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Abstract— Skin lesion classification based on in vitro Raman
spectroscopy is approached using a non-linear neural network
classifier. The classification framework is probabilistic and highly
automated. The framework includes feature extraction for Ra-
man spectra and a fully adaptive and robust feed-forward neural
network classifier. Moreover, classification rules learned by the
neural network may be extracted and evaluated for reproducibil-
ity, making it possible to explain the class assignment. The
classification performance for the present data set, involving 222
cases and 5 lesion types, was 80.5%0+5.3% correct classification
of malignant melanoma, which is similar to that of trained
dermatologists based on visual inspection. The skin cancer basal
cell carcinoma has a classification rate of 95.8%42.7%, which
is excellent. The overall classification rate of skin lesions is
94.8%+3.0%. Spectral regions, which are important for network
classification, are demonstrated to reproduce. Small distinctive
bands in the spectrum, corresponding to specific lipids and
proteins, are shown to hold the discriminating information which
the network uses to diagnose skin lesions.

|. INTRODUCTION

KIN cancer is one of the most common cancers in humans

and its incidence is increasing dramaticaly [1]. New
incidences of the lethal skin cancer malignant melanoma in
Denmark has increased 5- to 6-fold from 1942 to 1982 and
the mortality rate has been doubled from 1955 to 1982 [2].
Currently, approximately 800 cases of malignant melanoma
are reported in Denmark every year (approx. 15 per 100,000).
In Germany 9000 — 10000 new cases are expected every year
(approx. 13 per 100,000) with an annual increase of 5 — 10%
[3]. Basal cell carcinoma (BCC) is the most common of skin
tumors and is mainly considered to be provoked by ultraviol et
radiation and does not metastasize. In contrast, malignant
melanoma (MM) can metastasize rapidly. This cancer is aso
considered to be provoked by ultraviolet radiation, most prob-
ably by repeated high doses resulting in heavily burned skin.
Diagnosing malignant skin tumors is difficult as many
common benign skin lesions resemble them visudly, eg.
pigmented nevi and seborrhoeic keratosis. The diagnosis of
BCC is approximately 65% for practicing dermatologists [4],
while trained dermatologists diagnose MM clinically 63% [5]

S. Sigurdsson was supported by the Danish Research Councils through the
project Signal and Image Processing for Telemedicine (SITE).

PA. Philipsen was supported by the IMK foundation.

S. Sigurdsson, L.K. Hansen and J. Larsen are with Informatics and
Mathematcal Modelling, Technical University of Denmark, Richard Petersens
Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark.

PA. Philipsen, M. Gniadecka and H.C. Wulf are with the Department
of Pathology, Bispebjerg Hospital, University of Copenhagen, DK-2400
Copenhagen, Denmark.

to 75% [6] correctly. Dermatologists with less than one year
experience diagnose only 31% of MM correctly [5].

Neural network diagnosis of skin tumors has previously
been applied by classifying extracted features from digitized
dermoscopy images of lesions [7], [8], [9]. The extracted
features are based on geometry, colors and texture of the
lesions, involving complex image processing techniques. With
Raman spectroscopy the molecular structure of skin lesions
can be exploited. Neural network analysis of Raman spectra
for automatic classification of skin cancer is considered a
promising tool for diagnosis of skin cancer, see e.g. [10],
[11]. The network provides an objective method for skin
lesion diagnosis, which could help both dermatologist and
non-dermatologist to diagnose an early stage of skin cancer.
However, difficulty in obtaining robustness and the lack of
physical interpretation of neural network parameters have been
considered a major drawback [12].

We suggest a framework for applying neural networks for
skin cancer diagnosis from Raman spectra. The framework
contains three main parts; a preprocessing stage for feature
extraction from Raman spectra, a robust optimization scheme
for training of feed-forward neural network classifiers, and
finally a visualization method for interpretation of neural
network results.

The main contributions of the paper are: The implementa-
tion of a highly automated artificial neural network framework,
statistical evaluation of neural network visualization and a
solution to an important medical application.

Il. RAMAN SPECTROSCOPY

Raman spectra are obtained by pointing a laser beam at
a sample. The laser beam excites molecules in the sample
and a scattering effect is observed. Inelastic scattering results
in a frequency shift in the reflected Raman spectra. These
frequency shifts are functions of the type of molecules in the
sample, thus the Raman spectra holds useful information on
the different chemical compounds.

