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Detection of Seizure Precursors From Depth-EEG
Using a Sign Periodogram Transform

Joël J. Niederhauser, Rosana Esteller, Member, IEEE, Javier Echauz, George Vachtsevanos, Senior Member, IEEE,
and Brian Litt*, Member, IEEE

Abstract—Brief bursts of focal, low amplitude rhythmic activity
have been observed on depth electroencephalogram (EEG) in the
minutes before electrographic onset of seizures in human mesial
temporal lobe epilepsy. We have found these periods to contain
discrete, individualized synchronized activity in patient-specific
frequency bands ranging from 20 to 40 Hz. We present a method
for detecting and displaying these events using a periodogram
of the sign-limited temporal derivative of the EEG signal, de-
noted joint sign periodogram event characterization transform
(JSPECT). When applied to continuous 2-6 day depth-EEG
recordings from ten patients with temporal lobe epilepsy, JSPECT
demonstrated that these patient-specific EEG events reliably
occurred 5-80 s prior to electrical onset of seizures in five patients
with focal, unilateral seizure onsets. JSPECT did not reveal
this type of activity prior to seizures in five other patients with
bilateral, extratemporal or more diffuse seizure onsets on EEG.
Patient-specific, localized rhythmic events may play an important
role in seizure generation in temporal lobe epilepsy. The JSPECT
method efficiently detects these events, and may be useful as part
of an automated system for predicting electrical seizure onset in
appropriate patients.

Index Terms—Depth-EEG, epilepsy, nonparametric detection,
onset prediction, signature event detection, visualization.
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Discrete time axis.
Original EEG data.
Whitened joint sign periodogram event characteri-
zation transform (JSPECT) input.
Sign-limited signal.
JSPECT output.
Sliding window length.
Sliding window displacement.
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JSPECT signature detector.
Lower cutoff frequency.

Manuscript received December 11, 2001; revised November 29, 2002. This
work was supported in part by grants funding from the Whitaker Foundation,
the Epilepsy Foundation, the American Epilepsy Society, and the Charles Henry
Dana Foundation and in part by the National Institutes of Health (NIH) under
Grant RO1NS041811-01 and Grant RO1MN062298-02.Asterisk indicates cor-
responding author.

J. J. Niederhauser is with the Department of Electrical Engineering, Swiss
Federal Institute of Technology (ETH), 8092 Zürich, Switzerland (e-mail:
j.n@switzerland.org).

R. Esteller is with the Universidad Simón Bolívar, 1080 Caracas, Venezuela.
J. Echauz is with NeuroPace, Inc., Mountain View, CA 94043 USA.
G. Vachtsevanos is with the Intelligent Control Systems Laboratory, Georgia

Institute of Technology, Atlanta, GA 30332 USA.
*B. Litt is with the Departments of Neurology and Bioengineering, University

of Pennsylvania, Philadelphia, PA 19104 USA (littb@mail.med.upenn.edu).
Digital Object Identifier 10.1109/TBME.2003.809497

Higher cutoff frequency.
Length of median operation.

I. INTRODUCTION

T WENTY-FIVE PERCENT of the world’s 50 million
people with epilepsy have seizures that cannot be con-

trolled by any available treatment. The need for new therapies,
and the success of similar devices to treat cardiac arrhythmias,
has spawned an explosion of research into algorithms for use
in implantable therapeutic devices for epilepsy. Most of these
algorithms focus on either detecting unequivocal EEG onset
of seizures [1]–[3], or on quantitative methods for predicting
seizures in the state-space, time, or frequency domains that may
be difficult to relate to the neurophysiology of epilepsy [4]–[7].
Recently, Litt et al. presented evidence that mesial temporal
lobe seizures are generated in a cascade of events, measured by
depth EEG, that evolve over hours, leading to clinical seizure
onset [8]. Among their observations in this “preictal cascade”
were localized bursts of rhythmic, seizure-like activity whose
rate of occurrence appeared to grow exponentially as seizures
approached. The authors of this paper identified these localized
discharges by manually reviewing days of EEG data, 10 s at a
time. This approach is limited to detecting events of sufficient
signal-to-noise ratio to be seen by the human eye, and by the
potential for human error. Other investigators have reported
these events prior to temporal lobe seizures, however, there are
no reported studies using quantitative methods to elucidate the
spatial and temporal characteristics of these low amplitude,
high-frequency electrographic events. [9], [10].

