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Future neuroprosthetic devices, in particular upper limb, will require decoding and
executing not only the user’s intended movement type, but also when the user intends

to execute the movement. This work investigates the potential use of brain signals

recorded non-invasively for detecting the time before a self-paced reaching movement is
initiated which could contribute to the design of practical upper limb neuroprosthetics.

In particular, we show the detection of self-paced reaching movement intention in
single trials using the readiness potential, an electroencephalography (EEG) slow cortical

potential (SCP) computed in a narrow frequency range (0.1–1 Hz). Our experiments with

12 human volunteers, two of them stroke subjects, yield high detection rates prior to the
movement onset and low detection rates during the non-movement intention period. With

the proposed approach, movement intention was detected around 500 ms before actual

onset, which clearly matches previous literature on readiness potentials. Interestingly, the
result obtained with one of the stroke subjects is coherent with those achieved in healthy

subjects, with single-trial performance of up to 92% for the paretic arm. These results
suggest that, apart from contributing to our understanding of voluntary motor control for

designing more advanced neuroprostheses, our work could also have a direct impact on

advancing robot-assisted neurorehabilitation.
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1. INTRODUCTION

Human movements are usually volitional, where we sponta-

neously decide when to initiate it and commit to a particular

course of action to accomplish a daily task (Haggard, 2008).

This is the reason why uncovering the neural correlates of vol-

untary movement is important for implementing practical Brain

Computer Interface (BCI) technology that people can use over

long periods of time in a natural way. Current non-invasive BCI

allows its user to deliver mental commands to a robot controller

that transforms them into appropriate motor actions—e.g., left,

right, and forward decoded from electroencephalography (EEG)

signals while the user imagines different limb movements (Galán

et al., 2008; Millán et al., 2009). However, most brain-actuated

robots assume that the user wants to operate the neuroprosthesis

in well-defined periods of time, in contrast to daily experiences of

motor control, where movements are executed sporadically in a

self-paced manner.

In this paper, we investigate the feasibility of detecting the

intention to perform a reaching movement in single trials before

actual execution from human EEG. Intention has been described

as doing something purposefully (Schall, 2004). In this paper, we

defined intention as the time of awareness of wanting to perform a

reaching task. This definition is not to be confused with the work

of Congedo et al. (2006), Gonzalez et al. (2006), and Bai et al.

(2007) where movement intention was defined as the problem

of classifying the intention to move the left hand or right hand.

To study movement intention, we follow a self-paced paradigm

where subjects can execute a reaching movement at any time they

wish. This is a more natural and ecological experimental setup

than the classical reaction task paradigm, where subjects perform

movements in response to a cue.

A number of recent studies have found neural correlates of

when subjects decide to initiate a movement. Through invasive

methods, Fried et al. (2011) have reported progressive neu-

ronal recruitment in the supplementary motor area (SMA) over

1500 ms before subjects made the decision to move. In another

study with human electrocorticography (ECoG), Ball et al. (2009)

reported the existence peri-movement activity as early as 200 ms

before movement onset. With regard to non-invasive EEG stud-

ies, the earliest evidence of the neural correlates of voluntary

movement intention was discovered by Kornhuber and Deecke

(1965), who identified a slow, negative potential as early as 1.5 s

before the execution of movement. This slow cortical potential

(SCP) was initially named as Bereitschaftspotential. This readi-

ness potential has two main components. The first one is a slow

negative potential starting 1.5 s before voluntary movement. This

negativity is more prominent over the central-medial scalp. The

late component occurs 400 ms before movement, with a steeper

slope over the contralateral primary motor area (Shibasaki and

Hallett, 2006). The slow potentials originate in depolarizations of

the apical dendritic tree in the upper cortical layers that are caused

by synchronous firing, mainly from thalamocortical afferents,
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showing local excitatory mobilization for negative slow potentials

(Birbaumer, 1999). The presence of this readiness potential was

further analyzed in a series of famous studies by Libet et al. (1982,

1983) who showed that there is an unconscious preparatory brain

activity that begins 1 s or more before movement, preceding

the conscious awareness to act. Similar negativity components

have been observed in patients with brain lesions (Deecke et al.,

1987).

Nevertheless, being a SCP close to DC, the presence of the

readiness potential in single trials seems to be elusive. Another

EEG correlate of movement preparation and execution is the

event-related desynchronization (ERD; Pfurtscheller and Lopes

da Silva, 1999), a decrease in mu and beta power (8–30 Hz)

over the contralateral primary motor cortex. Bai et al. (2011)

showed that self-paced wrist extension movement onset can be

detected on average 0.62 ± 0.25 s before actual movement from

the analysis of ERD. Finally, Awwad Shiekh Hasan and Gan (2010,

2011) studied the EEG activity in the mu, beta and lower gamma

bands (8–45 Hz) to detect movement onset also during self-

paced wrist extension movements. They achieved good results,

but with a poor temporal resolution (from 2 s before to 2 s after

the movement).

Here we show for the first time the detection of self-paced

reaching movement intention in single trials from the analysis

of the readiness potential in 12 human volunteers, two of them

stroke subjects. In this study, we used EEG signals filtered in a

narrow frequency range of [0.1–1] Hz, which is reported to bet-

ter capture anticipatory-related SCPs (Garipelli et al., 2011). We

explicitly focus on the readiness potential for two reasons. Firstly,

as mentioned above, it is a well-known correlate of voluntary

movement intention. Secondly, it is a promising non-invasive

method for localization of motor control after hemispheric

lesions (Green, 2003), which could be useful for understanding

motor functional improvements following rehabilitation.

In this respect, apart from contributing to our understanding

of voluntary motor control and to the design of more advanced

neuroprostheses, our work could also have a direct impact on

advancing robot-assisted neurorehabilitation (Riener et al., 2005;

Johnson, 2006). Indeed, robot-assisted therapy for stroke patients

with moderate-to-severe upper-limb deficits has shown promis-

ing results in terms of improving motor functional recovery

compared to traditional therapy (Kwakkel et al., 2008; Masiero

et al., 2009; Staubli et al., 2009; Lo et al., 2010; Hogan and

Krebs, 2011). Still this kind of neurorehabilitation therapy could

be improved, as earlier detection of movement intention can

minimize the delays in device activation and, thus, allow tighter

coupling between the initial formation of the motor plan in the

cortex and its execution at the periphery through movement-

assisted devices, thus better promoting brain plasticity after stroke

(Muralidharan et al., 2011). It is for this reason that, in one of the

experiments, we have involved stroke patients in order to carry

out a first feasibility study.

Single-trial classification of SCP has already been used in BCI,

most notably by Birbaumer et al. (1999). Recently, Bradberry et al.

(2010) showed the possibility of decoding arm trajectories from

SCPs. Garipelli et al. (2009) has also analyzed the SCP for studying

and classifying anticipatory behavior. Bai et al. (2007) explored

the use of SCP, computed with a low-pass filter at 10 Hz, for clas-

sifying a right vs. left hand movement. In this work, the focus

is on identifying the intention to execute a self-paced reaching

action before the movement starts, irrespective of the movement

direction or laterality. It is also worth noting that the readiness

potentials have a similar shape to SCP associated to anticipatory

behavior, in particular the contingent negative variation (Walter

et al., 1964). However, as discussed in Rektor (2003), while both

kinds of SCP are readily confounded in scalp recordings, more

invasive techniques (Ikeda et al., 1994; Lamarche et al., 1995)

or clever experimental designs (Ruchkin et al., 1986; Brunia and

Damen, 1988) demonstrate differences.

