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Abstract

A vast amount of SNPs derived from genome-wide association studies are represented by non-coding ones, therefore
exacerbating the need for effective identification of regulatory SNPs (rSNPs) among them. However, this task remains
challenging since the regulatory part of the human genome is annotated much poorly as opposed to coding regions. Here
we describe an approach aggregating the whole set of ENCODE ChIP-seq data in order to search for rSNPs, and provide the
experimental evidence of its efficiency. Its algorithm is based on the assumption that the enrichment of a genomic region
with transcription factor binding loci (ChIP-seq peaks) indicates its regulatory function, and thereby SNPs located in this
region are more likely to influence transcription regulation. To ensure that the approach preferably selects functionally
meaningful SNPs, we performed enrichment analysis of several human SNP datasets associated with phenotypic
manifestations. It was shown that all samples are significantly enriched with SNPs falling into the regions of multiple ChIP-
seq peaks as compared with the randomly selected SNPs. For experimental verification, 40 SNPs falling into overlapping
regions of at least 7 TF binding loci were selected from OMIM. The effect of SNPs on the binding of the DNA fragments
containing them to the nuclear proteins from four human cell lines (HepG2, HeLaS3, HCT-116, and K562) has been tested by
EMSA. A radical change in the binding pattern has been observed for 29 SNPs, besides, 6 more SNPs also demonstrated less
pronounced changes. Taken together, the results demonstrate the effective way to search for potential rSNPs with the aid
of ChIP-seq data provided by ENCODE project.
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Introduction

Single nucleotide polymorphisms (SNPs) represent the most

common type of sequence variation. Recently, the advance in

high-throughput DNA sequencing methods has provided a rapid

growth in the volume of information about the saturation of

genomes with SNPs. For example, the NCBI dbSNP in 2005

contained slightly over ten million SNPs in the human genome [1],

while at the moment when this study was commenced, their

number exceeded 45 million. It is likely that most SNPs lack any

functional significance. However, a small part of these substitu-

tions can have certain phenotypic manifestations appearing as

changes in the structure of the protein product of a gene or the

level of its expression and in turn some of these may be associated

with various diseases [2;3]. Currently, three groups of functionally

significant SNPs are distinguished, namely, cSNPs, rSNPs and

sSNPs, which are localized to the coding, regulatory, and splicing-

relevant regions of human genes, respectively [4;5;6;7]. The

cSNPs are most intensively studied, since they are easily detectable

in well-annotated protein-coding sequences of human genome and

relatively easy interpretable from the functional standpoint. State-

of-the-art bioinformatics methods make it possible to identify not

only the SNPs that alter a protein amino acid sequence, but also

those located in the known functional protein domains and

altering protein functions [8;9;10], which enhances selection of the

candidates for further functional validation. Thus, cSNPs repre-

sent the main content of the databases on human gene mutations

of pathological significance. In particular, cSNPs [7] account for

86% of the total number of the mutations (,90,000) compiled in

HGMD—the central disease-associated human gene mutation

database [6]. The sSNPs are the second with respect to the degree

of our knowledge. The mutations located within exon–intron

splice junction sites represent ,10% of all the reported SNPs

logged in HGMD [7]. Despite an evident functional significance,

the group of rSNPs, which unites the mutations able to influence

transcription initiation, elongation, and translational characteris-

tics of mRNA, is least represented in databases. In particular, this

joint group constitutes only 3% of the HGMD dataset [7].

Of special interest among the rSNPs are the polymorphisms

localized to the binding sites of various transcription factors (TFs;

TFBSs). Such rSNPs can exert a functional effect by altering the

regulation of gene transcription. This is explainable with a

corresponding increase or decrease in the binding of a given TF,
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leading to allele-specific gene expression. In some cases, rSNPs

may eliminate an existing binding site and/or generate a binding

site for another TF, which can have a dramatic effect on the gene

expression pattern. There are numerous examples of such rSNPs

associated with various diseases. In particular, the substitution of

230 T.A in the TATA box of human beta-globin gene (HBB)

promoter leads to a fourfold decrease in the TBP/TATA affinity

[11] and a decrease in the beta-globin mRNA content to 8–13% of

the norm in b-thalassemia patients [12]. On the contrary, the AFP

gene promoter in the case of hereditary persistence of a-
fetoprotein carries two substitutions (2119 G.A and

255 C.A) in its HNF1 binding sites, which increase both the

affinity towards HNF1 and the level of gene transcription [13].