In this paper, we quantitatively analyze low-amplitude,
high-frequency activity appearing within seconds to minutes
of electrical seizure onset before seizures in patients with
temporal lobe epilepsy (see Fig. 1). We found these events
to be composed of characteristic, individualized patterns in
specific frequency bands, usually in the range of 20-40 Hz.
In this paper, we present computationally efficient methods
for detecting these “signature events” in the complex signal
environment that often obscures their presence during clinical
review. We also present a companion method for visualizing
these events in time. We present an analysis of the temporal
distribution of these electrographic events in prolonged, con-
tinuous depth-EEG recordings, spanning days, obtained from
ten patients with mesial temporal lobe epilepsy undergoing
evaluation for epilepsy surgery.

0018-9294/03$17.00 © 2003 IEEE
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Fig. 1. Signature events. The plot shows the EEG of the same bipolar
channel for five different seizures of a single patient. This passage just before
the electrical seizure onset (t = 0 s) contains stereotyped, low-amplitude,
high-frequency signature events (arrows indicate the detection times of these
events with the JSPECT detection described in this paper). The second seizure
is preceded by two signature events.

The EEG is a nonstationary signal with a low-frequency-
dominated spectrum [11]. In epilepsy, the EEG also contains
epileptiform discharges (spikes), whose broad spectrum content
can interfere with detecting events that are limited to a particular
frequency band. These effects may be particularly prominent as
seizures approach, or in the prolonged period of synchronization
immediately after seizures [8], [12]. In addition, a wide variety
of features in the normal EEG, such as changing amplitude and
frequency content associated with state changes (e.g., awake,
asleep, etc.), may obscure patterns of interest in the frequency
domain.

Extreme low-frequency (ELF) communications and detecting
signals embedded in underwater acoustic noise are two problem
areas that share the challenges of detecting discrete electrical
events in the intracranial EEG. Signal detection methods for
those environments often use a nonlinear limiter function.
This function can reduce sensitivity to spikes and improves
detection performance. The simplest such limiter is the sign
function. It is optimal for Laplacian independent, identically
distributed additive noise (i.i.d.-noise). With Laplacian noise
being the worst case, the sign detector also leads to robust
detection performance in other harsh environments [13]–[16].
We have developed a method of applying the sign limiter
function to the intracranial EEG in order to enhance detection
of the signature preseizure events described above. We take
the temporal derivative of the EEG signal to “whiten” the
spectrum before input into the algorithms below.

Because the EEGs of interest to this type of study are
usually 32–64 or more channels, digitized at a minimum of
200 Hz/channel, quantitative tools to study seizure generation,
detection or prediction must be very computationally efficient.
Long data epochs containing both preseizure and baseline
data, preferably over days, must be processed in order to
demonstrate the statistical validity of any seizure “predictors.”
These requirements were taken into account in developing the
quantitative methods described below.

Fig. 2. PSD ranges of the EEG detection environment. The plot shows the
PSD ranges of one hour EEG segments from the epileptic focus region, selected
at least 4 h away from any seizure. We refer to these segments as “baselines,”
below. The PSDs of all study patients’ EEGs were low-frequency-dominated
(PSDs for three typical patients are shown in this figure). The form of the PSDs
within single patients and across patients varies. However, the1=f PSD is a
first approximation for all the EEG PSD shapes. This approximation suggests
a temporal derivative filter for whitening and decorrelating the detection
environment. Of note are the large power dynamics of up to 10 dB within
single patients and across patients.

II. THEORETICAL BACKGROUND

A. Characterization of EEG Detection Environment

It is important to consider the characteristics of the signal
detection environment, in our case the EEG away from seizures,
when developing an event detector. If modeled as a stochastic
process, the EEG detection environment can be characterized
by its power spectral density (PSD) and its probability density
function (pdf). These tools can guide the signal detector design.

The independent identically distributed (i.i.d.) stochastic
process assumption simplifies the detector design. A whitening
prefilter stage can be used to decorrelate colored noise. As
shown in Fig. 2, the PSDs of our EEG data were low-frequency
dominated, suggesting that a first approximation for most EEG
segments we recorded in this environment is a PSD.
This suggests that the temporal derivative may be useful as a
simple prefilter for our experimental data. By amplifying the
power in the high-frequency bands by a factorthe temporal
derivative, even though not optimal, was a good approximation
for decorrelating the wide range of PSD shapes in our EEG
data. The computational efficiency of a simple temporal deriva-
tive filter is an additional advantage for large amounts of data
and real time applications. We, therefore, applied a temporal
derivative filter to all our EEG data as a first detector stage.