Raman spectroscopy provides information about the molec-
ular structure in the sample. The near-infrared Fourier trans-
form (NIR-FT) Raman spectroscope has previously been in-
vestigated for medical diagnosis application in general [13],
[14], as well as for the investigation of the skin [15], [16].
Previous studies on skin cancer [10], [17] indicate that this
method has a potential for skin cancer diagnosis.

The Raman equipment used here for obtaining the spectra
of the skin lesions is a NIR-FT Bruker FRA 106 Raman
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Fig. 1. Examples of the NIR-FT Raman spectra of benign and malignant
skin lesions and tumors: basa cell carcinoma (BCC), malignant melanoma
(MM), pigmented nevi (NV) and seborrhoeic keratosis (SK).

spectroscope. The radiation source is a 1064 nm line Nd:YAG
laser. The Raman spectra were obtained from skin samples
in vitro at the skin surface of the punch biopsies or curetted
lesions. Each spectrum is the average over 250 scans in the
frequency range 200-3500 cm —! with about 2 cm~! frequency
resolution, resulting in 1711 frequency components.

The data set comprises 5 different types of skin lesions;
basal cell carcinoma (BCC), malignant melanoma (MM),
normal skin (NOR), pigmented nevi (NV) and seborrhoeic
keratosis (SK). BCC and MM are malignant, NV and SK are
benign lesions. NV is a benign pigmented skin tumor and SK,
also a benign skin lesion, is often seen in the older population
and visually resembles MM. Class labels are obtained by
histological analysis.

Fig. 1 shows representative examples of Raman spectrafrom
the four classes of skin lesions and tumors.

I11. PREPROCESSING OF DATA

The first step in the preprocessing is a visual screening for
defective spectra. Medical data are noisy and contaminated
by biological variability. One spectrum having very high am-
plitude and no visible distinctive narrow peaks was excluded
from the data

The Raman spectrum has a so-called background that
originates from the skin fluorescence [18]. This background
can clearly be seen in Fig. 1 as an amplitude elevation in
the region 200-2800 cm~!. The narrow pesks represent the
vibration of chemical bonds. The background introduces both
variance into the spectra and correlation between frequency
components which makes modeling difficult. Also, the number
of frequency components in the Raman spectrum is usually
large F ~ 10% — 10%; in the data set analyzed here F =
1711. The number of examples is N = 222, much less
than the dimensions of the spectra, making the data ill-posed.
Pattern recognition in such high dimensional input space with
relatively few examples is a challenge as it suffers from
the well-know curse of dimensionality. Hence, we want to
create a mapping from the original high dimensiona input
space to a subspace, maintaining as much class discriminating
information in the subspace as possible.
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Fig. 2. The figure shows the original Raman spectrum, the background fit
and the background suppressed spectrum of the (SK) lesion in Fig. 1.

We suggest the following two-step preprocessing scheme
of Raman spectra for skin lesion classification. Background is
suppressed from the spectra by fitting a regression network to
the background and subtracting it from the original spectrum.
The input space is then reduced using principal components
analysis (PCA). These steps are discussed in detail in the
following sections.

A. Suppressing the background

One of the factors controlling the amount of background in
skin lesions is the pigmentation in the skin [18]. Some MM
lesions are often more pigmented than normal skin and other
types of lesions, thus the amplitude of the background is higher
as seen in Fig. 1. Raman spectra from skin lesions with awide
range of pigmentation, e.g. MM lesions, have higher variance,
i.e. the frequency components are spread over alarger volume
in the high dimensiona input space, spanned by the Raman
spectra. This makes predictions in those sparse areas difficult
as training is based on few examples. By removing the
background the variance of the input data for those classes
is minimized, making the predictions more reliable. This will
be shown with experiments, by comparing the classification
results with and without background suppression, see section
VI A.

The background spectra is estimated in two parts. The
background below 2800 cm~! is estimated with a regression
network for each individual Raman spectrum. The spectrum
2800-3500 cm~! is simply estimated as a straight line between
the two end points. The Raman spectra split is based on
the experience of medical experts. The estimated background
spectra from these two parts are then subtracted from the
original spectrum to form Raman spectra with suppressed
background. The regression network models the background,
by assuming the “noise” to be both the Raman peaks and
small fluctuations in the spectrum. The peaks require a non-
symmetric error function, as opposed to the usual symmetric
quadratic error function used in regression. Here we assume
the noise to be Gumbel distributed with zero location. For
details on the neural regression network see [19].
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An example of background suppression for a single Raman
spectrum is shown in Fig. 2. The background noise has been
suppressed while the peaks show little sign of being distorted.