Similarly, polymorphism at position 22578 A.G of CCL2 distal

promoter creates additional binding site for PREP1/PBX2

transcription factors causing by stimulation of the promoter

activity and inflammation [14]. In contrast, the reported GWAS

SNP rs6801957:G.A in the SCN10A enhancer disrupts TBX3/

TBX5 binding and reduces the tissue-specific activity of the

enhancer in the heart [15]. Each of the two substitutions

663 G.A and 666 G.T in intron 2 of the human TDO2 gene,

which are associated with a number of psychiatric disorders [16],

leads to destruction of YY-1 binding site with creation of the

binding sites for unknown transcription factors [17]. In turn,

21514 C.T SNP in the TBX21 promoter associated with

systemic lupus erythematosus in statistic studies reduces the

USF-1 affinity and enhances the transcription activity [18]. The

minor allele (T) of a common noncoding polymorphism at the

1p13 cholesterol locus, rs12740374, creates a C/EBP binding site,

that results in 12-fold increase of liver SORT1 expression leading

to decreased LDL-C and very small LDL particles and lower risk

of myocardial infarction [19].

Among rSNPs, currently registered in the different databases,

the most are polymorphisms localized to promoter regions of genes

[6;7;20;21]. A large-scale search for potential rSNPs using

computer methods based on identification of TFBSs has also

involved only promoter regions [22;23;24]. This is the result of

relatively good promoter mapping in genome scale owing to exact

positions of transcription start sites (TSS) determined by experi-

mental approaches [25]. The search of remote gene regulatory

regions for rSNPs is very difficult due to the absence of regular

patterns in localizations and sizes of distal regulatory units

(enhancers, silencers, and LCRs). Since at the DNA level gene

regulatory regions represent clusters of TFBSs [26;27] computa-

tion approaches based on the search of TFBSs clusters were

elaborated [28;29;30]. Despite of these approaches led to

discovery of some functional enhances [29;31], their genome wide

application is problematic because of too many false-positives

[30;32]. Therefore, the problem of annotating the regulatory part

of the genome is yet at the very beginning of its solution.

Chromatin immunoprecipitation (ChIP) technique with subse-

quent microarray (ChIP-chip) or massively parallel sequencing

(ChIP-seq) is a powerful approach, which enables a genome-scale

mapping of transcription factor occupancy pattern in a given cell

type and state [33]. So far, this approach has allowed for detection

of thousands of binding loci for a number of TFs in the chromatin

of various cells, the majority of which are localized to the

extragenic regions distant from the transcription start site and

intragenic regions [34;35;36]. In principle, comparative analysis of

genome-wide distribution of such binding loci for different TFs is

able to identify clusters of them and consequently cis-regulatory

elements, without any genome structure limitations [27]. Howev-

er, the data obtained in every ChIP-seq experiment demonstrate

TF binding specific to cell line or tissue used and strongly

dependant on environmental conditions [37;38;39]. Moreover, the

loss of some tissue-specific features (for example as a result of cell

immortalization) or different environmental changes may alter the

genome wide pattern of TF binding inherent to differentiated cells

of living organism [33;40]. Since it is known that specific spatial-

temporal patterns of gene expression is controlled by combinato-

rial binding of different TF sets to regulatory units [27;41;42] it

seems promising to search for these regions by integrative analysis

of as many as possible of different ChIP-seq data. Under the

ENCODE project, a huge amount of data on transcription factor

binding in diverse human cell types under different states has been

accumulated to date [43]. So the goal of this work was to elaborate

a novel approach to the search for rSNPs in human genome using

available ChIP-seq ENCODE data. We proposed that since the

enrichment of a particular genomic region by ChIP-seq peaks of

various TFs is indicative of its regulatory function and thus, SNPs

localized within this region are likely to affect TF binding sites and

thereafter possess a regulatory potential. The efficiency of such

approach for potential rSNP identification was then demonstrated

in silico by comparison of samples of clinically associated and

randomly selected human SNPs and experimentally confirmed on

a sample of SNPs from OMIM catalog.

Materials and Methods

Genomic Features
Two major sources of data were used in this study:

1. Genomic data on the locations of SNPs in the human genome

were downloaded from database dbSNP NCBI http://www.

ncbi.nlm.nih.gov/snp/(Human Genome Build 37, dbSNP

build 137). Sample Sclinic consisting of 34,373 clinically

associated SNPs was selected from dbSNP NCBI (http://

www.ncbi.nlm.nih.gov/snp/limits) by limits criteria ‘‘organism:

Homo sapiens’’ and ‘‘annotation: Clinical/LSDB Submis-

sions’’. Sample Somim composed of 18,291 SNPs was also

selected from database dbSNP NCBI in criteria ‘‘organism:

Homo sapiens’’ and ‘‘annotation: OMIM’’. Sample SR
contains 1,000,000 randomly selected SNPs from

30,249,489 SNPs founded in the 1000-Genomes Project

(dbSNP NCBI; limits criteria ‘‘Validation Status: by-1000

Genomes’’). Sample Sgwas comprising 10,345 SNPs which were

phenotypically associated with the p-values below 1 e25 was

selected from the NHGRI GWAS catalog (http://www.

genome.gov/gwastudies/).