The pdf of the whitened environment determines the nonlin-
earity function of the detector. To guarantee robust detection,
worst case distribution should be used to determine the nonlin-
earity [17]. In our case, the pdfs were nonstationary (see Fig. 3).
The large pdf ranges within single patients and across patients
inhibit a parametric description of the detection environment.
Based on this difficulty, the JSPECT detector described in this
paper is a nonparametric detector.



NIEDERHAUSERet al.: DETECTION OF SEIZURE PRECURSORS FROM DEPTH-EEG USING A SIGN PERIODOGRAM TRANSFORM 451

Fig. 3. Normalized pdf ranges of the temporally derived EEG detection
environment. The Plot shows the pdf ranges of 1 h temporally derived EEG
segments from the epileptic focus region at least 4 h away from any seizure
onset or termination. The standard deviations of all pdf curves have been
normalized to one. The pdfs are strongly varying within single patients and
across patients. The pdf characteristics range from Gaussian to Laplacian and
to even heavier tailed distributions. The pdfs are approximately symmetric.

B. Nonparametric Detection

D. H. Johnson describes the nonparametric detection as fol-
lows (cited from [17], shortened and partially paraphrased): “In
situations when no nominal density can be reasonably assigned
or when the possible extend of deviations from the nominal
cannot be assessed, nonparametric detection theory can rise to
the occasion [13], [14]. In this framework, little is assumed
about the form of the noise density. Assume that modelcor-
responds to the noise-only situation and to the presence of
a signal. Moreover, assume that the noise density has zero me-
dian: any noise value is equally likely to be positive or negative.
This assumption does not necessarily demand that the density be
symmetric about the origin, but such densities do have zero me-
dian. Given these assumptions, the formalism of nonparametric
model evaluation yields the sign test as the best decision rule. In
the simplest model evaluation context, has constant, positive
mean for each observation. However, Signal values are usually
unequal and change sign; we must extend the sign test to this
more realistic situation. Noting that the statistic of the sign test
does not depend on the value of the mean but on its sign, the sign
of each observation should be ‘matched’ with the sign of each
signal value. A kind of matched filter results, wheresign

is match-filtered withsign

sign sign

The sum counts the times when the signal and the observation
signs matched.

The nonparametric detector expressed by the sign
match-filter equation above has many attractive properties
for array processing applications. First, the detector does not
require knowledge of the amplitude of the signal. In addition,
note that the false-alarm probability doesnot depend on the

Fig. 4. Schematic frequency evolution of a signature event. For each patient,
signature events demonstrate a characteristic frequency evolution (signature).
The events were found to be predominantly in the 20-40 Hz range. Even though
the shape of the signature events before each seizure remained similar for each
patient, the offset frequencies and duration varied slightly between seizures.

variance of the noise; the sign detector is, therefore, constant
false-alarm rate (CFAR). Another property of the sign detector
is its robustness: we have implicitly assumed that the noise
values havetheworst case probability density—the Laplacian.
A more practical property is the one bit of precision required
by the quantities used in the computation of the sufficient
statistic: each observation is passed through an infinite clipper
(a one-bit quantizer) and matched (binary operation) with a
1-bit representation of the signal. A less desirable property is
the dependence of sign detector’s performance on the signal
waveform. A signal having a few dominant peak values may
be less frequently detected than an equal energy one having
a more constant envelope. Examples show that the loss in
performance compared with a detector specially tailored to
the signal and noise properties can be small (about 3 dB for
sinusoidal signals).”

C. Characterization of Signature Events

Signature events were oscillations in the 20- to 40-Hz fre-
quency band. The frequency evolved in a characteristic manner
for each patient over 5–30 s (Fig. 4). Signature events were usu-
ally low in amplitude and often background EEG activity was
reduced in amplitude during such periods. The absolute ampli-
tude of the signature event is unimportant for the nonparametric
detector described above because the detection only depends on
the signs of the input. The frequency of the oscillations usually
remained stationary over a 1-s window. We detected determin-
istic signature events using a periodogram of the sign-limited
temporal derivative of the EEG signal.

III. M ETHODS

A. JSPECT

The JSPECT detection is based on an i.i.d. environment
model. To decorrelate the background samples, the temporal
derivative is applied to the EEG as an approximative whitening
filter

(1)
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Fig. 5. JSPECT block-diagram.