The experiments and the proposed methods are detailed in

section 2. In section 3, we report the experimental results where,

in particular, we compare the effect of using manually and auto-

matically selected channels. We also report on the classification of

movement onset using electromyograph (EMG) signals as well as

on the classification of non-movement intention period. Finally,

we discuss the implications of our results in section 4.

2. MATERIALS AND METHODS

2.1. EXPERIMENTAL PROTOCOLS

We have designed two experiments: (1) EEG recordings of free

arm reaching movements to a target button from healthy subjects

using only their dominant arms, and (2) EEG measurements of a

high-precision arm reaching task from stroke patients and healthy

subjects as a control group. The reason why, after the promising

results achieved in the first experiment, we have run a second

experiment with a small stroke cohort is to make a preliminary

study on the feasibility to detect movement intention in single tri-

als as a potential tool for rehabilitation. This experiment was done

in a clinical setting. In this later experiment, subjects performed

the task with both arms in order to analyze possible differences in

performance between the paretic and healthy arms of patients.

2.1.1. Experiment 1

Eight subjects (three female, age 29.33 ± 2.06) participated in the

experiment. They were informed about the experimental pro-

cedures and gave their consent. All subjects were healthy with

no known history of neurological abnormalities or musculo-

skeletical disorders. Seven out of the eight subjects in this experi-

ment were right-handed.

The experimental workspace consisted of four targets (up,

down, left, and right), which correspond to buttons on the hori-

zontal plane located with respect to the mid-sagittal plane of the

subjects as shown in Figure 1 (left). Despite the center-out reach-

ing task, it is important to highlight that the decoding of reaching

directions is not within the scope of this paper as, here, we

are interested in studying the common initiation of movement,

irrespective of the movement type. The dimension of the hori-

zontal plane was 47.0 × 48.5 cm (length × width). The distance

from the home position to each target positions was approx-

imately 20 cm. The target and home position buttons were a

disc with a diameter of 27 mm. The design of the targets and

home position consisted of microswitch buttons with direct con-

nection to the input trigger of the ActiveTwo (EEG recording

device) USB2 receiver. The buttons act as the event marker for
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FIGURE 1 | Experimental setup for Experiment 1(left) and Experiment 2 (right).

the movement onset. This design provides a high temporal resolu-

tion in marking the movement onset events (releasing the buttons

from the center rest position). The recordings were conducted in

a normal office environment, with people working and speaking

around, to mimic as close as possible a realistic scenario.

Subjects were instructed to perform natural self-paced center-

out and center-in arm reaching tasks with their dominant arm.

They were asked to fixate their eyes on a cross in the middle

of the vertical plane as shown in Figure 1 (left), thus mini-

mizing eye movement-related artifacts in the recording. Each

trial began with the subject placing their dominant hand on

the center position. While at this position, subjects were asked

to relax their hand, forearm, elbow, and arm in order not to

induce any muscular tension which could possibly effect the out-

come of the analysis. After 500 ms, an auditory cue informed

the subject which target direction to reach. However, subjects

were not supposed to react immediately (i.e., reaction task) or

wait a fixed period of time (i.e., memory task) after the pre-

sentation of the cue. In contrast, they initiated the movement

whenever they wish, but not before 2 s after the presentation of the

auditory cue.

The role of the auditory cue was to ensure equal distribution

of targets to be reached. There were a total of 200 trials recorded

for each subject. Nevertheless, not all trials were kept for analysis.

We discarded trials where the subject moved earlier than 2 s. We

also removed trials if subjects reached to the wrong target. Finally,

we discarded trials contaminated with strong artifacts or noise.

After that, it remained an average of 188 trials across all sub-

jects, where the average preparation time (Tonset ) is 5.03 ± 1.77 s

as shown in Figure 2.

The design of this experiment allows voluntary initiation of

movement by the subjects, in contrast with most cue-based reac-

tion time task experimental protocols where there is a go cue that

instructs the subject when to start the movement. It has been

shown that the brain areas involved in a spontaneous task differ

from those of an instructed task (Thut et al., 2000). In partic-

ular, they found longer lasting activity in the SMA during the

spontaneous task and in the premotor area (PMA) during the

instructed condition. Lu et al. (2011) also reported different brain

areas responsible for cued and self-initiated movements.

The reaching task in this study is a form of unconstrained,

multi-degree of freedom movement. Therefore, besides EEG, we

also recorded EMG signals from the musculus biceps branchii

(selection of location through trial and error before experiment)

to monitor that there is no muscular activity during the prepa-

ration period. This signal was also used to determine the time

onset of muscular activation with respect to the movement onset

given by the experimental apparatus (i.e., microswitch at center

position).

Before the experiment starts, subjects were asked to perform

a calibration session where they have to move their eyes toward

the targets, and to perform a 1 min natural eye blinking (Schlögl

et al., 2007). This session was used to measure the effects of eye

movements on the EEG signals (see section 2.2.2).

FIGURE 2 | The timeline of the experimental protocol. Each trial starts when the subject places their hand on the center button. Next, the auditory cue

informs the subject which direction to reach. After a delayed period of more than 2 s, he releases his hands from the home position and reaches towards the

target. In order to complete the movement, the subject returns back to the home position before starting the next trial. Only center-out reaching periods are

considered. The average Tonset across all subjects in Experiment 1 is 5.03 ± 1.77 s.
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2.1.2. Experiment 2

Four subjects, recorded at the San Camillo Hospital, Venice, Italy,

participated in this experiment. There were two stroke patients

and two healthy control subjects. All procedures were approved by

the Ethics Committee of the San Camillo Hospital before exper-

imentations. All subjects were informed about the experimental

procedures and gave their consent.

Table 1 shows a summary of the subjects’ particulars. All sub-

jects were right-handed. Stroke subject dpm suffers from a left

cerebellar hemorrhagic stroke, also commonly known as intrac-

erebral bleed, where the ipsilateral body part is affected. Stroke

subject lg suffers from a left nucleo-capsular stroke caused by

lesion in a deeper brain structure, thus affecting the contralateral

limb. Table 1 also reports the Fugl-Meyer Motor Assessment score

for upper extremity (FMA-UE)—maximum score of 66—for

both stroke subjects. Both patients had preserved tactile and pro-

prioceptive sensibility of the arm with normal cognitive abilities

at the time of admission to the hospital.

The subject was seated in front of a computer screen holding

on to a haptic manipulandum (PHANTOM Premium 3.0/6DOF,

Sensable Technologies) with her arm resting on the table as shown

in Figure 1 (right). This experiment used a similar paradigm to

the previous experiment. In contrast to the previous experiment,

the reaching task was performed with both arms. The subjects

were instructed to move a manipulandum that controls the posi-

tion of a cursor (a green circle) on a computer screen. The rest

position is the condition when the green circle remains inside the

white box located in the middle of the screen. The task was to

bring the cursor to one of the center-out target box. When the

target was cued, the subject was asked to wait at least 2 s before

initiating the movement. If he failed to do so, the subject had to

move the cursor back to the rest position and wait for another

2 s before initiating the movement. The trial was discarded from

analysis and repeated until the subject successfully fulfilled the

requirement of 2 s delay period.

Subjects were asked to minimize their eye movements, in par-

ticular, before starting the arm movement. In this experiment,

there was also a calibration session to record the baseline eye

movement activity as in Experiment 1. The subject was asked to

blink for 5 s, then, he had to look back and forth between the

home position and the different targets as they appear on the

screen where each target appeared five times. The recordings from

the calibration session have been used for studying the effects of

eye movements on the EEG channels (see section 2.2.2).