2. Chromosome coordinates of loci where TFs bind to DNA as

assayed by ChIP-seq were downloaded from the UCSC

website (http://genome.ucsc.edu/) page ‘‘ENCODE Txn

Factor ChIP track’’ (ENCODE project; Date submitted

2012-05-25 http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/encodeDCC/wgEncodeRegTfbsClustered/). The EN-

CODE TF binding data were utilized to extract genomic

regions containing 2 or more (i) overlapping TF binding loci,

referred to as OTFR(i) (Document S1). Gaussian approxima-

tion of the ChIP-seq peak density was carried out and 2s area

(threshold of 95%) was taken to construct the OTFR. For each

of SNP samples mentioned above, SNPs falling into OFTR

were determined as putative rSNPs, and the enrichment E(i) of

sample by such SNPs was calculated for each value of i.2.

Statistical analysis
Estimates of standard deviations and confidence intervals for

enrichment analysis were derived by bootstrapping procedure

Detection of Regulatory SNPs
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(Figure S1). Briefly, for each of the analyzed samples of both

OTFR(i) and SNPs (Somim, Sclinic, Sgwas, Sr, etc.) 500 random

samples were generated by resampling (In house Perl script is

available as Document S2). That means the resulting samples were

the same size as the initial sample, but some elements were selected

repeatedly while some were excluded by chance. Then E(i) was

calculated for each pair of resulting SNP and OTFR(i) samples.

To test the hypothesis of normal distribution of the data (random

error) Pearson’s chi-squared test (x2) was used. It was found that

for all samples the distribution was close to normal (p-Value

.0.999).

Cell Lines
Human hepatoma cell line HepG2, human cervical adenocar-

cinoma cell line HelaS3, human colorectal cancer cells HCT-116,

human erythromyeloblastoid leukemia cell line K562 were grown

in DMEM/F12 (GIBCO) containing 10% fetal calf serum

(Thermo Scientific HYCLONE), 100 units/ml penicillin, and

100 mg/ml streptomycin (Sigma) under 5% CO2 at 37uC.

Preparation of Nuclear Extracts
Cells (,107) were washed with ice-cold PBS and then pelleted

by centrifugation at 300 g for 2 min. The cell pellet was

resuspended in 1 ml of Buffer 1 [10 mM HEPES, pH 7.9,

10 mM KCl, 1 mM dithiothreitol, 0.5 mM spermidin, 0.15 mM

spermin, 0.1 mM EDTA, 0.1 mM EGTA, 0.5 mM PMSF, 16

Halt protease inhibitor cocktail (Thermo Scientific)] and placed on

ice to swell for 15 min. After addition of 62 ml of 10% (w/v)

Nonidet P-40, the sample was gently vortexed for 10 s and then

centrifuged at 400 g for 5 min at 4uC. The nuclear pellet was

resuspended in 100 ml of Buffer 2 [20 mM HEPES, pH 7.9, 25%

(w/v) glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA,

1 mM dithiothreitol, 16Halt protease inhibitor cocktail (Thermo

Scientific)] and incubated for 20 min on ice followed by a

centrifugation at 10,000 g for 10 min at 4uC. The supernatant

containing the nuclear proteins was stored at - 70 C.

Electrophoretic Mobility Shift Assays
Table S1 lists the sequences of oligonucleotides used for EMSA

tests. For each allelic version double stranded oligonucleotides V1

and V2 were synthesized with 59-CAGT tetranucleotide over-

hangs and SNP position in the center. Introduction of labels in the

DNA probe was conducted using fill in of shortened 39 ends of

Klenov fragments of DNA polymerase I. The reaction was

conducted for 5 min at room temperature in 10 ml of reaction

mixture which contains 0.01 mM oligonucleotides, 1 ml 106

buffer for labeling (500 mM Tris-HCl, pH 8.0, 100 mM NaCl,

100 mMMgCl2, 1 mM DTT, 2 mM dGTP, 2 mM dTTP, 2 mM

dCTP), 2 active units of Klenov fragment, and 10 mCi (a-

32P)dATP.

The protein nuclear extract was incubated with sheared salmon

sperm DNA (1 mg of DNA per 7 mg of total protein) for 10 min at

0uC. After that 4 mg of extract was added to the probes which

contain 50 pM of radioactive labeled oligonucleotide. After

incubation at room temperature for 15 min the mixture was

subjected to electrophoresis in 4.5% PAAG in 0.56TBE (89 mM

Tris-borate, 89 mM H3BO3, 2 mM EDTA at 4uC). The gel was

exposed with X-ray film. Two to three independent replicates

were performed for each EMSA experiment.