The JSPECT of a discrete time sequence is computed by
taking the two-piece sign function

if

if
(2)

of the input followed by the periodogram with a-point fast
Fourier transform (FFT) on a sliding window (see Fig. 5)

(3)

JSPECT resembles the first stage of the Rao detector for si-
nusoids of unknown amplitude and phase embedded in i.i.d.
generalized Gaussian noise [16]. However, these assumptions
do not hold for our application. As mentioned above, our EEG
data had a strongly varying pdf. The worst case pdf, in our case
the Laplacian, should be assumed to maintain good detection
performance [13]. This results in a sign limiter function as an
early detection stage. The quantitative amplitude of the signa-
ture events is known in our case but is not used because of this
sign limiter function. Therefore, JSPECT and the Rao detector
have similarities even though they are based on different models.

In addition to detection, JSPECT provides a visualization tool
to characterize signature events. Fig. 6 shows a comparison be-
tween JSPECT and a classical power spectrogram, applied to the
same 4-min data epoch (3 min prior to electrical seizure onset,
(marked as time 0), to 1 min after onset). The darkness of
the output is linearly proportional to signal amplitude on both
plots. On the plot of the JSPECT function, the preseizure signa-
ture event is easily seen at s. This event is revealed with
contrast enhancement on the classical spectrogram, but is much
fainter without this enhancement, as it is overwhelmed by the
spectrum of spikes and seizure onset. These plots demonstrate
that JSPECT selectively filters out high amplitude events, which
might obscure the signal, while preserving important character-
istics of the signature events of interest.

A fundamental property of JSPECT is that it outputs a nor-
malized energy spectrum. Looking at (2) we see that the energy
in the observation window is .
Because ofParseval’s relation, the total energy in the JSPECT
is constant .

EEG data were sampled at 200 Hz, a window length of
points and a displacement of points were used for

processing. The corresponding frequency and time resolutions
were 1 Hz and 0.5 s, respectively.

B. JSPECT Signature Detection

Distillation of JSPECT output into a single parameter is nec-
essary for use in online detection of signature events. This is
accomplished as follows. A simple feature can be derived from
the JSPECT output for use in event detection

(4)

Fig. 6. JSPECT versus classic spectrogram applied to the same 5-min data
epoch (4 min prior to electrical seizure onset att = 0 to 1 min after onset).
This comparison shows that JSPECT suppresses artifacts due to epileptiform
discharges while preserving important signature information (hat shape att =

�90 s). The temporal derivative of the bipolar EEG signal has been analyzed.
The UEO is marked ast = 0 s. The original EEG segment is also shown for
comparison.

Then, the median acrossconsecutive values is computed

(5)

Looking at (2)–(5), we see that is strictly causal, as it
only depends on past values Therefore,
a real-time implementation is straight forward.
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Fig. 7. JSPECT signature detection. The plot shows 160 h of processed single channel depth-EEG data from patient F. They-axis is the JSPECT Signature
Detection output value in arbitrary units. Thex-axis is the time axis in hours. The consecutive subplots show the JSPECT Detection output of 20 data CDs. All
CD contained 8 h ofdata except CD #15 which contained only 5 h of data. All signature detection peaks occurred approximately 20 s prior to the actual electrical
seizures onsets, which have been marked with diamonds. The dotted line indicates a possible detection threshold allowing a maximum of one FN detection.

Trial evaluation of JSPECT output demonstrated that sig-
nature events were typically5 s in duration. An analysis of
different median lengths was undertaken to determine the
probability of false-positive (FP) waveform detections due to
noise alone. The JSPECT detector, being nonparametric, has
a CFAR which can be adjusted with the observation window
length as described in Section II. Based on the tradeoff between
detection delay and FP/false-negative (FN) probabilities, the
median length was set to . This value was verified
experimentally. Finding the optimal median length was not the
focus of this study. In this algorithm, the median is only taken
across ten values, so the usual computational intensiveness
associated with the required sort operation was not a problem.

Fig. 7 shows the result of this algorithm applied to 160 h of
continuous depth-EEG data from one single patient. By exam-
ining theJSPECT Visualization, (see Section III-C), the bipolar
channel (voltage difference between two adjacent electrodes)
nearest the epileptic focus region (spatial origin of a seizure)
and the cutoff frequencies and were determined.

C. JSPECT Visualization

In order to determine the processing channel and to visualize
the JSPECT output for long data segments, a condensed method
for visually displaying results was developed.

