
JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 1

Detection of SLA Violation for
Big Data Analytics Applications in Cloud

Xuezhi Zeng, Saurabh Garg, Mutaz Barika, Sanat Bista, Deepak Puthal, Albert Y. Zomaya, Rajiv Ranjan

Abstract—SLA violations do happen in real world. An SLA violation represents the failure of guaranteeing a service, which leads

to unwanted consequences such as penalty payments, profit margin reduction, reputation degradation, customer churn and service

interruptions. Hence, in the context of cloud-hosted big data analytics applications (BDAAs), it is paramount for providers to predict and

prevent SLA violations. While machine learning-based techniques have been applied to detect SLA violations for web service or general

cloud service, the study on detecting SLA violations dedicated for cloud-hosted BDAAs is still lacking. In this paper, we propose four

machine learning techniques and integrate 12 resampling methods to detect SLA violations for batch-based BDAAs in the cloud. We

evaluate the efficiency of the proposed techniques in comparison with ideal and baseline classifiers based on a real-world trace dataset

(Alibaba). Our work not only helps providers to choose the best performing prediction technique, but also provides them capabilities to

uncover the hidden pattern of multiple configurations of BDAAs across layers.

Index Terms—Big Data; Big Data Analytics Application; Service Level Agreement; Machine Learning; Resampling; Service Layer;

SLA Violation; Neural Network

✦

1 INTRODUCTION

S ERVICE Level Agreement (SLA) that represents the con-
tract between providers and customers is one of the

effective methods to manage and guarantee the quality of
service (QoS) promised. Nowadays, in the context of big
data analytics applications (BDAAs) in the cloud, SLAs
play an integral role in governing the relationships between
providers and customers. Besides setting the expectations
by dictating the quality and the type of service, SLAs are
also increasingly considered as a strong differentiator allow-
ing a provider to offer different levels of service guarantees
and to differentiate itself from its competitors.

SLAs are very important for both parties. On the one
hand, the provider needs to avoid having penalties due
to failure of providing the agreed service. On the other
hand, the customer favors on-demand service and without
any interruptions. The failure of guaranteeing a service
leads to unwanted consequences such as penalty payments,
profit margin reduction, reputation degradation, customer
churn and service interruptions. We mean by profit margin,
the provider revenue minus all expenses, so the the profit
margin reduction is the decline in its profit. Customer churn
means the present of customers discontinue doing business
with the organization. This failure is called SLA violations.
SLA violations do happen in real world and have caused
both providers and customers heavy costs. Hence, it is

• Xuezhi Zeng is with the Research School of Computer Science, The
Australian National University; e-mail: xuezhi.zeng@anu.edu.au

• Saurabh Garg and Mutaz Barika are with the Discipline of ICT - School
of Technology, Environments and Design (TED), University of Tasmania:
e-mail: saurabh.garg@utas.edu.au; mutaz.barika@utas.edu.au

• Sanat Bista is with Australian Government agency. e-mail:
sanat.bista@gmail.com

• Albert Y. Zomaya is with the School of Computer Science, The University
of Sydney; e-mail: albert.zomaya@sydney.edu.au

• Deepak Puthal and Rajiv Ranjan are with the School of Computing, New-
castle University. e-mail: dputhal88@gmail.com; rranjans@gmail.com

paramount for providers to predict and prevent SLA vio-
lations for BDAAs as much as possible before they happen.
However, accurate prediction of SLA violation for BDAAs
is extremely challenging with manifold reasons:

• The violation status of BDAA jobs is actually de-
termined by multiple configurations across different
layers (see Figure 1). For example, if the user submits
a job at BDSaaS layer that required high CPU or
memory resources along with the requirements of
low response time and deployment costs, the consid-
eration of SLAs at platform and infrastructure levels
are required. If BDPaaS layer allocates instances for
batch processing this job, but it fails to achieve the
execution cost requirement and/or select and con-
figure big data processing platform to meet user-
defined response time, this could impact consider-
ably the freshness of this batch processing job and
result in the violation. In this case, the violation
status is specified by detecting the root causes of such
violation across different layers based on the logs of
both data flow and QoS metrices. Accordingly, the
configurations at each layer are extremely important
and determine the violation status of BDAA jobs.
However, the hidden pattern between these multiple
configurations across BDAA layers regarding the
status of SLA violation is far from clear and needs
to be well uncovered and utilized.