Results

Description of Approach
The scheme of our approach is shown in Figure 1. The ChIP-

seq database of the international ENCODE project contains the

information about distribution of 2.75 million of ChIP-seq peaks

(human genome build 37) for 134 TFs in the genomes of one or

several of 70 human cell lines. The presence of a peak means that

the corresponding DNA region houses a TFBS, and the

enrichment of a genomic region for ChIP-seq peaks for various

TFs indicate that this is a putative regulatory region. Therefore,

this suggests that the SNP localized to this region is able to be

associated with a certain TFBS contained in it or creates a new site

and thus is able to influence transcription regulation.

Based on this reasoning, dataset about regions where TF bind to

DNA as assayed by ChIP-seq were downloaded from ‘‘ENCODE

Txn Factor ChIP track’’ and utilized to extract genomic regions

containing 2 or more overlapping TF binding loci, referred to as

OTFR. OTFRs were further considered as regulatory regions, and

SNPs falling into OTFR were defined as putative regulatory

polymorphisms (rSNPs) requiring experimental verification. Elec-

trophoretic mobility shift assay (EMSA) was used for this purpose

as an inexpensive and appropriate method, which allows for

estimation of the SNP effect on both the efficiency of TF binding

and the range of the bound proteins.

In silico Testing of the Approach in Samples of Clinically
and Phenotype Associated and Randomly Selected
Human SNPs
To test the operation efficiency of the proposed approach we

analyzed the enrichment of different phenotype-associated SNP

samples with putative rSNPs. For this purpose, three samples were

constructed: 1) sample Sclinic comprised 34,373 clinically associ-

ated SNPs, 2) sample Somim included 18,291 SNPs cataloged in

OMIM, and 3) sample Sgwas consisting of 10,345 SNPs from the

NHGRI GWAS catalog containing SNP with trait association p-

values below 1 e–5 [44]. As an independent control, we used

sample Sr consisting of 1,000,000 SNPs randomly selected from

over thirty millions SNPs founded in the 1000-Genomes Project.

The enrichment of samples with putative rSNPs was calculated

as follows:

E~
P�

P

where P* is the observed probability of finding a putative rSNP in

the analyzed sample; P, probability of finding an rSNP in the case

of uniform genomic distribution.

The probability P* was calculated as ratio of the number of

SNPs falling into OTFRs to the total number of SNPs in the

analyzed sample:

P�
~

NOTFR

N

The probability P was determined as ratio of total length of

OTFRs to the genome length (3*109 bp):

P~
lOTFR

L
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The enrichment was calculated for a series of OTFR(i) samples,

where i.2 is the minimum allowed number of overlapping TF

binding loci for OTFR. Table S2 and Figure S2 demonstrate total

length of OTFR(i) and proportion of the genome falling into

OTFRs, depending on the i values.

Thus the final equation was as follows:

E ið Þ~
L�NOTFR(i)

N�lOTFR(i)

500 iterations of bootstrap resampling were conducted for each

pair of OTFR(i) and SNP samples (Figure S1) in order to obtain

the estimates of standard deviations and confidence intervals for

the enrichment analysis (Table S3).

It is evident from the plot in Figure 2 that the higher i threshold,

the larger is the enrichment of Sclinic and Somim samples with

putative rSNPs. In particular, E(30) was 460.07 (here and further

are 99% confidence intervals for the E(i) means) for Somim and

3.660.07 for Sclinic, corresponding to 4.9- and 4.4-fold enrichment

relative to control sample Sr at i=30. In contrast, there is no

enrichment of random sample Sr with putative rSNPs, rather 1.2-

fold depletion is seen at i=30 (E(30) = 0.8460.003). Thus, with

increasing allowed number of overlapping TF binding loci in

OTFRs, the fractions of putative rSNPs shows increasing

difference between phenotype-associated and control samples.

Intriguing results have been also obtained when applying our

approach to the samples of SNPs from the NHGRI GWAS

catalog [44]. Initially, we performed the enrichment analysis of full

NHGRI sample Sgwas consisting of 10,345 SNPs. It is evident from

Figure 2 that the E(i) value for Sgwas is almost independent of the i

value in contrast to Sclinic and Somim, displaying 2.6–3.3-fold

enrichment for rSNPs relative to Sr.

We further tested whether additional filtering of Sgwas sample by

p-value and OR (odds ratio) parameters reflecting the significance

of SNP-trait association could improve the observed enrichment.