For each subject, we performed 3 recordings of 80 trials (tar-

gets are randomly cued), thus resulting in a total of 240 trials for

each arm movement. After discarding early starts and artifacts, it

remains an average of 229 trials for the left hand and 230 trials

for the right hand across all subjects. For the stroke patients, the

unaffected arm was tested first. The whole experiment lasted from

3 to 4 h, including the electrodes placement time. Each recording

lasted from 6 to 15 min. Both stroke subjects were able to achieve

the reaching task without much difficulty, but with longer average

reaching time (as shown in Table 1) in comparison with the con-

trol subjects. Previous analysis with stroke subjects has reported

that goal-directed arm movements are slower and more variable

than healthy subjects’ (Levin, 1996; Cirstea and Levin, 2000).

2.2. METHODS

2.2.1. EEG and EMG recordings

We acquired EEG potentials with a portable ActiveTwo measure-

ment system from BioSemi (http://www.biosemi.com) using 64

electrodes arranged in the modified 10/20 International System.

This system was also used to record the electrooculograph (EOG)

signal. In Experiment 1, the Biosemi ActiveTwo measurement sys-

tem was also used to record the EMG signals from the arm. As

for the second experiment, the EMG signals were recorded with a

Biopac System (http://www.biopac.com).

The signals were recorded at a sampling rate of 2048 Hz and

downsampled to 256 Hz. To analyze EEG, we first applied the

Common Average Referencing (CAR) procedure (Offner, 1950;

Osselton, 1965), where, at each time step, the average poten-

tial over all the channels is subtracted from each channel. The

re-referencing procedure removes the global background activ-

ity, keeping activity from local sources beneath the electrodes.

The most intuitive implementation of a CAR is to use all the

recorded channels (Bertrand et al., 1985). However, the EEG

channels could be contaminated by noise, in particular by EOG

and muscular artifacts, that may propagate to all other unaf-

fected channels. In the next section we identify the EEG channels

that are affected by EOG artifacts, which are the most promi-

nent potential source of noise given the nature of the task and

the frequency band to be analyzed. These channels are then

removed from the analysis and, in particular, for computation

of the CAR.

2.2.2. Ocular artifacts

EOG signals were acquired from three electrodes positioned

above the nasion, and below the outer canthi of the eyes (Schlögl

et al., 2007). The bipolar EOG channels in the left-central and

central-right positions were able to capture both the horizontal

and the vertical EOG components.

Table 1 | Details of subjects who participated in the Experiment 2.

Subject Age Medical condition Paretic arm Time since stroke FMA-UE Left hand MT Right hand MT

cg 25 Healthy – – – 0.61 ± 0.19 0.58 ± 0.15

gc 26 Healthy – – – 0.70 ± 0.17 0.66 ± 0.16

dpm 50 Stroke left 55 days 56/66 3.53 ± 1.63 1.67 ± 0.73

lg 61 Stroke right 658 days 43/66 1.59 ± 0.35 2.34 ± 0.36

MT refers to the time needed to complete a reaching movement. Values in bold show the performance with the paretic arm.
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Besides manual removal of noisy trials, we used a regression

analysis method to assess the influence of EOG artifacts on each

EEG channel (Schlögl et al., 2007). Briefly, channels having a large

correlation with the EOG components are discarded from the

montage before performing the CAR.

Figure 3 illustrates the regression coefficients of the horizontal

and vertical EOG components with the EEG channels computed

in the calibration session for one of the subjects. The EEG signals

are re-referenced using CAR with all 64 channels recorded from

the experiment. This figure illustrates high contributions of eye

movement artifacts in the frontal and temporal electrodes.

We first remove the peripheral electrodes, filter the signals

with CAR using the remaining 41 electrodes, and recomputed

the coefficients. As shown in Figure 4 (top panel), the effects of

vertical EOG is still high on the frontal electrodes. We further

remove electrodes for which the coefficients were above 0.3. Thus,

re-referencing the signals with a total of 34 channels can mini-

mize the effects of eye movements on the scalp EEG as shown in

Figure 4 (bottom).

Similar results were obtained for all other subjects in both

experiments. Therefore, in this paper, we performed the analysis

with only 34 channels as shown in Figure 5.

2.2.3. Pre-processing

The EEG signals were processed with a narrow band zero-phase

non-causal IIR filter with cutoff frequencies of 0.1 and 1 Hz which

has been reported to better capture anticipatory-related SCPs

(Garipelli et al., 2011). The EOG signals were also preprocessed

with the same method as the EEG signals.

EMG signals were acquired bipolarly over the musculus

biceps brachii of the subject’s arm, and high-pass-filtered with a

Butterworth filter (8th order, cutoff of 50 Hz) to remove motion

artifacts. The signals were then rectified, low-pass-filtered (8th

order, cutoff of 20 Hz) and integrated over 25 ms to obtain

envelopes of EMG activity (Cheung et al., 2009). The purpose

of recording the EMG is to monitor that there is no muscu-

lar activity during the reaching preparation phase and to ensure

that the movement intention detected is not due to the muscu-

lar activity of the arm through classification of the EMG activity

(see section 3.3).

2.2.4. Channel selection

We compare the classification performance using manually and

automatically selected channels. In the first case, channels were

selected on the basis of the grand-average SCP. In the case of

FIGURE 3 | Regression coefficients of EOG components plotted on a topographical map, showing the effect of eye movement on scalp electrodes

using signal re-referenced with all 64-channels recorded from one of the subjects. The rightmost figure shows the sum of the contributions of both

vertical EOG and horizontal EOG.

FIGURE 4 | (Top) The weights of EOG artifacts by re-referencing the signals with 41-channels and (bottom) 34-channels. This figure shows the EOG

coefficients from the calibration session of one of the subjects participating in the experiments.
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FIGURE 5 | Grand averages of SCPs for all the right-handed subjects participating in Experiment 1. EEG signals are filtered between 0.1 and 1 Hz.

t = 0 corresponds to the movement onset.

automatic selection, the channels are ranked according to their

discriminant power (DP; see below).

For computing the grand averages of SCPs, each epoch was

baseline corrected with the average activity between [2 2.25] s

before the movement onset. Figure 5 shows the grand averages of

SCPs over all right-handed subjects participating in Experiment

1 for each of the 34 channels. The SCPs in stroke subjects

obtained from Experiment 2 exhibit a similar trend in the devel-

opment of the negativity prior to the movement onset, as shown

in Figure 6. However, the negativity peaked after 1 s of move-

ment onset, when for control subjects the peak was roughly at

movement onset (see also Figure 5). This is in agreement with

Jankelowitz and Colebatch (2005), who recorded a larger and

longer readiness potential when the stroke subjects moved the

affected limb. The channels chosen manually for classification

were C1, Cz, C2, CP1, CPz, CP2 as they exhibit prominent neg-

ative slopes in the grand average and are also consistent with

previous literature (Kornhuber and Deecke, 1965; Libet et al.,

1982).

Alternatively, we performed automatic channel selection using

the Canonical Variant Analysis (CVA) (also commonly known

as Multivariate Discriminant Analysis; Galán et al., 2007). This

technique estimates the DP of each channel by comparing the

movement preparation period to the non-movement related

period. Figure 7 shows the DP value of each channel in the form

of a topographic map for EEG signals in the frequency range

[0.1–1] Hz for all eight subjects in Experiment 1. It is observed

that the channels with high DP for movement preparation are

FIGURE 6 | Grand averages of SCPs, filtered between 0.1 and 1 Hz, for the paretic arm of stroke patient lg (right arm) from Experiment 2.

t = 0 corresponds to the movement onset.
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FIGURE 7 | Each topoplot shows the normalized discriminant power index of each channel for a single healthy subject in Experiment 1.

different for each subject, suggesting subject-specific brain pat-

terns in preparing reaching movement. With the exception of

subject a5 (where four out of six of the predefined channels

match the most discriminant channels selected by CVA), the

topoplots for the rest of the subjects showed high DP index in

the frontal and parietal regions. According to Andersen and Cui

(2009), the posterior parietal and frontal cortical areas are respon-

sible for planning and decision making of movement intent.