B. Principal Components Analysis

Assuming that the presence of multiple signal classes in
a skin lesion is the major source of variation, a natural
choice for dimension reduction is PCA. PCA identifies an
orthogonal basis on which projections are uncorrelated. Di-
mensional reduction is obtained by discarding transformed
input dimensions with the low variance.

PCA is achieved using singular value decomposition. The
background suppressed Raman spectrum data matrix D of size
F x N, where N is the number of data vectors and F' is the
dimension of the multivariate data vectors, are decomposed
into

D=USV', (1)

where U isan F' x N matrix, S isan N x N matrix and V is
an N x N matrix by using an economy size decomposition.
The matrix S is a diagona matrix with nonnegative elements
in descending order. These diagonal elements are the singular
values that correspond to standard deviations of the input data,
projected onto the given basis vector. The reduced input space
is obtained by using only some fixed I < N number of the
largest principal components. The reduced data matrix is given
by

X =U'D, )

where the transformation matrix from the original input space
to the reduced inputs space is given by U, a F' x I sub-matrix
of U. Note that the columns of D, given by d ") wheren isthe
column index, are the spectra after background suppression,
and the columns of X, given by x("), are the corresponding
feature vectors.

The number of retained principal components I is selected
by using a similar approach as in [20]. The likelihood is
formulated for the PCA, based on a multivariate Gaussian
distribution, and the Bayesian information criterion (BIC)
is used for model selection [21]. The BIC adds a term
to the likelihood which penalizes large models with many
parameters. The number of parameters in the PCA increases
with the number of principal components, thus models with
many principal components are penalized harder. Hence, the
BIC estimates an optimum number of principal components
based on a tradeoff between too simple and too complex PCA
models.

To ensure fully independent test data, the PCA is only
applied to the training data to form the U transformation
matrix from the high dimensional input space to the low
dimensional. This matrix is then used to transform the test
data to the lower dimensional subspace.

The PCA is very sensitive to outliers in the data, i.e. data
points far from the main mass cloud of the data. There are
a few sgpectra in the skin lesion data set that have very
high background amplitude, making them potential outliers.
Removing the background makes the PCA less sensitive and
the estimate of U generalizes better. This may be shown by

evaluating the difference for a single feature vector x (™) when
included in the evaluation of the PCA or not. The difference
may be computed using the leave-one-out squared two norm,
given by

e(m) = || (UT - T, ) a™?, 3

where INJ\T7 . is evaluated with all examples except spectrum
d™. This is done for all examples in a leave-one-out man-
ner, with and without background suppression. To evaluate
the influence of outliers, we compute the ratio of standard
deviations of the error, given by o./0¢ .95, Where o, is
the standard deviation using all examples, and o .95 IS the
standard deviation where 5% of the examples with the largest
error are removed. The results gave the ratio 5.5 and 27.2,
with and without background suppression, respectively. Thus,
by removing the background the 'tail to body’ ratio o /e 0.95
is reduced by a factor 5.

IV. PROBABILISTIC CLASSIFICATION FRAMEWORK

We aim at modeling the posterior probability functions for
multi-classification, given by P(Cx|x), k =1,2,...,¢, where
x is the input feature vector with dimension I, Cy is the
corresponding class label and ¢ = 5 is the number of classes.

Multi-layer perceptron networks posses powerful approxi-
mation capabilities and when used for classification they can
adapt to arbitrarily complex posterior probability functions.
Such extreme flexibility calls for careful control of overfit and
detection of outliers. Overfit control is amed at regularization,
typically using weight decay, i.e., controlling the roughness of
decision surfaces, so that they do not get too rough in the
face of noise in finite samples. Outlier detection, on the other
hand, is aimed at modeling and controlling random label noise
that can lead to wrong decision surface topologies by creating
isolated “islands’ of the wrong class.

Outliers are defined as an input pattern having the corre-
sponding target class label erroneoudy “flipped” to another
class. In skin lesion classification samples are labeled by
histological examination. If a sample for some reason is
erroneously registered, the label can have a random relation to
the input pattern. Hence, we defined a probability ¢ of being
assigned with random target label. The outlier probability
e = [0,1] is assumed to be independent of both “true” class
label and input pattern value.