Since under the terms of NHGRI GWAS catalog all SNPs from

Sgwas already have trait association p-values below 1 e–5, we

constructed sample SpV consisting of 5,115 SNPs with the p-values

below 1 e27, and sample SOR, which comprises 3,084 SNPs

associated with a certain disease with OR.3 and OR,0.33. As

could be seen from the Figure 3A, noticeably higher enrichment of

newly generated samples with putative rSNPs is observed

compared to the original Sgwas sample. The highest enrichment

was obtained for Sint sample (Fig. 3B) that contains only

1,850 SNPs with both OR and p-value filtering, e.g. at i=32 it

reached 4.9-fold relative to control Sr sample. Hence the use of

stricter filtering of Sgwas sample by significance values produces

functionally more relevant SNP sample which is comparable to

Sclinic and Somim datasets. These results allow us to assume that not

all SNPs from NHGRI GWAS directory cause phenotypic

manifestation and most likely some of them are identified due to

linkage with causal SNPs.

The computed enrichment of the SNP samples associated with

phenotypic manifestations for the rSNPs predicted by our method

suggests that many of such rSNPs indeed have a certain functional

significance. Since these SNPs are located in predicted regulatory

regions of genes, it is likely that they are associated with the

binding sites of certain TFs and thus influence the regulation of

gene expression, which is likely to enhance the development of

various pathologies.

Figure 1. The used approach to genome-wide selection of rSNPs. Computational analysis was applied to identify the SNPs in the most likely
regulatory regions of the human genome and predict rSNPs for experimental verification.
doi:10.1371/journal.pone.0078833.g001
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Experimental Verification of Putative rSNPs by EMSA
For experimental verification, 30 non-coding SNPs falling in

OTFRs with i$7 (Document S3) were randomly selected from the

Somim sample. Additionally, to study the effect of SNP location

within OTFR 12 SNPs from the same OTFR were selected

(Fig. 4). A total of 40 SNPs were analyzed by EMSA. It has been

shown that 27 of these SNPs are located in gene introns (e.g., one

intronic SNP also falls into promoter of another gene); 12 SNPs

are in 59-UTRs (one of them also falls into the promoter of

reversely oriented gene); and one, in 39-UTR. For each of these

SNPs, double-stranded oligonucleotides corresponding to different

alleles, V1 and V2, were synthesized (Table S1). These oligonu-

cleotides have been used as DNA probes in the EMSA

experiments with proteins of different nuclear extracts obtained

from four human cell lines (HepG2, HeLaS3, HCT-116, and

K562) (http://lungry1.bionet.nsc.ru/cgi-bin/SNPProject/

SNPChIPTools.cgi). These lines are most frequently used in the

ChIP-seq experiments of the ENCODE project and have different

tissue origins, which expanded the range of nuclear proteins able

to bind to specific DNA sites. Two to three independent replicates

were performed for each EMSA experiment.

Tables 1 and 2 consolidates the EMSA data for the nuclear

extracts of different cell lines. It has been shown that the

substitution of only one nucleotide distinguishing V1 from V2

oligonucleotides for 35 SNPs leads to changes in binding of the

DNA probe to nuclear extract proteins of at least one cell line. In

particular, 25 of these SNPs lead to a complete disappearance of

certain bands in autoradiogram and/or emergence of other bands

with different mobility. This suggests that the SNPs in question are

able to destroy the binding sites for some TFs and/or create the

binding sites for other TFs and, an appropriate situation provided,

influence the regulation of gene expression at a transcriptional

level. Examples of several such SNPs with different variants of

changes in binding patterns are shown in Figure 5 (A, B and C).

For other 10 SNPs of the found 35, the corresponding allelic

variants V1 and V2 form the retardation bands with equal

mobility (example in Figure 5, D) but different intensities, which

may suggest impairment/weakening of the binding sites for certain

TFs. The remaining five SNPs of the 40 tested in the experiment

either had no effect on binding or the corresponding oligonucle-

otides did not bind to any proteins from the nuclear extracts of the

selected cell lines (example in Figure 5, E). However, it cannot be

excluded that these SNPs will behave as rSNPs when using the

nuclear extract of another human cell line or, even better, a biopsy

specimen. The fact that the dependence of binding pattern not

only on the SNP allelic variant, but also on the used cell line has

been demonstrated for several of the tested SNPs also confirms this

assumption. Figure 6 shows an example of such SNP

(rs79734816:C.T): the corresponding V1 DNA probe C, as well

as V2 T, gives different binding patterns with the protein extracts

of all the used cell lines; in addition the effect of SNP on the

binding is unique for each extract.