Using the JSPECT followed by an adaptive frequency equal-
izer, the frequency corresponding to the maximum JSPECT

Fig. 8. JSPECT visualization of all channels. The complete patient records
have been processed before visualization. The signature event indicates the
important bipolar channel. It can be distinguished from the other events by its
green color (corresponds to a frequency between 20-40 Hz), which cannot be
seen on this black and white plot. Similar events could be found on the same
channel before other seizures of this patient. A closer look at this channel in
Fig. 9 reveals the detailed frequency evolution of this signature event. The
EEG onset and propagation of the seizure to other channels can be seen after
the electrical seizure onset (t = 0 s).

amplitude is extracted and stored twice/second. A detection
potential measurement is stored along with it in a Matlab file.
The detection potential is equal to , using Hz
and Hz, as described in Section III-B (5). With
this method, data reduction by a factor of 50 is possible. We
applied JSPECT Visualization to all the channels in the com-
plete recordings.
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Fig. 9. JSPECT visualization of one channel. Even though only the maximum
frequency is used for displaying, the signature event is visible (t = �90 s) as
a hat shaped cluster of points in the 20- to 40-Hz frequency band. Its frequency
evolution is observable as a curve of neighboring points being less than 10 Hz
apart. In other patients, this curve shape was fuzzier but still within the 10-Hz
range. An adaptive frequency equalizer was applied resulting in a uniform
distribution for the background.

Using Matlab, all bipolar EEG channels are viewed simul-
taneously. The information is coded in the following way. The
brightness of a pixel is made proportional to a sigmoid function
applied to the detection potential. The color of the pixel is used
to represent its frequency. Fig. 8 shows 28 bipolar EEG chan-
nels before electrical seizure onset. On this plot, the signature
preseizure event is identified on channel 2-3. These events were
found preceding all the seizures for this patient, localized to this
same channel.

Once the channels of interest are identified, a single channel
can be viewed on a time frequency plot. Fig. 9 shows such a
plot of channel 2-3. The EEG detection environment results
in randomly distributed points, in this figure. The signature
event reveals itself as a cluster of points that stands out from
the background.

D. Analysis of Human Data/Seizure Prediction Trial

We analyzed continuous 2-6 day EEG recordings from
ten out of 13 consecutive patients with mesial temporal lobe
epilepsy admitted to the Emory Epilepsy Monitoring Unit
between January 1997 and May 1999, who underwent routine
intracranial EEG monitoring during evaluation for resective
epilepsy surgery. Three patients were excluded from this study
for the following reasons. For two patients the whole EEG
recordings were of poor quality and contained many artifacts
because of detached reference electrodes. For one patient the
EEG recordings contained only four seizures, which did not
meet our selection criterion of minimal five seizures. After
two years of follow-up, all of the patients whose data were
analyzed were either seizure free or had rare seizures but a very
significant improvement in their condition and quality of life.

Continuous intracranial EEG and video were collected
using a digital, 64-channel, 12-bit Nicolet BMS-5000 epilepsy
monitoring system and were stored on videotape. Referentially
recorded EEG was downloaded from tape and archived to
CD-ROM for processing. EEGs were digitized at 200 Hz and
recorded after filtering through a bandpass of 0.1-100 Hz. All
seizures occurred spontaneously, and were not provoked by any

means other than gradually tapering each patient’s antiepileptic
medication, as per monitoring unit protocol, to encourage the
occurrence of spontaneous seizures. Digitized EEG data were
preprocessed only by using bipolar “montaging,” an EEG tech-
nique in which signals from adjacent electrode contacts, each
recording the potential difference between that contact and a
common reference electrode, are subtracted to remove common
mode signals and artifacts. dc changes can not be measured
with bipolar montaging but in our case the dc information was
not used for detection.

Patients whose data were evaluated in this study had the fol-
lowing clinical characteristics:

• Four patients had unilateral mesial (middle) temporal
seizure onsets (A, B, D, G).

• One patient had unilateral seizure onsets from the lateral
temporal neocortex (I).

• Two patients had independent bitemporal seizure onsets,
with a brief diffuse decremental pattern as the earliest re-
producible EEG change prior to seizure onset (C, E).

• Two patients had inferior frontal seizure onsets, one of
which demonstrated simultaneous early involvement of
the hippocampus on the same side (F, H).

• One patient had temporal epidural peg electrodes, which
did not extend into the subdural space (J).