In this respect, it has also been reported that the frontal and

parietal cortex region of the human brain carried considerable

information to predict the outcome of a motor decision the

subject had not yet consciously made (Soon et al., 2008). For

subjects f1, b5, e7, and e8, CVA did not show any similarity

with the pre-defined channels. Finally, we can observe that the

topographic map for subject d6, the only left-handed subject in

this study, showed high DP on the contralateral channels (right

hemisphere).

As for Experiment 2, Figure 8 shows the DP value for each

channel using the amplitudes of EEG signals filtered between

[0.1–1] Hz for control subjects and stroke subjects (both left

and right hand data). The regions showing the highest DP for

healthy controls were similar to the observations in Experiment 1.

Comparison between the pre-defined channels and the six most

discriminant channels selected using the CVA method showed

that four out of six channels were similar for stroke subject lg

with data from both hands and for control subject cg only for

the right hand. The topographic maps for stroke subject lg shows

very consistent DP between left and right hand, and most impor-

tantly, the focus area is similar to the pre-defined channels set. As

in Experiment 1, this central region is where the SCPs show high

negativity prior to movement onset.

In section 3, we will show the performance differences between

using pre-defined and CVA-selected channels.

2.2.5. Classification

To detect the movement intention, we categorized the signals

into two different time periods, namely the baseline period (idle

period) and the movement preparation (active period). During

the idle period, we assume that there is no on-going movement

preparation activity. This period was taken 500 ms before the

auditory target cue at each trial. The second part is the move-

ment preparation period, which we termed as the active period,

defined at [–750 –250] ms before the movement onset. Figure 9

depicts the selection of the EEG samples to train the movement

intention classifier. Training data for the classifier consists of

the baseline period (yellow box) as class idle and the movement

preparation period (green box) as class active. As a classifier, we

relied on Linear Discriminant Analysis (LDA), whose input was

a vector with the EEG amplitude of the selected channels in a

500 ms window to capture the negative slope occurring 400 ms

before start of movement. The EEG signals were subsampled

from 256 to 8 Hz (four data points per window) before classifi-

cation, resulting in a total of 24 features. To test the performance

of our classifier, we used 500 ms windows shifted every 10 ms

starting from 2500 ms before movement onset until 1000 ms

after movement onset. We report below the results of a fivefold

cross-validation. It is worth noting that the data used for fea-

ture selection is only based on the training data. Furthermore, we

employed a cross-validation method which maintain the chrono-

logical order of the data (Millán, 2004; Bourdaud et al., 2008)

which yields a better, and less optimistic, estimation of accuracy

in comparison with the traditional method.
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FIGURE 8 | The topographic maps show the normalized discriminant power index of each channel for the left and right hand for the control subjects

(cg and gc) and the stroke subjects (dpm and lg). Plots highlighted with a blue frame refers to the paretic arm of the patients.

FIGURE 9 | Selected EEG samples to build the training set of the movement intention classifier.

3. RESULTS

3.1. EXPERIMENT 1

Figure 10 shows the results of movement intention detection

where each plot represents the performance of a single sub-

ject in Experiment 1. Each plot reports the average sensitivity

rate, or True Positive Rate (TPR), across the five test folds in

the time window [−2, 1] s with respect to the actual movement

onset. This can also be interpreted as the percentage of trials

being detected as movement intention at time t. This time in

the plot (X-axis) corresponds to the last sample of the analysis

window analyzed by the classifier. The shaded region bound-

ing the average TPR illustrates the standard deviation at each

point. The magenta line refers to the onset of biceps branchii

muscular activation. This is defined as the time when the EMG

activity exceeds a threshold equal to µ + 3σ, where µ and σ

are the mean and standard deviation of EMG signals of a one-

second window after the target cue (Abbink et al., 1998). On

average, all subjects exhibit an early arm muscular activity at

263 ± 40 ms. Similar EMG timing has been observed by Flanders

(1991) and Hong et al. (1994) who studied the temporal patterns

of muscles activation for unconstrained arm reaching movement

in three dimensional space. The chance level line (in red) was

calculated by shuffling the labels of the training data and per-

forming 10 times fivefold cross validation. To test whether the

sensitivity rate is significantly above the chance level with 95%

confidence interval, we used the Wilcoxon rank sum test. The

line in green depicts the first time a group of five consecutive

samples has a true positive rate significantly above chance level

(p < 0.05).

Movement intention can be detected above chance level across

healthy subjects on average at 460 ± 85 ms before actual onset.

The detection of movement intention is before arm muscular

activation with the exception of subject b5. As reported in Table 2,

the average maximum TPR was 0.76 ± 0.07, peaking on average

167 ms before movement onset. As we will see in section 3.3,

although this peak performance is achieved slightly after EMG

onset, using only EMG is a less reliable predictor for movement

intention.

As described in section 2.2.4, we performed another anal-

ysis using the six best selected channels yielded by the CVA

method. Figure 11 shows an earlier detection of movement inten-

tion with the features selected automatically, except for subject

a5, b5, and e7. Unsurprisingly, for subject a5 time differences

are only 50 ms, since the CVA-selected channels highly overlap

with the pre-selected set. The left-handed subject, d6, with high

discriminability on the right lateral brain area, showed an ear-

lier detection time of 360 ms using channels selected with CVA

feature selection method. All subjects showed TPR above 70%,

except for subject e8 whose DP topographic map did not show a

strong discriminative area.
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FIGURE 10 | Single trial performances of movement intention

detection for all subjects in Experiment 1 using SCPs in the frequency

range [0.1–1] Hz during the time interval (−2, 1) s with respect to the

actual movement onset. Y-axis of the plots represents the movement

intention detection rate. The magenta line depicts the onset from arm

muscular activation (−263 ± 40 ms on average across all subjects).

The green line depicts the first time a group of five consecutive samples

has a TPR significantly above chance level (p < 0.05), which is shown

as a red line. The gray and red shaded regions bounding the performance

curves indicates their standard deviation at each point. Note that the variance

of the random performance is so small that the red shaded area is barely

visible.

Table 2 | Maximum TPR for each subject and the time point (in ms)

when this value is reached.

Subject ID TPR Time (ms)

a5 0.85 −110

a8 0.70 −240

b5 0.83 −150

c2 0.84 −100

d6 0.72 −120

e7 0.80 −140

e8 0.71 −190

f1 0.69 −290

Average ± std 0.76 ± 0.07 −167 ± 68

3.2. EXPERIMENT 2

Figure 12 shows the results of movement intention detection for

both the left and right hand reaching movement of all subjects

(the upper graphs correspond to the healthy control subjects,

followed by the two stroke patients). For all subjects, move-

ment intention can be detected more than 400 ms before the

recorded onset with their left hand and right hand. Movement

intention can also be detected before the onset of EMG activity

(magenta line, see previous section for details) for all subjects and

conditions, except the non-paretic arm (right) of stroke subject

dpm. The false positive rate prior to the detection of movement

intention was also low (between 0.1 and 0.2 for both hands) for

all subjects except stroke subject dpm. It is worthy to note that

stroke subject dpm was a recent stroke patient (see Table 1) and,

probably, the neural reorganization processes were still ongoing

at the time of the experiment, which took place only 1.5 month

after the stroke.