The posterior probability distribution has been previously
formulated [22] as

c

P(Cilx) = Po(Cix)(1 =)+ — Y. B(Gx), @)
I=1,l#k

where Py (Ci|x) is the posterior probability with zero outlier
probability. Thefirst termin (4) isthe probability that the input
pattern x is not an outlier, while the second term is the outlier
contribution coming from classes other than C. By defining a
scaled outlier probability 5 = ¢/(c — 1), (4) can be rewritten
as

P(Cr|x) = Po(Cilx)(1 — Be) + 6, ®)

where 8 = [0,1/(c — 1)].



A. Network architecture

The network architecture that represents the posterior prob-
abilities is a two-layer feed-forward neural network with I
inputs given by

I
hj (X) = tanh (Z Wj; T + wj()) s (6)
=1
where w;; are the input to hidden weights, w ;o is the input
to hidden bias and % ;(x) is the output of the jth sigmoidal
activation function of the hidden layer. Network output % of

the output layer is given by

Z wishy

where wy,; are the hidden to output weights, wy,; is the input to
hidden bias and H is the number of units in the hidden layer.
To be able to interpret the outputs as estimates of the posterior
probabilities P(C;|x) we used the normalized exponential or
softmax [23]. The softmax is given by

+ WkO, (7)

exp(ye(x))
S, exp(n(x) ©

for output k. An estimate of the posterior probability incor-
porating the outlier probability is adapted from (5) giving

P(Cilx) = Po(Ck|x)(1 — B¢) + 3, where 3 is an estimate
of the scaled outlier probability, see section IV C.

Py(Crlx) =

B. Inferring the weights

The data set for the supervised training of the model is given
by the input-output pairs D = {x(™ t("} n=1,2,... N,
where t(™ is the one-of-c coded target value vector given by

m [ 1 ifx" e,
b = { 0 otherwise, ©

where £ = 1,2,...,c. To smplify notation we define the
network weight vector as w, holding all weights.

To infer the weights we invoke the approach proposed by
David MacKay [24], [25]. The posterior probability of the
weights w can be written as

p(Dlw, B)p(wla)
p(Dle,B)

where p(D|w, ) is the likelihood, p(w|«) is the prior and
p(Dla, B) is the evidence. The « and 3 are hyperparameters,
i.e, regularization parameter and scaled outlier probability
respectively, both assumed to be known when inferring the
weights.

For a classification problem with multiple classes the choice
of likelihood is
p(D|w, 3) = exp[—Ep(w, 3)], where

Z Zt(n In(P

n=1 k=1

p(w|D,a, ) = (10)

Ep(w P(Cklx™)) (11

is the cross-entropy error function [26].

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

The prior over weights is a zero mean Gaussian distribution,
better known as weight decay, given by

exp[—aEw (w)]

plwla) = SRS, (12
where Ey(w) is a regularization function given by
14,
=3 > w?, (13)
=1

where W is the number of weights in the network and the
normalization factor Zy («) is given by

Zw(a) = /exp[—aEW(w)]dw

= @2r/a)"?.

(14)
(15)

The optimization of the weights is done by minimizing a
cost function,
S(w) o< —Inp(w|D, o, 3), given by

S(w) = Ep(w, ) + aEw (w),

where weight independent terms have been omitted. The
optimization algorithm uses a state-of-the-art Quasi-Newton
scheme: A BFGS updating of the inverse Hessian, soft line
search with quadratic fit and the Wolfe conditions for ter-
mination. Trust region type monitoring is applied to ensure
appropriate relative changes in the weights at each iteration.
See [27] for detalls.

(16)

C. Adapting the hyperparameters
The posterior distribution for the hyperparameters is given

by

p(D]a, B)p(a, B)
p(D) '
By using the normalized likelihood approach with an un-
specified prior p(«, 3) = 1, we make the so-called evidence
approximation by using the evidence p(D|a, §) to evaluate
p(a, B|D). For details on this approximation see [28]. The
evidence can be written as

pla, B|D) = (17)

p(Dla,f) = / p(Dlw, B)p(wla)dw (18)
- Zwlm) / exp[~S(w)ldw,  (19)

where the weights are marginalized. An analytic solution to
the integral is intractable, so the evidence is evaluated using
the Laplace approximation

e~ Stwue) (2m)W/2| A (w)|~1/2
Zw () ’

where wy, maximizes the product p(D|w, 5)p(w|a) and
A(w) is the Gauss-Newton approximation to the Hessian
meatrix. The approximation is given by