Thus, the EMSA tests has allowed us to validate a regulatory

potential for 29 of the predicted rSNPs and to demonstrate that

Figure 2. The enrichment of functionally-associated Somim, Sclinic, Sgwas samples, and Sr sample with putative rSNPs as a function of
cut-off number of overlapping TF binding loci (i) for defining OTFRs. 500 bootstrap iterations were performed for each point. The resulting
standard deviations and confidence intervals are shown by error bars and colour-filled areas,respectively. Sclinic, Somim, and Sgwas consist of SNPs
associated with phenotypic manifestations and extracted from dbSNP NCBI Clinical/LSDB Submissions Resources, OMIM catalog, and NHGRI GWAS
catalog, respectively. Sample Sr of random SNPs was created without applying any phenotypic preferences and used as control. Genomic region
chr6:29,909,708-31,325,212 was excluded from the analysis of Sclinic sample, since it caused enrichment overestimation at lower i (a large number of
SNPs concentrate in this region due to its extensive use in genotyping assays).
doi:10.1371/journal.pone.0078833.g002
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Figure 3.The enrichment of Sgwas sample and its high-confidence derivatives, SpV, SOR and Sint, as well as Sr sample with putative
rSNPs as a function of cut-off number of overlapping TF binding loci (i) for defining OTFRs. 500 bootstrap iterations were performed for
each point. The resulting standard deviations and confidence intervals are shown by error bars and colour-filled areas,respectively. The subsamples of
Sgwas were generated with filtering of SNPs by P-value,1 e–7 (SpV), OR.3 and,0.3 (SOR), and by both criteria (Sint). Sgwas sample was extracted from
NHGRI GWAS catalog.
doi:10.1371/journal.pone.0078833.g003
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additional 6 polymorphisms with less pronounced changes are also

likely to be regulatory. Additionally some position effect of SNP

within OTFR was shown. Although all 12 SNPs from different

parts of OTFR belonging to APC gene demonstrated profound

changes in protein binding pattern, strong tissue-specific effect was

observed (Table 2).

All sequences containing experimentally verified SNPs were

subjected to the search for putative TF binding sites, which

appeared and/or were disrupted due to single nucleotide

Figure 4. Localization of putative rSNPs within OTFR belonging to APC gene. SNPs from the different parts of OTFR were taken in EMSA to
study the effect of SNP location within OTFR on the protein binding.
doi:10.1371/journal.pone.0078833.g004

Figure 5. A variety of SNP effects on binding of the
corresponding oligonucleotides to nuclear proteins from
K562 cells. rs79734816:C.T (A), rs2071002:A.C (B), and
rs74393987:C.T (C) change the number and intensity of bands, while
rs75996864:G.T (D) affect only band intensity, and 7961894:C.T (E) do
not have any. Changes in the binding of allelic variants with the nuclear
proteins are indicated by arrows.
doi:10.1371/journal.pone.0078833.g005

Figure 6. Cell line-dependent binding of nuclear proteins to
oligonucleotide probes. Binding of nuclear proteins isolated from
HCT-116 (1, 2), HeLaS3 (3, 4), K562 (5, 6) and HepG2 (7, 8) human cell
lines to the V1 (C- allele) and V2 (T- allele) oligonucleotides
corresponding to allelic versions of rs79734816:C.T.
doi:10.1371/journal.pone.0078833.g006
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substitution, using transcription factor binding site profiles from

open-access JASPAR database. For this purpose TFBSs were

predicted for both sequence variants with the relative profile score

threshold of 80% and then motifs represented only in one of them

as well as motifs displaying score difference above 5% between

variants were extracted. As could be seen from the Table S4, most

of SNPs (even not confirmed to be regulatory in EMSA) were

predicted to affect several JASPAR motifs simultaneously although

some experimentally confirmed rSNPs didn’t influence on the

presence and score of predicted TFBSs. This could be due to both

incomplete representation of TFBSs in JASPAR and high under-

or over-prediction rates for the annotated profiles, the main

problem in TFBS recognition [40;45].

Discussion

It is known that the changes in TF binding to the cognate sites

can lead to dramatic consequences down to cell death or

malignant transformation due to impairments in cell differentia-

tion and proliferation [46;47;48]. Appearance of a new TFBS or,

on the contrary, its destruction resulting from a single nucleotide

substitution can change the ‘‘regulatory code’’ of a gene or local

chromatin architecture in the corresponding region and in certain

cases lead to development of pathologies. Thus, the rSNPs may be

a cause of diseases, and their detection is in demand, especially for

personalized medicine. However, a genome-wide search for rSNPs

is still an unsolved problem, although there are several pioneer

works devoted to identification of rSNPs affecting particular

TFBSs, namely p53 and USF1 binding sites [49;50]. For a long

period of time, the only tool for a large-scale search of putative

rSNPs were computational methods for TFBSs recognition

(mainly, with the help of weight matrices). In most cases, their

application was limited only to promoter regions due to relatively

good mapping of the latter in genome scale [22;23;24]. There are

also resources, predicting GWAS SNPs effects on affinity of

putative TFBS motifs found in known regulatory regions [51;52].