The result for stroke subject lg in Figure 12 (last row) exhibits

a different performance curve as compared with the results of

healthy controls. In particular, a high detection rate sustained

up to 1 s after onset of movement. This difference could be due

to the slower speed of reaching (c.f. Table 1) of stroke subject

lg is 2.34 ± 0.36 s using his paretic arm compared to a faster

speed of 0.5–0.6 s for healthy controls. The longer sustained high

performance could also be due to the fact that the readiness

potential of the affected limb in stroke subjects has higher ampli-

tude over a longer period of time (Jankelowitz and Colebatch,

2005).

As reported in Table 3, the average maximum TPR obtained

in this experiment was 0.81 for the left hand, peaking on average

140 ms before movement onset, while for the right hand the aver-

age maximum TPR is 0.79 at 162 ms before movement onset. It

is interesting to note that for the two conditions where the peak
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FIGURE 11 | Time of movement intention detection comparison between pre-selected channels set and best selected channel using CVA techniques.

FIGURE 12 | Single trial performances of movement intention detection for all subjects in Experiment 2 (both left and right arm reaching movement)

using SCPs in the frequency range [0.1–1] Hz during the time interval (−2, 1) s with respect to the actual movement onset. This figure has a similar

format to Figure 10. Plots highlighted with a blue frame refers to the paretic arm of the stroke subjects.
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Table 3 | Maximum TPR for each subject and hand, and the time

point (in ms) when the TPR reaches maximum value.

Subject ID Left hand Right hand

TPR Time (ms) TPR Time (ms)

cg 0.84 −200 0.79 −310

gc 0.90 −30 0.80 −140

dpm 0.66 −100 0.63 −140

lg 0.85 −230 0.92 −60

Average ± std 0.81 ± 0.11 −140 ± 92 0.79 ± 0.12 −162 ± 105

performance is closer to movement onset (left hand of healthy

subject gc and right hand of stroke subject dpm), performance

stabilizes soon after EMG onset (in between −300 and −200 ms

before movement onset) and slowly reaches its maximum value,

which is 0.9 or higher. Altogether, these results are in agree-

ment with those of Experiment 1 carried out with a larger set of

subjects.

We also compared the earliest time of onset detection using

either the pre-selected channels or the channels chosen with the

CVA data driven approach. Stroke subject dpm was excluded

from the comparison because of the random results, to avoid mis-

leading conclusion from the earlier detected intention. Figure 13

shows the earliest time when movement intention was detected

for the two control subjects and stroke subject lg. Differences

in time and performance between the two approaches are not

significant.

3.3. EFFECTS OF MUSCULAR ARTIFACTS

In this section, we are interested in studying how and when

movement intention can be detected from the arm muscular

activity. To model the movement class, we take the window ended

at 0 s (between −500 and 0 ms) because the grand averages of

EMG activity showed no movement on average 250 ms before the

movement onset.

Figure 14 shows the EMG classification results using the same

technique as in the case of EEG for the subjects in Experiment 1.

The results show that movement intention can be detected from

EMG activity at a time point close to the actual onset derived from

the button release. Interestingly, the EMG classifier detects move-

ment intention after the thresholding method (magenta line in

Figure 14) and significantly later than the EEG classifier. We can

thus conclude that detection of movement intention from EEG

signals is not due to muscular artifacts.

Similarly, in Experiment 2 (Figure 15) movement intention

can be detected significantly above chance level only after the

time obtained from the thresholding method (magenta line in

Figure 15) for the control subjects, which is in agreement with

the results from Experiment 1. The EMG signal classification for

both stroke patients, however, yielded random level classification,

showing that these signals cannot be used to detect reliably move-

ment intention or onset. Further analysis of other muscles, such

as triceps and deltoid, yielded similar results. The reason for this

is that, given the precision and spatial accuracy required in this

task, agonist and antagonist muscles are activated synergistically

to achieve a fine control of the forearm.

Altogether, these results show that detection of movement

intention from EEG signals occurs before the muscular activation,

showing high probability that preparation for movement happens

before the peripheral system reacts and this information could be

exploit for detecting the intent to move. This result is also in line

with the behavioral study of Libet et al. (1983), where participants

in the experiment reported the conscious intention to act 206 ms

before the onset of muscle activity.

3.4. ANALYSIS OF THE NON-MOVEMENT INTENTION PERIOD

Up to now, we have studied the performance of the EEG classifier

to detect movement intention during the preparation period. The

results show a quite high sensitivity rate of the EEG decoder. In

this section, we analyze the specificity of such an EEG classifier.

To do so, we examine the performance of the proposed method

during the non-movement intention period—i.e., the time where

FIGURE 13 | Comparison of detected movement intention when TPR is above chance level (p < 0.05) between using pre-selected channel set and

best selected channel from the data using CVA technique.
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FIGURE 14 | Single trial detection of movement intention from EMG activity for all subjects in Experiment 1. Y-axis of the plots represents movement

intention detection rate.

FIGURE 15 | Single trial detection of movement intention from EMG activity for all subjects and hands in Experiment 2. Plots highlighted with a blue

frame refers to the paretic arm of the patients. Y-axis of the plots represents movement intention detection rate.
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subjects should not engage in preparing the movement. Figure 16

shows the rate of trials detected as movement intention during

such a period lasting from –1000 ms before the auditory target cue

until 2000 ms afterwards for all subjects in Experiment 1. Since

windows for classification are 500 ms long, the first decision point

is at −500 ms before the target cue. Interestingly, the detection

of movement intention remains significantly below random level

over the whole period preceding the target cue. And, remarkably,

this is also the case during the first 2 s after the target cue (when

the subjects should not move) for five out of eight subjects. The

remaining three subjects (b5, d6, and f1) reached detection rates

significantly above random, but only for a short period of time

(less than 250 ms for all three subjects, starting at 750 ms after

the target cue for b5 and d6, and at 1000 ms for f1) before they

decreased rapidly below chance level again. This may reflect some

form of movement preparation after the subjects were informed

of the target that they suppressed afterwards.

Regarding Experiment 2, Figure 17 shows lower (false) detec-

tion rates, at approximately 10%, for both control subjects and

one of the stroke subject, lg. Detection rates started rising approx-

imately 1.5 s after the target cue, with the exception of stroke

subject dpm, who showed constant random level performance

throughout the entire period. A plausible explanation for this

increase is that, in this experiment, subjects had a large number of

trials where the movement onset was between 2 and 3 s after the

target cue, in particular stroke subject lg.

As a conclusion, our approach demonstrates to have a high

sensitivity and a reasonably good specificity (below random

detection level during the non-movement period) to allow robust

single trial detection of movement intention from human EEG.

4. DISCUSSION

Our experiments, involving healthy subjects and stroke subjects,

demonstrate successful single-trial detection of movement inten-

tion from EEG prior to the actual movement in a self-paced reach-

ing protocol. In particular, we show the detection of self-paced

reaching movement intention in single trials from the analysis of

the readiness potential, an EEG slow potentials that we compute

in a narrow frequency range between 0.1 and 1 Hz. In these exper-

iments, SCPs seem to carry most of the relevant information for

the detection of movement intention as performance is higher

than other frequency bands, as shown in Figure 18. In future

work we will explore whether coherence among different EEG

frequencies and channels, reflecting the rather complex brain net-

work involved in this task, could offer further insight into the

underlying mechanism of self-paced movement preparation and

improve the performance of the detection.