• In the real world of SLA management in BDAAs, the
SLA violation is very rare event, which results in data
skewness meaning that the number of violated jobs
are much less than the number of unviolated one.
This could cause deficient classification models and
bring lots of challenges for most supervised learning
algorithms because they tend to minimize loss by
labeling every sample with the majority class(es),



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 2

leading to poor recall on the minority class(es).
However, true misclassification costs may be much
greater when minority class instances are missed.
e.g., incorrectly predicting the actual ”violated” jobs
will cause the degradation of reputation and loss of
profit for providers.

To address the aforementioned challenges, we explore
4 representative machine learning techniques (i.e., Logistic
Regression, Artificial Neural Network, Random Forest, Ex-
treme Gradient Boosting) with the integration of 12 resam-
pling techniques (grouped by oversampling, undersampling
and combination) to detect SLA violations for batch-based
BDAAs workload in cloud. We also conduct extensive ex-
periments in a real dataset to evaluate the efficiency of the
proposed techniques.

The remainder of this paper is structured as follows. In
Section 2, we present our research question and method-
ology. Section 3 presents the layer architecture of BDAAs.
Section 4 discusses related works. Section 5 mathematically
formulates the SLA violation detection problem. In Section
6, we discuss how we extract multiple features across lay-
ers and define SLA violation status based on the Alibaba
trace dataset. Section 7 introduces four machine learning-
based prediction models and articulates their fundamental
working mechanism in terms of prediction. In Section 8,
twelve diverse resampling techniques are presented. We
then discuss 5 evaluation metrics in Section 9. In Section
10, extensive experiments results are presented and major
findings are analysed. We further discuss a novel mathe-
matical model for the providers’ profit in Section 11. Section
12 analyses and discusses the experiment results based on
the above mathematical model. In Section 13, We conclude
our paper by pointing out two potential future directions.

2 RESEARCH QUESTION AND METHODOLOGY

2.1 Research Question
In this paper, we addressed the challenging question that

is how to detect SLA violations for cloud-hosted big data
analytics application across layers before they happen to
maximize the providers’ profit.

2.2 Research Methodology and Contributions
The question of SLA violation detection has been ad-

dressed previously in the context of web service and gen-
eral cloud service. Our methodology differentiates itself
in the following aspects: (i) we choose a newly released
workload trace dataset published by Alibaba, which is a
good representation of batch-based BDAA workload; (ii) we
detect SLA violations for this batch-based BDAA through
the exploration of the four representative machine learn-
ing techniques (i.e., Logistics Regression, Artificial Neural
Network, Random Forest, and Extreme Gradient Boosting);
(iii) we apply 12 diverse resampling techniques (5 oversam-
pling, 5 undersampling and 2 combined resampling) into
the above four machine learning predictors to handle data
skewness problem; (iv) we conduct extensive experiments
to evaluate the efficiency of SLA violation detection based
on five metrics (i.e., accuracy, precision, recall, F2 score, and
ROC); (v) we design a mathematical model to formulate
the provider’s profit and investigate how the outcome of a
prediction technique impact providers’ profit. This work is

Fig. 1. The layer-based architecture of big data analytics applications in
cloud

one of the first attempts towards detection of SLA violations
dedicated for big data analytics applications through an
integrated application of machine learning and resampling
techniques. This work will help providers to choose the best
performing prediction technique, and most importantly, it
can uncover the hidden patterns of the multiple configura-
tions of BDAAs across layers and hence provide insightful
information for providers’ decision-making process.

3 LAYER-BASED ARCHITECTURE OF BIG

ANALYTICS APPLICATIONS IN CLOUD

According to the works in [1], [2], [3], [4], [5], a typi-
cal cloud-hosted BDAA spans multiple layers. Each layer
serves a different function and consists of different compo-
nents/frameworks. We give a pictorial representation of a
layer-based architecture for cloud-hosted BDAAs, which is
shown in Figure 1.

It is observed that there are three layers from top to
bottom: Big Data Software as a Service (BDSaaS), Big Data
Platform as a Service (BDPaaS) and Cloud Infrastructure as
a Service (CIaaS). Beyond the top level are usually end users
who request analytics service through the interface. It is not
difficult to understand that an end user is a client of the
BDSaaS, where BDPaaS and CIaaS are service providers to
BDSaaS. The BDPaaS provider provides big data analytics
platforms, while CIaaS provider provides scalable hardware
resources in a virtualized environment. The details of each
layer are described in the Appendix A.