The following definitions were used for evaluation:
True positive detections of signature events were defined as

those events which occurred within a 2-min window before un-
equivocal EEG onset of seizures [8]. FNs were defined as clin-
ical seizures without a JSPECT detection peak above threshold
in the 120-s window before EEG onset. FPs were defined as
all peaks that rose above threshold outside the 120-s preonset
window and in the absence of a clinical or subclinical seizure
(SCS). The JSPECT method was developed using EEG data
from patient A-E. Data from patients F-J were previously un-
seen by the JSPECT algorithm to avoid “training” of the method
itself.

The following procedure was followed for each patient.

1) By examining theJSPECT Visualizationof seizures in
all bipolar channels, the channel demonstrating signature
events was selected. With the computational efficiency of
the algorithm all channels could have been used for de-
tection, but to reduce false detections the algorithm was
restricted to one channel identified by an expert reader in
which electrodes were presumed to be closest to the re-
gion of seizure onset. This was defined as the channel in
which the earliest signs of seizure onset were detected, or,
if more than one channel met this criterion, the channel in
which earliest EEG changes associated with seizure onset
were maximal in amplitude. If no signature events prior to
the electrical seizure onset could be found, the procedure
was aborted. By signature events we mean characteristic
waveforms on the EEG that reliably occurred within min-
utes prior to seizure onset with stereotyped temporal and
spatial properties relative to seizure onset. Selection of
channels for processing was verified by expert interpre-
tation of depth-EEG studies by one of the authors (BL).
In all cases in which signature events were identified by
the JSPECT, the contacts in which these events were seen
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TABLE I
JSPECT VISUALIZATION RESULTS

PT: patient. Channel. The anatomical location of the channel
demonstrating the signature events is noted for each patient.
None: no stereotyped signature event could be identified.
LAH: left anterior hippocampus, RIT: right inferior/mesial
temporal, RIF: right inferior frontal. RAH: right amygdala
and anterior hippocampus (mesial temporal) and :
parameters were extracted by analyzing 2-3 seizures from
each patient. Special: special properties of the patients. SCS:
has subclinical seizures

(Table I) were found to be in the site of earliest EEG
changes associated with seizures, as defined by Littet al.
[8].

2) By analyzing 2-3 randomly selected seizures, the param-
eters and were estimated to and

, respectively. Where and denote
the lower and the upper frequency boundary of the signa-
ture events in the 2-3 selected seizures. All other seizures
(at least half of the seizures for each subject) were set
aside to validate the method.

3) JSPECT signature detectionwas applied to the entire
set of continuous data in the previously chosen bipolar
channel for the test patient. The parameters were set to

, , , and to the previously
estimated values for and .

4) To evaluate signature event detection performance, a de-
tection threshold was chosen to allow a maximum of one
FN detection. All detections without a following clin-
ical seizure were inspected by a board-certified reader
(BL). These cases were split into detections with a fol-
lowing SCS and FP detections. The FP rate, or number of
FPs/hour (FPH) was calculated. A complete ROC curve
analysis was not performed, due to the small number of
available seizures for each patient.

5) The time from detection of each signature event to EEG
seizure onset was calculated by comparing event detec-
tion times with time of unequivocal electrical seizure
onset (UEO) as marked by an expert EEG reader (BL).

The JSPECT signature detectionmethod was implemented
in C++. The custom written softwareVirtualEEGwas used for
computation and for reading the raw EEG data from CDs. The
FFTW C-library [26] was used to compute the FFT.

IV. RESULTS

The evaluation procedure was applied on continuous EEG
recordings from ten patients. Table I shows the EEG channels
selected for analysis and the frequency bands delimiting signa-
ture events for each patient, as determined by JSPECT Visual-
ization. Stereotyped signature events were found in five out of
the ten study patients (see Table II).

TABLE II
JSPECT SIGNATURE DETECTION RESULTS

PT: patient number. L: duration of all the analyzed
data. S: number of seizures. FN: number of false
negatives. SCS: number of detections with a fol-
lowing subclinical seizure. FP: number of false
positives. FPH: number of false positives/hour

Signature events reliably occurred in the 2 min prior to seizure
onset on EEG. We demonstrate the statistical significance ex-
emplary for patient F, who had the longest data record. We used
a 2-min time window as a measure of association with events,
similar to the way the “prediction horizon” is defined by Litt
et al. [8]. Nine “false” detections occurred in absence of any
seizure. For patient F, 160 h of data were recorded, which ap-
proximately corresponds to 160 h/2 min4800 segments. Ten
detections occurred in the 11 2-min segments just before the
UEO. The mean event detection rate with confidence intervals
is for nonpre-
seizure segments and
for 2 min before UEO preseizure segments. The confidence
intervals do not overlap, therefore, the presence of signature
events before seizures is significantly higher than elsewhere for
patient F. Using the same procedure, we also found the signa-
ture event detection rate to be significantly higher in
the 2 min prior to UEO of seizures in patients A, B, D, F, and G.
While JSPECT was trained on signature patterns from patients
A-E, no information associating these patterns temporally with
seizure onset was used in training, and this finding is not likely
to be an artifact of study design.