Our SCP approach yields high detection rates close to the

movement onset (sensitivity) and below random detection level

during the non-movement period (specificity). Also, movement

intention was detected around 500 ms before actual onset, in

agreement with previous studies on readiness potentials using

FIGURE 16 | Detection of movement intention during the non-movement intention period for all subjects in Experiment 1. Time 0 s refers to the

delivery of the auditory target cue. Y-axis of the plots represents movement intention detection rate.
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FIGURE 17 | Detection of movement intention during the non-movement intention period for all subjects and hands in Experiment 2. Time 0 s refers

to the delivery of the visual target cue. Plots highlighted with a blue frame refers to the paretic arm of the patients. Y-axis of the plots represents movement

intention detection rate.

grand average activity (Kornhuber and Deecke, 1965; Libet et al.,

1982). To further increase the performance of our method, in par-

ticular its specificity, we could improve our experimental protocol

in order to better model the non-movement intention period. It

would suffice to incorporate null trials (i.e., no movement trials).

We will also explore the use of an evidence accumulation frame-

work (Perdikis et al., 2011) that have proven beneficial in BCI as it

only issues commands with high probability of confidence levels.

Previous works on movement onset have focused on

hand/wrist flexion only (Awwad Shiekh Hasan and Gan, 2010,

2011; Bai et al., 2011), without reaching to a definite goal. Cortical

activity is different in both cases. Readiness potentials, and their

associated topography, have been found to be modulated by the

consequence of movement, complexity of the movement, level

of skill, sequence of hand movements; as well as the part of the

body performing the movement, force, speed, and precision of

a movement (Lang, 2003). In particular, Simonetta et al. (1991)

reported larger amplitudes of the readiness potential in sequen-

tial motor tasks than in simple movements. There is also a larger

late BP in self-paced movement of the proximal than the dis-

tal part of the upper extremities (Jankelowitz and Colebatch,

2002). Finally, different studies have reported that the atten-

tional level has an influence on the neural correlates of movement

onset. Libet et al. (1982) showed differences in the shape of

the readiness potential depending on subjects’ strategies, either

involvement of general preplanning to act in the near future

or direct movement when subjects were aware of the need to

move. The former showed earlier onset (about 1 s). Keller and

Heckhausen (1990) compared the readiness potentials between

consciously and unconsciously performed motor actions, and

found larger amplitudes in Cz, FCz, and Fz with consciously

performed movements.

A previous study with four stroke subjects (Muralidharan

et al., 2011) reported that attempted finger extension could be

detected in stroke subjects with accuracy rates varying across

subjects with a maximum true positive rate of 70% through

combinations of PSD in the range of [2–30] Hz. These results,

however, were obtained in a reaction task paradigm where sub-

jects performed the movement or relaxed in response to a

cue. In our study, the average maximum true positive rate was

0.81 ± 0.11 across both groups, controls and stroke subjects. The

performance for one of the stroke subjects, dpm, was slightly

above random, with maximum TPR of 0.66, while for another

stroke subject, lg, the maximum TPR was 0.92 for reaching trials

executed with his paretic hand. Although promising, the results

achieved with stroke patients can only be taken as a prelimi-

nary feasibility study because of the limited number of subjects

involved in the study. Nevertheless, it is worth noting that one of

the patients achieved similar performance to the healthy subjects

with the paretic arm.

In this work we have explored the use of EEG readiness poten-

tials to decode a key aspect of voluntary movement behavior,
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FIGURE 18 | Each pixel refers to the single trial performance of movement intention detection for all subjects in Experiment 1 using signals filtered in

various frequency ranges (Y-axis). The dotted line in magenta refers to the EMG activation for each subject.

namely self-paced onset. But it could also be related to another

critical aspects of voluntary behavior, in particular volitional

inhibition—stopping or changing a planned motor action that is

not any more appropriate to the current context. In fact, Chen

et al. (2010) have found that SMA is involved in both, movement

preparation and movement inhibition. It would be interesting to

detect the onset of an inhibitory process in a reaching version

of the countermanding paradigm proposed by Mirabella et al.

(2006, 2008, 2011). In particular, Mirabella et al. (2011) shows

the existence of neurons in the dorsal premotor cortex exhibiting

a pattern of activity compatible with the control of reaching arm

movement initiation and suppression, thus suggesting that motor

cortices are the final target of the inhibitory command elabo-

rated elsewhere. The identification of the inhibitory process onset,

in conjunction with detection of voluntary self-paced movement

onset, may lead to more efficient and natural neuroprosthet-

ics as well as more effective post-stroke motor rehabilitation

training.

Detection of voluntary movement intention prior to its actual

execution is a new capability that may advance the current state

of the art in BCI and neurorehabilitation. For motor recovery,

triggering the robotic-assistive device before EMG activation can

largely improve the outcome of therapy (Muralidharan et al.,

2011). In this case, decoding readiness potentials suits naturally

in the design of goal-directed protocols where patients need to

execute purposeful actions, which have been shown to produce

significantly smoother, faster, and more forceful movement than

repetitive routine movement (Trombly and Wu, 1999). In the case

of motor substitution, it will provide a natural signal to enable

usual brain control of wheelchairs and upper limb neuropros-

theses while blocking their operation until the subject wishes to

do so. The results reported here are certainly encouraging and

can be extended in a couple of ways for its practical applica-

tion in a neuroprosthesis. Future work will be devoted to test the

proposed method in an online implementation and perform the

analysis with more disabled users. In particular, subjects could

learn to control a robotic arm. It will be interesting to analyze

the learning effects and the stability of the signals during such

closed-loop real-time control applications. Regarding neuroreha-

bilitation, as discussed in the Introduction, it would be extremely

exciting to try our approach in combination with rehabilitation

robotics for motor recovery of spinal cord injury and stroke

patients.

ACKNOWLEDGMENTS

Authors warmly thank G. Garipelli for useful discussions and

insights on the analysis of slow cortical potentials, as well as

S. Degallier, L. Tonin, G. Cisotto, and C. Genna for their precious

help with recordings. This work is supported by the European

ICT Programme Project FP7-224631, Swiss NCCR “Robotics”,

S. Camillo Hospital Foundation, and Italian Ministry of Health.

This paper only reflects the authors’ views and funding agencies

are not liable for any use that may be made of the information

contained herein.

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 13 | 15

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Lew et al. Detection of self-paced movement intention

REFERENCES

Abbink, J. H., van der Bilt, A., and

van der Glas, H. W. (1998).

Detection of onset and termination

of muscle activity in surface elec-

tromyograms. J. Oral Rehabil. 25,

365–369.

Andersen, R. A., and Cui, H. (2009).

Intention, action planning, and

decision making in parietal-frontal

circuits. Neuron 63, 568–583.

Awwad Shiekh Hasan, B., and Gan, J.

Q. (2010). Unsupervised movement

onset detection from EEG recorded

during self-paced real hand move-

ment. Med. Biol. Eng. Comput. 48,

245–253.

Awwad Shiekh Hasan, B., and Gan, J.

Q. (2011). Temporal modeling of

EEG during self-paced hand move-

ment and its application in onset

detection. J. Neural Eng. 8, 1–8.

Bai, O., Lin, P., Vorbach, S., Li,

J., Furlani, S., and Hallett, M.

(2007). Exploration of computa-

tional methods for classification of

movement intention during human

voluntary movement from single

trial EEG. Clin. Neurophysiol. 118,

2637–2655.

Bai, O., Rathi, V., Lin, P., Huang, D.,

Battapady, H., Fei, D. Y., Schneider,

L., Houdayer, E., Chen, X., and

Hallett, M. (2011). Prediction of

human voluntary movement before

it occurs. Clin. Neurophysiol. 122,

364–372.

Ball, T., Schulze-Bonhage, A., Aertsen,

A., and Mehring, C. (2009).

Differential representation of arm

movement direction in relation

to cortical anatomy and function.

J. Neural Eng. 6, 016006.

Bertrand, O., Perrin, F., and Pernier,

J. (1985). A theoretical justifi-

cation of the average reference

in topographic evoked potential

studies. Electroencephalogr. Clin.