However, the genome-scale application of computational methods

is usually complicated by the absence of direct experimental

verification, making it difficult to set a threshold to avoid

Table 1. Summary of the experimental testing of putative rSNPs selected from Somim.

SNP identifier in dbSNP

NCBI Qty. of ChIP-seq peaks HCT-116 HelaS3 HepG2 K562

rs2010963 11/111 2 2 2 1

rs2279744 34/110 3 3 3 3

rs11466315 12/103 2 2 1 1

rs1800734 41/94 2 1 1 1

rs17039192 7/76 1 2 1 1

rs12885713 71/59 3 3 2 3

rs2071002 19/57 3 1 2 3

rs2297339 40/54 2 2 2 2

rs3807306 27/46 2 3 1 1

rs1048990 28/43 3 1 3 3

rs737865 13/36 3 1 3 3

rs80313086 20/33 2 2 3 1

rs79734816 4/33 3 3 3 3

rs74393987 4/33 3 3 3 3

rs12740374 23/32 3 2 1 1

rs55853698 19/27 3 2 1 1

rs4821544 23/26 1 1 1 1

rs11178998 28/25 1 1 1 1

rs2282978 21/24 3 3 3 3

rs3766379 1/23 1 1 1 3

rs2038137 2/21 1 2 2 1

rs6958571 14/21 3 3 2 3

rs12044852 4/20 1 1 1 1

rs10411210 18/20 1 1 2 1

rs4809324 8/16 3 1 2 3

rs3057 1/15 1 1 1 0

rs1532624 5/13 2 1 3 1

rs9465871 7/9 1 2 1 2

rs113994210 7/7 3 3 1 1

rs7961894 7/7 ND 1 1 1

1- no influence, 2- influence of SNP on the band intensity, 3- influence of SNP on the band mobility.
doi:10.1371/journal.pone.0078833.t001
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recognition of too many false-positive TFBSs as well as to

considerably reduce the level of under-predictions [53].

Recently, high-throughput functional assays such as ChIP-seq

and DNaseI-hypersensitivite sites identification by sequencing

(DNase-seq) have emerged as promising approaches for genome-

wide determination of regulatory units, promoting extensive data

accumulation and appearance of such large-scale projects as the

ENCODE. Several studies showed that in certain cases SNPs

falling into ChIP-seq/DNase-seq regions directly affected binding

of various TFs [54;55;56]. In a few pioneer works the genome

wide map of regulatory units was produced by a combination of

data from histone modification profiling, DNase-seq assay, and

ChIP-seq experiments for individual TFs. Thus, a study of nine

chromatin marks across nine cell types allowed to detect regulatory

regions and found that disease-associated SNPs are significantly

more likely to coincide with these regions (2-fold enrichment for

cell type specific enhancers was shown) [57]. The 1.12 -fold

enrichment for DNase I peaks and 1.25 enrichment for ChIP-seq

peaks of certain TFs with such SNPs were demonstrated also [58].

Under identification of SNPs in ChIP-seq peaks for a multifunc-

tional transcription and chromatin regulator CTCF the 2-fold

enrichment for those associated with human diseases was observed

[59].

Taking into account the fact that the gene regulatory regions in

the majority of cases house multitude of sites for various TFs

[60;61;62], we assumed that local clustering of ChIP-seq peaks for

different TFs in a certain genomic region could suggest its

regulatory significance. In this work, we have used the data

obtained under the international ENCODE project on the

distribution of binding sites for 134 TFs in the human genome

(2.75 million ChIP-seq peaks). Our pipeline searches for the

analyzed SNPs within genome regions where a number of TFs are

bound. Using three samples of SNPs associated with phenotypic

manifestations (Sclinic Somim and Sgwas) and the sample of random

SNPs we have demonstrated that the higher the number of ChIP-

seq peaks overlapping with SNPs, the larger is the enrichment of

functionally significant samples for the putative rSNPs as

compared with the random one (Fig. 2). Its maximal values

reached 4.9- and 4.4-fold for Somim and Sclinic- correspondingly.