4 RELATED WORKS

Many machine learning-based approaches have been
applied in recent years to tackle SLA violation prediction
problem.

Leither et al. [6] proposed an approach to predict SLA vi-
olations in runtime mode for compound web services. They
built a regression-based prediction model that takes typical
service quality data and process instance data as input,
such as availability, system workload, response time, or-
dered products and customer identifiers. They implemented
their prediction model by using a fully Java-based machine
learning toolkit called WEKA. However, this toolkit is not



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 3

scalable to suit the situation in real world, where the scale of
the dataset is much bigger in comparison to the one which is
used in this paper. Moreover, the layered big data analytics
application framework is fundamentally different from their
composite web services.

Jules et al. [7] proposed a Bayesian Network-based
model that calculates and constantly updates the reputation
of a trusted provider. Moreover, they introduced a prob-
abilistic ontology-based technique that can forecast SLA
violations in terms of contract parameters. Although their
approach achieved a decent performance, the dataset is
artificially produced by simulation, which has defect in
representing a real application workload. For example, SLA
violations occupy 40% in their generated dataset, which
disregards the reality that SLA violations are very rare
(< 10%) in real application deployment scenarios.

The authors in the paper [8] focused on predicting SLA
violations for cloud services. They built a prediction model
that uses Naive Bayesian algorithm and takes service quality
datasets regarding historically measured web service as
the input. In this paper, they investigated and validated
the most valid feature combinations for prediction. Still,
their web application workloads are fundamentally differ-
ent from big data analytics application workloads and hence
is not applicable to predict SLA violations for cloud-hosted
BDAAs.

Hemmat et al. [9] systematically compared the perfor-
mance of two machine learning classification models for
predicting SLA violation by analyzing Google cluster trace
dataset [10]. They explore several methods of handling
unbalanced data. Despite its good performance, the authors
resample the training data before the cross validation, which
leads to the problem of information leakage and overfitting.
Also, the features they extracted are task-oriented rather
than application as a whole. Hence, the prediction outcome
of SLA violation is actually for tasks, which is not what a
provider really cares about.

Uriarte et al. [11] performed their SLA violation ap-
proach using Google Cluster trace dataset as well. They
cluster the resource usage and duration of services using
an unsupervised learning-based technique. If a service in
a cluster is detected a violation, the prospective resources
will be allocated to the other services hosted in the same
cluster in order to avoid the further violation. Although
it is helpful for avoiding violation in this cluster, explicit
violation forecast towards each service is lacked.

In summary, our work compared with the aforemen-
tioned works focuses on specific big data application type
(i.e. batch-based BDAA) and integrates different diverse
skewness handling techniques in machine learning algo-
rithms along with the consideration of provider profit.

5 PROBLEM FORMULATION OF SLA VIO-

LATION DETECTION

We formulate the detection of SLA violation for cloud-
hosted BDAAs as a binary classification problem and define
the notations to describe this problem in Table 1.

Given a set of features extracted from the Alibaba cloud
trace (see Section 5), what is the probability of failure of
a submitted batch job, which results in SLA violation, or

TABLE 1
Notation used in formulating SLA violation detection problem

Symbols Description
X Represents a space containing descriptions of batch

jobs. X = (X1, X2, ..., Xm), where Xm statistically
describes the property of a batch job from an aspect,
such as the requested CPU configuration (e.g., speed,
number of cores), or requested memory and so on

Y Represents a space labeling SLA violation status. For
the binary problem, there are only two classes. Y =
[0, 1]. Y=0 means the batch job is unviolated and Y=1
means the batch job is violated

n The number of observed samples
Dn Denotes the training dataset. Dn =

[(x1, y1), ..., (xi, yi), i = 1, 2, ..., n] ∈ (X,Y )

the probability that this batch job is successfully processed
without SLA violation?

A binary classification problem aims to find a function
φ: X → Y based on Dn that gives a new sample Xnew ∈ X ,

predicts Ŷ = φ(Xnew) ∈ Y .