)= 1 ZN: aeg”(w) ae(g)(w) N
N ow ow’

n=1

p(DPla, ) ~

(20)

02 Ev (w)
owow’T '’

A(w (21)
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where ¢!™(w) = S2¢_, /" In(P(Ci[x(™)), which is the
cross-entropy error for a smgle example. The approximation
ensures a symmetric matrix as a;v’fgvgi") =al, where I is a
W x W identity matrix. Note that o« > 0 in practice, so
A(w) is positive definite, thus solving numerical problems
when evaluating the determinant of A (w).

The scaled outlier probability 5 is estimated by minimizing
CB) « —Inp(Dla,s) (22)

1
= S(wmp) + 5A(W)], (23)

where terms independent of 5 have been omitted. We suggest
using Brent’s minimization method [29], approximating C(3)
as a quadratic to find 3. This is possible as C(/3) is a smooth
function and also as we have an upper and lower bound on 3
setting the range for the search of /3. As Brent's method does
not use gradient information we avoid evaluating 0.5(w)/9
which has a singularity at 5 = 0.

The a is computed as in [24], by maximizing ln p(D|«, §),
evaluating 01n p(D|a, §)/da which gives the following up-
date formula

new ’y

= o) “

where v = W — aTraceA~!(w) is the effective number of
weights in the network.

A practical approach to adapting the hyperparameterswould
be to train the weights and update the o and 8 when the
weights have converged. This is repeated in turn until the
hyperparameters have converged. The neural network classifier

is available as Matlab software [30].

V. MODEL VISUALIZATION BY SENSITIVITY MAPS

One of the disadvantages of using neural networksisthe fact
that they are non-parametric, i.e., black box methods. Finding
the active inputs which the network uses to classify individua
groups is interesting from a medical point of view. In our case
we are interested in knowing which frequency components
contribute most to the classification of the skin lesions, thus
being able to interpret them as specific chemical substances.

A simple measurement of how much the network relies on
each input is the sensitivity map, or sensitivity analysis, see
e.g. [31], [32], [33]. The perturbation of each input is found
by computing the gradient of each output with respect to all
inputs. This means evaluating the derivative of the estimated
posterior P(Cy|x) of each class with respect to the Raman
spectrum. One way of computing a sensitivity map for a given
network is the absolute value average sensitivities [32] given
for class Cy, by

8P Ck |X(”))
N Z ad(n)
where d(") is the nth column of D, the training set of Raman
spectra before PCA. The absolute operator operates on each
element in the vector. Note that both s* and d(™) are vectors
of length F', where the elements represent values for specific
frequency components of the Raman spectrum. Computing the
sensitivity with (25) is suggested when the values are disparate

; (25)

[32]. Teking the absolute value of each training example's
perturbation is necessary to avoid possible cancellation of
positive and negative values because of multiple decision
boundaries.

The derivative in (25), for a single training example and
class k, is given by

OP(Crlx) 4 Oyr(X) = Oy (X) ~
i =P | T *,;1 5q L) |,
- 26)

where y;(x) is given in (7). For the network architecture used
here the derivative in the previous equation is given by

Zwm (1= waun

where h;(x) is given in (6) and u; is the ith column vector
of the PCA transformation matrix U with length F, given in
2.

Some normalization should take place when comparing
sensitivity maps from networks trained on different training
data. Without normalization the sensitivity maps can be scaled,
i.e, maps can be very similar except that they can have
different amplitudes. This is due to the non-uniqueness of
the hidden-to-output weights. For instance, multiplying the
hidden-to-output weights with a constant does not change the
predicted posterior of the network. To solve this problem we
normalize the sensitivity maps for each class to unit vector
length given by

5?%

(27)

~k Sk 2
) )

A. Reproducibility of sensitivity maps

For the interpretation of sensitivity maps, reproducibility
is essential. A large sensitivity which varies for sample to
sampleis not asimportant as a smaller sensitivity that is highly
reproducible.

To measure the reproducibility of the sensitivity maps we
adapt an approach very similar to NPAIRS (nonparametric pre-
diction, activation, influence, and reproducibility resampling),
which is used to validate statistical parametric maps (SPMs) in
functional neuroimaging [34]. The method is based on a split-
half resampling technique, where two networks are trained
on each half of the data. The resulting scatter plot of the
sensitivity maps from each network and class can now be
directly compared without dealing with bias due to different
class sizes, while at the same time the split-half resampling
maximizes the power of each of the independent-class data.