The times between detection of signature events and EEG
onsets are shown in Fig. 10.

V. DISCUSSION

This study suggests that nonparametric detection theory is
a powerful tool for detecting signature events in the rough
signal environment which surrounds the intracranial EEG.
Historically, linear features have dominated the detection
literature because of the broad acceptance of the Gaussian
distribution [13]. JSPECT is a relatively simple feature from
the nonparametric detector family that we have demonstrated to
have utility in processing these biosignals. In future work, new
features based on more sophisticated nonparametric detectors
such as Wilcoxon Detector, Spearman Rho Detector or Kendal
Tau Detector [13] should be tested on EEG data.

The temporal derivative stage in the algorithm raises the ques-
tion about the physical EEG measurement setup from an elec-
trical engineering point of view. Electrodes measure the voltage
between two regions in the brain. Neuronal activity (predom-
inantly post-synaptic potentials in this case) produces electric
currents that flow between brain regions. If the two measuring
regions are modeled as partially insulated regions (equivalent
to a capacitor) with random current sources between them, the
electrodes would measure the temporal integral of the neuronal
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Fig. 10. Signature events: Time between detection of signature events and eeg
onset for all patients. The range and mean detection times with respect to UEO
of seizures is plotted for each patient. The UEO is marked ast = 0.

activity [25]. In this model, the temporal derivative of the mea-
sured EEG voltage may better represent the actual activity in the
brain.

The signal analysis methodology and its application on
clinical data presented in this paper are important for several
reasons: First, they demonstrate a computationally efficient
method for extracting, detecting and displaying patient-spe-
cific EEG events embedded in large volumes of EEG data;
Second, they demonstrate that these events typically occur up
to minutes prior to clinical seizures, in patients with unilateral
mesial temporal lobe epilepsy. Finally, this paper suggests that
unilateral temporal seizures of focal onset may be generated
by different mechanisms than seizures of bilateral independent
temporal and extra-temporal onset, as the seizure precursors
detected by our method were only found prior to unilateral
mesial temporal onset seizures and not on bilateral independent
or extra-temporal onset seizures. Another, perhaps more plau-
sible explanation for this finding is the possibility that EEG
electrodes were not placed very close to the epileptic focus in
the patients with bitemporal and extratemporal seizure onsets,
perhaps evidenced by the more diffuse pattern of seizure onset
on the intracranial EEG in several of these patients.

JSPECT was computationally efficient, processing data on a
Pentium-II 266-MHz machine 300 times faster than real time.
Though this is encouraging performance, the method will still
require considerable optimization before being ready for im-
plementation in low-power, 100 kHz implantable computing
environments. Some challenges associated with applying this
method in the clinical arena include automating the process of
selecting a “focus channel” to be analyzed. In this paper, this
choice was ultimately verified by an expert EEG reader (BL).
In some patients, either with seizure patterns arising outside of
the mesial temporal lobe, or where recording electrodes may
be placed outside of the focus region, such patterns may not
be recordable. Preliminary experiments showed that the per-
formance of JSPECT was insensitive to the choice of the fre-
quency band. A generic detector using a common frequency
band (e.g., 16-100 Hz) would slightly increase the false-alarm
rate, but might still perform well enough for a clinical imple-

mentation, depending upon the nature of alarm or therapeutic
intervention to which it might be coupled.

Some signature events appeared to be more diffusely dis-
tributed than others, and their evolution over time appeared to
vary. Events in higher frequency bands were better detected
than those in lower frequency bands. This may be because of
the fixed FFT window length, which could be avoided using
alternative transforms (wavelet), or because lower frequency
activity (0-15 Hz) is of higher power and fluctuates more in
normal background EEG, particularly in relation to subject
state of awareness (e.g., awake, asleep, etc.). This poorer
performance at lower frequencies may potentially inhibit the
use of JSPECT in patients with neocortical epileptic foci,
which may initiate seizures at these lower frequencies [9], [18].
JSPECT was not applied successfully to patients with more
diffuse or multifocal seizure onsets. A more careful evaluation
of the method, and of the underlying neurophysiology in this
patient group is warranted.

