of

inaccurate target signature. On the other hand, the loss of

the AM and ML algorithms with respect to the clairvoy-

ant detector is negligible. The comparison of the plots with

equal clutter shape parameter allows to see the benefits of a

fast-moving target detection over slow one in highly inho-

mogeneous compound-Gaussian clutter, already mentioned

above.

V. CONCLUSION

In this paper, we discussed the problem of fast-moving

target detection with wideband radar, providing range reso-

lution of an order of 1 m or higher. In particular, we focused
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on the migration effect essential for fast-moving targets, ob-

served by such radars, and exploited it to perform detection

in highly inhomogeneous compound-Gaussian clutter. We

proposed two detection algorithms which use iterative pro-

cedure for amplitude estimation and converges in one or

two iterations for practical scenarios. Accounting for range

migration results in significant (up to 8 dB) improvement

for fast-moving target detection for realistic spiky clutter.

An additional improvement with respect to the narrow-band

Doppler processing is achieved by correct migration com-

pensation of fast-moving targets. The proposed AM algo-

rithm seems more attractive for practical application since

it does not require any knowledge of clutter PDF and can

be implemented on a chain identical to the one used for CM

estimation in compound-Gaussian clutter.

APPENDIX

Herein, we prove the local convergence of the amplitude

estimator (22), which is a part of the proposed distribution-

free detector for range migrating target in an inhomoge-

neous environment. The iterative amplitude estimation has

general form of the fixed point estimator α̂i = g (α̂i−1). The

fixed point estimator converges locally at point α̂FP if the

function g satisfies [38]:
∣

∣g′(α̂FP)
∣

∣ < 1 (35)

with α̂FP = α̂∞ = g(α̂∞).

In order to prove this, we can write from (22):

g(α̂) =

∑K−1
k=0

aH
k M−1

v yk

(yk−α̂ak)H M−1
v (yk−α̂ak)

∑K−1
k=0

aH
k M−1

v ak

(yk−α̂ak)H M−1
v (yk−α̂ak)

=
∑K−1

k=0 nk
∑K−1

k=0 dk

(36)

and take the derivative. Herein, for derivatives of complex

functions, we use the strategy described in [39]; especially,

when taking the partial derivative over α̂, we consider α̂∗

to be a constant (the sign ∗ states for complex conjugate).

Then

n′
k = nkn

∗
k − α̂∗nkdk, (37)

d ′
k = dkn

∗
k − α̂∗d2

k (38)

and the derivative at the fixed point is

g′(α̂FP) =
∑K−1

k=0 |nk − α̂FPdk|2
∑K−1

k=0 dk

. (39)

Taking into account that dk is a real-valued function as a

ratio of quadratic forms, the requirement on convergence

(35) can be given by

∣

∣g′(α̂FP)
∣

∣ =
∑K−1

k=0 |nk − α̂FPdk|2
∑K−1

k=0 dk

< 1. (40)

Inequality (40) holds, if ∀k ∈ K, such that dk > 0:

dk

∣

∣

∣

∣

α̂FP −
nk

dk

∣

∣

∣

∣

2

< 1. (41)

Note that the requirement dk > 0 is necessary to cover

the situation with nonmigrating target, when at least one

substeering vector ak appears to be zero vector (in the range

cells not including the target signature).

To proceed further, we denote amplitude estimation

from the data in the kth range cell by α̂k = nk/dk . Then, in

terms of (36), the last inequality can be given by

aH
k M−1

v ak |α̂FP − α̂k|2

(yk − α̂FPak)H M−1
v (yk − α̂FPak)

< 1. (42)

After simple mathematical derivations, the condition on

convergence is given by

|α̂FP − α̂k|2

|α̂FP − α̂k|2 + yH
k M−1

v yk

aH
k M−1

v ak

(

1 − |aH
k M−1

v yk|2

(aH
k M−1

v ak)(yH
k M−1

v yk)

) < 1

(43)

where the second item in the denominator is a nonnegative

value independent of α̂. In fact, for nonzero variance of

clutter in every range cell (σ 2
k > 0), these value is positive

and therefore the condition (35) is satisfied. Q.E.D.
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