To illustrate the method, Fig. 3 shows an example of two
sensitivity maps for the SK group generated from single split-
half resampling. By generating a scatter plot of the correspond-
ing frequency components of the sensitivity maps, shown in
Fig. 4, the correlation between them can be evaluated. A point
in the scatter plot corresponds to a frequency component in
the Raman spectra. The signal is the amplitude in the direction
where the two sensitivity maps are equal, while the amplitude
in the direction orthogona to the signal is the noise. Note
that the scatter plot is not symmetric around the signal axis,
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Fig. 3.  Sensitivity maps for the SK class generated from two networks
trained on data using split-half resampling. Despite the noise the sensitivity
maps are clearly correlated.

due to random variability of the two sensitivity maps in this
single realization. Averaged over multiple split-half resasmpled
sensitivity maps the scatter plot is symmetric around the signal
axis.

The main difference between SPMs and sensitivity maps is
the noise distribution in the scatter plot. The SPM assumes
Gaussian distributed noise which makes a qualitative repro-
ducibility measure with confidence intervals from Z-scores
ideal. In [34] the reproducibility measure of the SPMs are
based on the Pearson product correlation coefficient. As seen
in Fig. 4 the noise of a single split-half scatter plot of the
sensitivity maps is far from Gaussian distributed. Most of
the density mass is a noise contribution concentrated close
to the origin, while occasional peaks of signal radiate from
the origin. Using the correlation coefficient here would result
in an overestimated value.

When measuring reproducibility of sensitivity maps we
suggest to divide the signal axis into bins and evaluate the
Z-score for each bin. We assume that the noise is indeed
Gaussian distributed, but having the variance dependent on
the signal level. Given two column vector sensitivity maps
sk and s, marked 1 and 2 from class k, generated from
networks with split-half resampling of the data, the signal
and noise contribution can be evaluated with a simple rotation
given by Sfignal = (S]f + Slg)/\/5 and Sﬁoise = (S]f - Sg)/\/i,

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

Signal

Noise

Sensitivity map (Split-half group 2)

Sensitivity map (Split-half group 1)

Fig. 4. Scatter plot of the sensitivity maps in Fig. 3. The signal and noise
arrows indicate the direction of dependence and independence, respectively,
between the sensitivity maps.
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Fig. 5. The Z-score as afunction of signa level for the SK class. Thisis the
average of 100 split-half resampled data sets. The dashed line indicates the
95% confidence interval of the Z-score which gives sensitivity levels above
0.045 as reproducible.

respectively. Dividing the signal part into bins, each containing
some fixed number of points, the mean signal ., and noise
standard deviation o, for bin b is computed using the point
belonging to the respective bin. The number of pointsin a bin
is heuristically chosen 50. The Z-scoreis then easily evaluated
for each bin with Z, = u,/0. In Fig. 5 the average Z-
score of 100 split-half resampling networks is plotted as a
function of signal level. By referring to tables of the normal
distribution, where a Z-score greater than 1.6449 corresponds
to the 95% confidence interval, the sensitivity values above
0.045 are determined significant. The significant sensitivity
level may be plotted with the sensitivity map, as shown in
Fig. 13, thus indicating reproducible sensitivity in the map.

VI. EXPERIMENTS

In this section we will compare network results with and
without the background suppression. We examined both the
classification performance and visualization results. For this
purpose the reproducibility of the generated sensitivity maps
for visualization were examined.
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BCC MM NOR NV SK
BCC* 0.0 0.9
MM* 24 00
NOR*| 0.0 0.0
NVv* | 2.1 4.8 0.0
SK*| 21 00 0.0

Fig. 6. Confusion matrix showing classification rate in percentages on test
data with background suppression. Stars indicate neural network prediction.
Note that the classification rate of the malignant MM lesions is over 80%,
which is similar to experts in dermatology. Most of the misclassified examples
are classified as malignant BCC lesions.

The Raman data set of skin lesions consists of N = 222
examples, where the number of examples for each of the
classes BCC, MM, NOR, NV and SK is 48, 21, 89, 41 and
23, respectively.