Neurophysiol. 62, 462–464.

Birbaumer, N. (1999). Slow corti-

cal potentials: plasticity, operant

control, and behavioral effects.

Neuroscientist 5, 74–78.

Birbaumer, N., Ghanayim, N.,

Hinterberger, T., Iversen, I.,

Kotchoubey, B., Kübler, A.,

Perelmouter, J., Taub, E., and

Flor, H. (1999). A spelling device

for the paralysed. Nature 398,

297–298.

Bourdaud, N., Chavarriaga, N., Galán,

F., and Millán, J. d. R. (2008).

Characterizing the EEG correlates

of exploratory behavior. IEEE

Trans. Neural Syst. Rehabil. Eng. 16,

549–556.

Bradberry, T. J., Gentili, R. J., and

Contreras-Vidal, J. L. (2010).

Reconstructing three-dimensional

hand movements from noninvasive

electroencephalographic signals.

J. Neurosci. 30, 3432–3437.

Brunia, C. H., and Damen, E. J. (1988).

Distribution of slow brain poten-

tials related to motor preparation

and stimulus anticipation in a time

estimation task. Electroencephalogr.

Clin. Neurophysiol. 69, 234–243.

Chen, X., Scangos, K. W.,

and Stuphorn, V. (2010).

Supplementary motor area exerts

proactive and reactive control of

arm movements. J. Neurosci. 30,

14657–14675.

Cheung, V. C. K., Piron, L., Agostini,

M., Silvoni, S., Turolla, A., and Bizzi,

E. (2009). Stability of muscle syner-

gies for voluntary actions after cor-

tical stroke in humans. Proc. Natl.

Acad. Sci. U.S.A. 106, 19563–19568.

Cirstea, M. C., and Levin, M. F.

(2000). Compensatory strategies

for reaching in stroke. Brain 123,

940–953.

Congedo, M., Lotte, F., and Lécuyer, A.

(2006). Classification of movement

intention by spatially filtered elec-

tromagnetic inverse solutions. Phys.

Med. Biol. 51, 1971–1989.

Deecke, L., Lang, W., Heller, H. J.,

Hufnagl, M., and Kornhuber, H.

H. (1987). Bereitschaftspotential in

patients with unilateral lesions of

the supplementary motor area. J.

Neurol. Neurosurg. Psychiatry 50,

1430–1434.

Flanders, M. (1991). Temporal patterns

of muscle activation for arm move-

ments in three-dimensional space.

J. Neurosci. 11, 2680–2693.

Fried, I., Mukamel, R., and Kreiman,

G. (2011). Internally generated

preactivation of single neurons

in human medial frontal cor-

tex predicts volition. Neuron 69,

548–562.

Galán, F., Ferrez, P. W., Oliva, F.,

Guárdia, J., and Millán, J. d. R.

(2007). “Feature extraction for

multi-class BCI using canoni-

cal variates analysis,” in IEEE

International Symposium on

Intelligent Signal Processing, (Alcala

de Henares, Spain).

Galán, F., Nuttin, M., Lew, E., Ferrez,

P. W., Vanacker, G., Philips, J., and

Millán, J. d. R. (2008). A brain-

actuated wheelchair: asynchronous

and non-invasive brain-computer

interfaces for continuous control

of robots. Clin. Neurophysiol. 119,

2159–2169.

Garipelli, G., Chavarriaga, R., and

Millán, J. d. R. (2009). “Anticipation

based brain-computer interfacing

(aBCI),” in Fourth International

IEEE EMBS Conference on Neural

Engineering, (Antalya, Turkey).

Garipelli, G., Chavarriaga, R., and

Millán, J. d. R. (2011). “Single

trial recognition of anticipatory

slow cortical potentials: the role

of spatio-spectral filtering,” in Fifth

International Conference on Neural

Engineering, (Cancun, Mexico).

Gonzalez, S. L., Grave de Peralta, R.,

Thut, G., Millán, J. d. R., Morier,

P., and Landis, T. (2006). Very high

frequency oscillations (VHFO) as a

predictor of movement intentions.

Neuroimage 32, 170–179.

Green, J. B. (2003). Brain reorganiza-

tion after stroke. Top. Stroke Rehabil.

10, 1–20.

Haggard, P. (2008). Human volition:

towards a neuroscience of will. Nat.

Rev. Neurosci. 9, 934–946.

Hogan, N., and Krebs, H. I. (2011).

Physically interactive robotic tech-

nology for neuromotor rehabilita-

tion. Prog. Brain Res. 192, 59–68.

Hong, D. A., Corcos, D. M., and

Gottlieb, G. L. (1994). Task depen-

dent patterns of muscle activa-

tion at the shoulder and elbow

for unconstrained arm movements.

J. Neurophysiol. 71, 1261–1265.

Ikeda, A., Shibasaki, H., Nagamine, T.,

Terada, K., Kaji, R., Fukuyama, H.,

and Kimura, J. (1994). Dissociation

between contingent negative vari-

ation and Bereitschaftspotential in

a patient with cerebellar efferent

lesion. Electroencephalogr. Clin.

Neurophysiol. 90, 359–364.

Jankelowitz, S. K., and Colebatch, J. G.

(2002). Movement-related poten-

tials associated with self-paced, cued

and imagined arm movements. Exp.

Brain Res. 147, 98–107.

Jankelowitz, S. K., and Colebatch, J.

G. (2005). Movement related poten-

tials in acutely induced weakness

and stroke. Exp. Brain Res. 161,

104–113.

Johnson, M. (2006). Recent trends

in robot-assisted therapy environ-

ments to improve real-life func-

tional performance after stroke.

J. Neuroeng. Rehabil. 3, 29.

Keller, I., and Heckhausen, H. (1990).

Readiness potentials preced-

ing spontaneous motor acts:

voluntary vs. involuntary con-

trol. Electroencephalogr. Clin.

Neurophysiol. 76, 351–361.

Kornhuber, H. H., and Deecke, L.

(1965). Changes in the brain

potential in voluntary movements

and passive movements in man:

readiness potentials and reafferent

potentials. Pflugers Arch. Gesamte

Physiol. Menschen Tiere 284,

1–17.

Kwakkel, G., Kollen, B. J., and Krebs,

H. I. (2008). Effects of robot-

assisted therapy on upper limb

recovery after stroke: a systematic

review. Neurorehabil. Neural Repair

22, 111–121.

Lamarche, M., Louvel, J., Buser,

P., and Rektor, I. (1995). Intra-

cerebral recordings of slow poten-

tials in a contingent neg-

ative variation paradigm: an

exploration in epileptic patients.

Electroencephalogr. Clin. Neuro-

physiol. 95, 268–276.

Lang, W. (2003). “Surface recordings

of the Bereitschaftspotential in nor-

mals,” in The Bereitschaftspotential:

Movement-Related Cortical

Potentials, eds M. Hallett and M.

Jahanshahi (New York, NY: Kluwer

Academic/Plenum Publisher),

17–34.

Levin, M. F. (1996). Interjoint coordi-

nation during pointing movements

is disrupted in spastic hemiparesis.

Brain 119, 281–293.

Libet, B., Gleason, C. A., Wright, E.

W., and Pearl, D. K. (1983). Time

of conscious intention to act in

relation to onset of cerebral activ-

ity (readiness-potential). Brain 106,

623–642.

Libet, B., Wright, E. W., and Gleason,

C. A. (1982). Readiness-potentials

preceding unrestricted sponta-

neous’ vs. pre-planned voluntary

acts. Electroencephalogr. Clin.

Neurophysiol. 54, 322–335.