Of interest, several patients demonstrated 80-100 Hz activity
in the seconds just before seizure onset, as revealed by JSPECT.
Such activity has been described previously in intracranial
recordings in patients with temporal lobe epilepsy [19]. This
activity could not be explored in detail, given the limitations
on recording bandwidth (Nyquist frequency of 100 Hz) of the
routine clinical system used to obtain these recordings.

One of the most interesting questions raised by this paper is
what generates the cellular activity responsible for the observed
“signature events” picked up by our method; and what is their
significance to the process of generating individual seizures?
We hypothesized that individual seizures are generated in a cas-
cade of electrophysiological events that may begin up to hours
prior to seizure onset [8]. In one of these steps, in the minutes
to seconds prior to seizure onset, rhythmic “chirp-like-events”
have been observed. The method described in this paper pro-
vides an automated means for detecting these events. As part of
this process, SCSs, and perhaps these more localized signature
events, may play an important role in promoting localized syn-
chronization which, under the right circumstances, may propa-
gate into a clinical seizure. The signature events could identify
the region whose synchronization might be critical to generating
seizure onset, or identify the “point of no return,” beyond which
it is impossible to prevent seizure onset. These hypotheses are
testable, and must be verified in appropriate clinical and animal
research studies, which are far beyond the scope of this paper.

Of interest, the frequency modulation over time of the sig-
nature events detected by JSPECT, which often appeared in the
form of “chirps,” bears strong resemblance to patterns defining
electrographic seizures, as defined by Reisingeret al.and Shiff
et al. [20], [21]. With this in mind, it is possible that the sig-
nature events detected by JSPECT may be very small, local-
ized seizures, which may play a role in synchronizing larger
networks until enough tissue is recruited to propagate an event
widely enough to cause clinical symptoms.

Of the ten patients tested, five demonstrated signature events
that were associated strongly with electrical seizure onsets.
The other five patients either had seizure onsets that were more
diffuse or of different enough morphology that JSPECT was
not able to detect them. Alternatively, it is possible that depth
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electrodes were not positioned near the seizure-onset zone in
these individuals. This would not be unusual, as our experience
indicates that electrodes placed outside of the seizure focus
region at a distance of more than 1-2 cm, in many cases,
may be sufficiently far away to miss the earliest EEG changes
associated with seizures [8], [22], [18], [23], [25]. It is also
possible that activity in the frequency range on which we
focused our efforts was not important to seizure generation in
these patients. Event though JSPECT did not detect signature
events in those five patients it could be valuable for early
detection of unequivocal EEG onsets, which goes beyond the
focus of this paper.

VI. CONCLUSION

Signature preseizure events, as detected by JSPECT, appear
to have significant statistical association with electrical onset
of seizures in individuals with unilateral onset mesial temporal
lobe epilepsy. While the method detects EEG events that occur
primarily between 5 and 80 s prior to electrographic seizure
onset, it is more likely that these events are involved in the
early stages of initiating seizures, before they begin to propa-
gate, rather than as remote seizure precursors. Their presence
prior to SCSs adds more credibility to their potential impor-
tance, though this must be taken into account when assessing
their utility for triggering intervention to abort clinical events.
This utility will likely depend upon side effects of the target in-
tervention, and whether it will disrupt normal brain function.
Higher FP rates are likely to be better tolerated if the interven-
tion they trigger is relatively benign.

JSPECT produced FP alarm rates which are comparable
to commonly used methods of seizure detection (e.g., [1]),
though this limited study is not sufficient to compare JSPECT
to other, more widely tested methods. At present, few studies
of algorithms developed for identifying events associated with
the “preictal cascade” have been published which analyze
comparable volumes of clinical EEG data [8], [24], though
the number of patients analyzed in this study was small. Further,
more extensive studies will be required to assess the performance
of the JSPECT in the broad range of patients with medically
resistant epilepsy. This technique provides a rapid method for
detecting physiological events that appear to be important in
the last states of seizure generation. It is possible, with more
validation of this method, that this technique could become
part of a more comprehensive system for predicting epileptic
seizures and triggering intervention to abort them prior to their
clinical expression.
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