The data set was preprocessed as described earlier and I =
25 largest principal components were used as inputs to the
network. The feed-forward neura network was initialized with
H = 20 hidden units and ¢ = 5 outputs to represent the
posterior probabilities for the classes.

A. Classification

As the MM and SK classes have very few examples the
classification performance of the network was evaluated using
a leave-one-out cross-validation scheme. The results reported
are the average over 10 runs of the data set. The computational
time of a single optimization of the neural network classifier
was approximately 30 minutes on an 800MHz Pentium IlI
compulter.

Error bars on classification were approximated with the
normal approximation to the binomial distribution. The error
bars are evaluated as two times the standard deviation, given
by 2+/p(1 — p)/N where p is the classification rate and N is
the number of examples.

The overall classification rate of skin lesions and tumorswas
94.8%+3.0% and 90.7%=+3.9% with and without background
suppression, respectively. The hypothesis that the two classi-
fication rates were the same was examined with a McNemar's
test [35] and regjected with 95.1% confidence. The classifi-
cation performance of the neural network was also analyzed
using a confusion matrix. The confusion matrices using data
with and without suppressed background are shown in Fig. 6
and 7, respectively. The results showed that classes BCC,
NOR, NV were well determined and had high classification
rates with or without background suppression. When the back-
ground was suppressed both the SK and MM classification was
improved significantly. When using no background suppres-
sion, the misclassified MM lesions where classified as benign
NV lesions, which is a serious error. On the other hand when
the background was suppressed, most of the misclassified MM
lesions went to the malignant BCC group. The classification
rate of MM was 80.5%+5.3%, which is similar to dermatol ogy

BCC MM NOR NV SK
BCC* 00 91
MM* 00 0.0
NOR*| 0.0 5.2
Nv*| 3.1 21.0 1.1 gra@ 3.9
SK*| 21 71 0.0 0.0 gw

Fig. 7. Confusion matrix showing classification rate in percentages on test
data without background suppression. Starsindicate neural network prediction.
Note that the classification rate of the malignant MM lesions is less than 63%
and 21% of the examples are misclassified as benign NV lesions.

Pos Pos

Neg

Neg

Fig. 8. Confusion matrix for cancer versus non-cancer skin lesions. The stars
indicates network prediction. The left panel shows the results with background
suppression and the right panel without background suppression.

experts. It should though be emphasized that the performance
is based on limited amount of examples from the MM class
and the error bars are rather large. The results for the BCC was
excellent, 95.8%4-2.7% of the lesions were classified correctly.
Note that by suppressing the background a small percentage
of MM lesions were classified as NOR.

From a clinical point of view it is interesting to look at
the classification of cancer versus non-cancer lesions. The
confusion matrices for cancer versus non-cancer lesions, with
and without suppressed background are shown in Fig. 8. The
performance using background suppression was much higher.
94.2%+3.1% of cancer lesions are classified correctly which
is very good, compared to 87.8%+4.4% without background
suppression.

It is appropriate to compare the classification results ob-
tained here with other techniques for classification of skin
cancer. A recent study, using a similar neural network ar-
chitecture trained on features extracted from digitized der-
matoscopic images, obtained 75% sensitivity for malignant
melanoma [7]. Other recent studies [8], [36], [9], also using
dermatoscopic features and neura networks, have shown an
extremely good performance. The sensitivity was 92-94% for
malignant melanoma, but these studies do not appear to apply
independent test data. For comparison the neural network used
here obtained 96% sensitivity on training data.

B. Visualization

The visualization is only based on networks trained on data
with suppressed background as the classification performance
of these networks is significantly higher. To examine the
reproducibility of the sensitivity maps we used the previously
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Fig. 9. Sensitivity maps for the BCC class. The dashed line indicates 95%
confidence interval. The sensitivity is mainly in well determined peaks and
most of the spectra does not contain any discriminative information. Region
marked A represent the CH™ vibrations in the lipids and proteins around
2940 cm~! and region marked D are the amide 111 band in proteins around
1270 cm~1,

described framework. Networks are trained on 100 random
split-half of the data, in all 200 networks. Sensitivity maps
for each class were computed by taking the average of the
200 generated sensitivity maps. The significance level of the
average sensitivity maps were found by making Z-score curves
for each class using 95% confidence intervals.