Lo, A. C., Guarino, P. D., Richards,

L. G., Haselkorn, J. K., Wittenberg,

G. F., Federman, D. G., Ringer,

R. J., Wagner, T. H., Krebs, H. I.,

Volpe, V. T., Bever, C. T., Bravata,

D. M., Duncan, P. W., Corn, B.

H., Maffucci, A. D., Nadeau, S.

E., Conroy, S. S., Powell, J. M.,

Huang, G. D., and Peduzzi, P.

(2010). Robot-assisted therapy for

long-term upper-limb impairment

after stroke. N. Engl. J. Med. 362,

1772–1783.

Lu, M. K., Arai, N., Tsai, C. H., and

Ziemann, U. (2011). Movement

related cortical potentials of cued

versus self-initiated movements:

double dissociated modulation

by dorsal premotor cortex ver-

sus supplementary motor area

rTMS. Hum. Brain Mapp. 33,

824–839.

Masiero, S., Rosati, G., Valarini, S.,

and Rossi, A. (2009). Post-stroke

robotic training of the upper limb in

the early rehabilitation phase. Funct.

Neurol. 24, 203–206.

Millán, J. d. R. (2004). “On the need for

on-line learning in brain-computer

interfaces,” in International Joint

Conference on Neural Networks,

(Budapest, Hungary).

Millán, J. d. R., Galán, F.,

Vanhooydonck, D., Lew, E.,

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 13 | 16

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Lew et al. Detection of self-paced movement intention

Philips, J., and Nuttin, M. (2009).

“Asynchronous non-invasive

brain-actuated control of an intel-

ligent wheelchair,” in 31st Annual

International Conference of the IEEE

Engineering in Medicine and Biology

Society, (Minneapolis, USA).

Mirabella, G., Pani, P., and Ferraina,

S. (2008). Context influences on

the preparation and execution

of reaching movements. Cogn.

Neuropsychol. 25, 996–1010.

Mirabella, G., Pani, P., and Ferraina,

S. (2011). Neural correlates of cog-

nitive control of reaching move-

ments in the dorsal premotor cortex

of rhesus monkeys. J. Neurophysiol.

106, 1454–1466.

Mirabella, G., Pani, P., Paré, M., and

Ferraina, S. (2006). Inhibitory

control of reaching movements

in humans. Exp. Brain Res. 174,

240–255.

Muralidharan, A., Chae, J., and Taylor,

D. M. (2011). Extracting attempted

hand movements from EEGs in

people with complete hand paraly-

sis following stroke. Front. Neurosci.

5:39. doi: 10.3389/fnins.2011.

00039

Offner, F. F. (1950). The EEG as

potential mapping: the value of

the average monopolar refer-

ence. Electroencephalogr. Clin.

Neurophysiol. 2, 213–214.

Osselton, J. W. (1965). Acquisition

of EEG data by bipolar unipo-

lar and average reference

methods: a theoretical compar-

ison. Electroencephalogr. Clin.

Neurophysiol. 19, 527–528.

Perdikis, S., Bayati, H., Leeb, R., and

Millán, J. d. R. (2011). Evidence

accumulation in asynchronous

BCI. Int. J. Bioelectromagnetism 13,

131–132.

Pfurtscheller, G., and Lopes da

Silva, F. H. (1999). Event-related

EEG/MEG synchronization and

desynchronization: basic prin-

ciples. Electroencephalogr. Clin.

Neurophysiol. 110, 1842–1857.

Rektor, I. (2003). “Intracerebral record-

ings of the bereitschaftspoten-

tial and related potentials in

cortical and subcortical struc-

tures in human subjects,” in The

Bereitschaftspotentials – Movement

Related Cortical Potentials, eds M.

Jahanshani and M. Hallett (New

York, NY: Kluwer Academic/Plenum

Publishers), 61–77.

Riener, R., Nef, T., and Colombo,

G. (2005). Robot-aided neurore-

habilitation of the upper extrem-

ities. Med. Biol. Eng. Comput. 43,

2–10.

Ruchkin, D. S., Sutton, S., Mahaffey,

D., and Glaser, J. (1986). Terminal

CNV in the absence of motor

response. Electroencephalogr.

Clin. Neurophysiol. 63,

445–463.

Schall, J. D. (2004). On building a

bridge between brain and behavior.

Annu. Rev. Psychol. 55, 23–50.

Schlögl, A., Keinrath, C.,

Zimmermann, D., Scherer, R.,

Leeb, R., and Pfurtscheller, G.

(2007). A fully automated correc-

tion method of EOG artifacts in

EEG recordings. Clin. Neurophysiol.

118, 98–104.

Shibasaki, H., and Hallett, M. (2006).

What is the Bereitschaftspotential?

Clin. Neurophysiol. 117, 2341–2356.

Simonetta, M., Clanet, M., and Rascol,

O. (1991). Bereitschaftspotential

in a simple movement or in

a motor sequence starting

with the same simple move-

ment. Electroencephalogr. Clin.

Neurophysiol. 81, 129–134.

Soon, C. S., Brass, M., Heinze, H. J., and

Haynes, J. D. (2008). Unconscious

determinants of free decisions in

the human brain. Nat. Neurosci. 11,

543–545.

Staubli, P., Nef, T., Klamroth-

Marganska, V., and Riener, R.

(2009). Effects of intensive arm

training with the rehabilitation

robot ARMin II in chronic stroke

patients: four single-cases. J.

Neuroeng. Rehabil. 6, 46.

Thut, G., Hauert, C.-A., Viviani, P.,

Morand, S., Spinelli, L., Blanke, O.,

Landis, T., and Michel, C. (2000).

Internally driven vs. externally cued

movement selection: a study on the

timing of brain activity. Brain Res.

Cogn. Brain Res. 9, 261–269.

Trombly, C. A., and Wu, C. (1999).

Effect of rehabilitation tasks on

organization of movement after

stroke. Am. J. Occup. Ther. 53,

333–344.

Walter, W. G., Cooper, R., Aldridge, V.

J., McCallum, W. C., and Winter,

A. L. (1964). Contingent negative

variation: an electric sign of sensori-

motor association and expectancy

in the human brain. Nature 203,

380–384.

Conflict of Interest Statement: The

authors declare that the research

was conducted in the absence of any

commercial or financial relationships

that could be construed as a potential

conflict of interest.

Received: 05 March 2012; paper pend-

ing published: 23 April 2012; accepted:

20 June 2012; published online: 12 July

2012.

Citation: Lew E, Chavarriaga R, Silvoni

S and Millán JdR (2012) Detection of

self-paced reaching movement intention

from EEG signals. Front. Neuroeng. 5:13.

doi: 10.3389/fneng.2012.00013

Copyright © 2012 Lew, Chavarriaga,

Silvoni and Millán. This is an open-

access article distributed under the terms

of the Creative Commons Attribution

License, which permits use, distribution

and reproduction in other forums, pro-

vided the original authors and source

are credited and subject to any copy-

right notices concerning any third-party

graphics etc.

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 13 | 17

http://dx.doi.org/10.3389/fneng.2012.00013
http://dx.doi.org/10.3389/fneng.2012.00013
http://dx.doi.org/10.3389/fneng.2012.00013
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive

	Detection of self-paced reaching movement intention from EEG signals
	Introduction
	Materials and Methods
	Experimental Protocols
	Experiment 1
	Experiment 2

	Methods
	EEG and EMG recordings
	Ocular artifacts
	Pre-processing
	Channel selection
	Classification


	Results
	Experiment 1
	Experiment 2
	Effects of Muscular Artifacts
	Analysis of the Non-Movement Intention Period

	Discussion
	Acknowledgments
	References