We also found that filtering by OR and p-values is of importance

when analysing Sgwas sample. Original Sgwas sample displayed only

2.6-3.3-fold enrichment with rSNPs relative to Sr. But this value

increased up to 4.9 when analyzing the subsample of Sgwas,

selected by more stringent statistical criteria on SNP-trait

association (Fig. 3B). Thus, filtering by both OR and p-values

produces a subset of high-confidence SNPs, comparable to Somim

and Sclinic samples in terms of functional relevance. These results

suggest that a substantial portion of filtered out NHGRI GWAS

SNPs do not cause any pronounced phenotypic manifestation,

rather they are misidentified due to linkage with causal SNPs.

The sample of 40 clinically associated SNPs extracted from the

OMIM catalog has been used to experimentally assess the

efficiency of the proposed approach. As a result, 25 polymor-

phisms unambiguously behaved as regulatory when using the

nuclear extract of at least one of the four cell lines, since they

influenced the presence/absence of bands with different mobilitie

in the binding pattern. In addition, 10 other SNPs led to changes

only in the band intensities. Totally, 35 polymorphisms influence

the binding of TFs with the genomic region where they are

located, either destroying or creating binding sites; thus, 88% of

the predicted rSNPs was experimentally confirmed to be

regulatory polymorphisms.

Summing up, the current situation in the field of analysis of

high-throughput sequencing data is such that the experimental

technologies are considerably more advanced as compared with

the bioinformatics tools for their support, analysis, and interpre-

tation of experimental results. The proposed approach based on

the experimental ChIP-seq data of the ENCODE project can be

successfully used for a genome-wide identification of regulatory

regions and rSNPs. Thus it will advantage for a considerable

expansion of a number of SNPs able to influence gene expression

as well as enhance detection of new markers for predisposition to

various diseases, e.g. located within noncoding regions remote

from the genes whose function they disrupt. This approach seems

very promising to select potential rSNP sets from dbSNP,

containing more than 45 billion entries, for further investigation

of their clinical associations. In particular, it would be effective to

reveal trait-associated SNPs from GWAS that are causal SNPs

rather than tagging SNPs and guide new association studies.

Table 2. Summary of the experimental testing of putative rSNPs from different parts of OTFR belonging to APC gene.

SNP identifier in dbSNP

NCBI Qty. of ChIP-seq peaks HCT-116 HelaS3 HepG2 K562

rs75996864 26/33 2 2 3 2

rs78037487 26/33 1 3 1 ND

rs80313086 20/33 2 2 3 1

rs76241113 20/33 3 2 1 2

rs80112297 19/33 3 3 3 3

rs78597499 16/33 1 2 1 2

rs77733015 15/33 1 1 2 1

rs79488395 8/33 2 3 2 3

rs79734816 4/33 3 3 3 3

rs79216719 4/33 3 2 2 3

rs79577178 3/33 3 3 3 3

rs75612255 2/33 3 1 3 3

1- no influence, 2- influence of SNP on the band intensity, 3- influence of SNP on the band mobility.
doi:10.1371/journal.pone.0078833.t002
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Supporting Information

Figure S1 Bootstrapping procedure used in enrichment
analysis. In order to obtain the estimates of standard deviations

and confidence intervals for the enrichment analysis, 500 random

samples were generated by bootstrap resampling from each of the

analyzed samples of both OTFR(i) and SNPs (e.g. Somim, Sclinic,

Sgwas, Sr, etc.). The resulting samples were the same size as the

initial sample, but some elements were selected repeatedly while

some were excluded by chance. Pearson’s chi-squared test (x2) was
used to test the hypothesis of normal distribution of the data. The

enrichment E(i) was calculated for each pair of resulting SNP and

OTFR(i) samples.

(TIF)

Figure S2 Proportion of the genome falling into OTFRs,
depending on the i values. Total length of OTFRs consisting

of at least i ChIP-seq peaks was calculated as percent of the

genome length.

(TIF)

Table S1 List of oligonucleotide probes tested in EMSA.
(DOC)

Table S2 Total length of OTFRs and proportion of the
genome falling into OTFRs depending on the i value.
(DOC)

Table S3 The amount of SNPs falling into OTFRs with
at least i TF binding loci, and significance of the
corresponding enrichment (mean, SD - standard devia-
tion, CI - confidence interval, and p-value of E(i)), for

seven SNP samples analyzed. Sample size is specified in

brackets after sample name.

(DOC)

Table S4 The SNPs and corresponding appearing or

disrupted TF binding sites, revealed using TFBS profiles

from JASPAR database. Relative profile score threshold 0.8.

(DOC)

Document S1 Data infile ‘‘TxN.txt’’ for creation MySQL

table TxN (see Document S2).

(GZ)

Document S2 The algorithm for data management and

analysis used in the study.

(DOC)

Document S3 Putative rSNPs selected for EMSA and

their position within OTFRs with i$7.

(DOC)
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