The sensitivity maps for BCC, MM, NOR, NV and SK
lesions are shown in Fig. 9, 10, 11, 12 and 13, respectively.
Classes BCC and SK reproduced well as sensitivity peaks lie
well above the significance level. Classes MM, NOR and NV
lie just above the significance level, but at the same time the
confidence in those peaks is very high. The sensitivity maps
show that the BCC and SK classes use a very small fraction
of the Raman spectrum for classification and that they are well
defined, giving very good classification results. On the other
hand, the MM, NOR and NV classes use many parts of the
spectrum as the features selected by the networks seem to be
more complex. A probable reason for this could be the small
sample size compared to the variability of the Raman spectrum
for these classes, especially for the malignant MM lesions.

The spectral regions where the sensitivity maps give high
importance, contain mgjor protein and lipid bands. These are
marked with letters A-D in Fig. 9 to 13. The spectral regions
marked A, C and D have previously been visually identified by
Raman spectroscopy trained experts in dermatology [37]. Re-
gion marked A represent the CH~ vibrations in the lipids and
proteins around 2940 cm !, the increase in the bandwidth was
noted for BCC and SK classes. Region marked C reflects the
amide | band of proteins 1600-1800 cm —!, and the decrease in
amplitude was found for the MM class. Region around 1270
cm~—! marked D shows the amide Il band in proteins, for
BCC and SK classes the decrease in amplitude was noted.
Finally, by examining the Raman spectra, region marked B
corresponds to the vibrations caused by skin fluorescence
2000-2350 cm~*, which showed an increase in amplitude for
NV class.
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Fig. 10. Sensitivity maps for the MM class. The dashed line indicates 95%
confidence interval. The sensitivity map seems more noisy than the BCC
sensitivity map in Fig. 9. Region marked A represent the CH~ vibrations in
the lipids and proteins around 2940 cm~! and region marked C reflects the
amide | band of proteins 1600-1800 cm—1.

Class NOR
0.12 v r

0.1

0.08f

0.06}

Sensitivity

0.04f

0.02

3%00 3000 2500 2000 1500 1000 500

Wavenumber (cm_l)

Fig. 11.  Sensitivity maps for the NOR class. The dashed line indicates
95% confidence interval. The sensitivity map seems noisy like the MM class
in Fig. 10. Region marked B corresponds to the vibrations caused by skin
fluorescence 2000-2350 cm™ 1.

VIlI. CONCLUSION

Skin tumor classification based on Raman spectroscopy
was approached using a non-linear neural network classifier.
A feature extraction scheme was suggested to reduce the
dimension of the Raman spectra and to suppress background
noise originating from the skin fluorescence. The proposed
neural network classifier automatically avoids over-fitting by
using adaptive regularization and outlier detection. The neural
network framework is distributed for non-commercia use [30].
Finally, the classification rules are extracted from the neural
networks with sensitivity maps. The reproducibility of the
sensitivity maps was determined with an extension to the
NPAIRS method, making it possible to assign confidence
intervals to the sensitivity maps.

By applying this framework on the present data set, in-
volving 222 cases and 5 classes, the classification rate was
80.5%+5.3% correct classification of malignant melanoma,
similar rates as obtained with visual inspection by experts in
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Fig. 12. Sensitivity maps for the NV class. The dashed line indicates 95%
confidence interval. The sensitivity map is noisy like the sensitivity maps for
the MM and NOR class in Fig. 10 and 11, respectively. Region marked A
represent the CH™ vibrations in the lipids and proteins around 2940 cnr !
and region marked B corresponds to the vibrations caused by skin fluorescence
2000-2350 cm— 1.
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Fig. 13. Sensitivity maps for the SK class. The dashed line indicates 95%
confidence interval. Similar to the BCC class the sensitivity is mainly in very
significant peaks and most of the spectra does not contain any discriminative
information. Region marked A represent the CH™ vibrations in the lipids and
proteins around 2940 cm~1, region marked C reflects the amide | band of
proteins 1600-1800 cm~! and and region marked D are the amide |1l band
in proteins around 1270 cm—1.

dermatology [6]. The most common skin cancer, basal cell
carcinoma, had a classification rate of 95.8%+2.7%, which is
excellent. Taking both malignant lesion types as one group
the networks classified 94.2%+3.1% of the cancer lesions
correctly. The overall classification rate of skin lesions was
94.8%+3.0%. Sensitivity maps were shown to be a powerful
tool for visualizing the learning of feed-forward network. They
were shown to reproduce and important frequency bands were
identified, corresponding to specific lipids and proteins.
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