6 DATASET

In this paper, we pursue our exploration on a BDAA
workload dataset released by Alibaba in the September of
2017 [12]. As a leading public cloud platforms over the
world, Alibaba Cloud is running millions of batch jobs
or online services across hundreds of datacenters every
day using the latest big data technologies. This dataset
contains a workload trace of a BDAA cluster. Each trace file
includes the job statistics over 12 hours and has information
about 1300 virtual machines that execute both offline batch
jobs and online service in this cluster. As regards to the
batch processing BDAA workloads, the trace details the
information including job ids, task ids, instances types,
and machines’ hardware configuration. To the best of our
knowledge, this dataset has not been extensively utilized by
the research community. Lu et al. [13] performed a character-
ization of the Alibaba cloud trace and disclosed four types
of imbalance (i.e., spatial imbalance, temporal imbalance,
proportion imbalance of resources utilization per workload,
and resource demands and runtime statistics imbalance).
The work in [14] investigates the elasticity and plasticity
of resource allocation of the Alibaba trace. The authors in
[15] focused on providing a unique and microscopic view
about how the co-located workloads interact and impact
each other.

In the Alibaba dataset, three types of information are
available as regards to job deployment and execution in-
cluding machine utilization, runtime batch processing job
workload information, and runtime online service work-
load. For the sake of confidentiality, Alibaba has excluded or
obfuscated part of the dataset. For instance, they normalized
the values regarding the utilization of disk and memory.
Service workload is given a numeric id, which is unique
in the trace period. No service and task names are given.
In this paper, we focus on the batch workload information
whose entity relationship diagram is shown in the Figure 1
of Appendix B.

It is seen that batch workloads are depicted in two
tables: ”Batch Task” table and ”Batch Instance” table. A
batch workload is submitted by the user in the form of a
job. Each job comprises various tasks that were submitted
to the cluster and forms a directed acyclic graph (very



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 4

Fig. 2. The structure of batch workload in Alibaba trace dataset

similar to MapReduce execution graph) according to the
data dependency. The event cycle of the tasks inside each
job are traced in the ”Batch Task” table. Each task consists of
numerous instances and executes diverse computing logic.
The instance is the smallest scheduling unit of the batch
workload in Alibaba’s cloud platform. All instances inside a
task process the identical binary code with same multiple
resource demands, but executing different fragments of
data. Such execution flow is in line with the MapReduce
programming model. Each instance within a task pertains to
one job and is then assigned to a specific cluster computing
machine that utilizes a Linux container to execute that
task instance. While a majority of batch processing job can
include hundreds of tasks instances, few selected ones can
also include an extremely large number of tasks instances.
For example, the research work in [13] reported that a job
had 60000+ task instances. In our research, the metadata
related to tasks instances is tracked in ”Batch Instance”
table. The meta information of machine in an Alibaba clus-
ter is captured in the following two tables (i.e., ”Machine
Events” and ”Machine Utilization” table). The ”Machine
Events” table shows three types of events (e.g., addition,
soft error or hard error), and reflects the normalized physical
capacity of each machine along the aspects in terms of RAM
size and CPU cores. ”Machine Utilization” table records the
attributes of each machine such as machine ID, utilization
of CPU, utilization of memory and so on.

The configurations of job, task, instance and machine
are critical elements for batch workloads in BDAAs across
different layers. The structure of batch workloads running
on Alibaba cluster machines is demonstrated in Figure 2.

6.1 Feature Extraction

From Alibaba dataset, we notice that there are multiple
jobs, where each job depends on its multiple tasks. The com-
puting logic requirements of each task need to be achieved
by scheduling its instances on cluster computing machines.
In other words, each task has its own requirements includ-
ing number of instances, and machine CPU and memory
required for each instance. This means that failing to achieve
the machine CPU and memory requested by any instance
in a task contributes to SLA violation. Similarly, multiple
tasks within a job contribute to SLA violation in case of the

requirements of any task does not meet.

To apply machine learning techniques to detect SLA
violation, we need to extract features based on the batch
workload information in this dataset. Since a job consists of
multiple tasks, for generality, let a job J = (T1, ..., Ti, ..., Tm).
For each task Ti in J , it consists of multiple instances. Let
Ti = (Insti1, Inst

i
2, ..., Inst

i
k, ..., Inst

i
N ), where Ni denotes

the number of instances of Ti always takes an integer value
≥ 1.

Let Instik(real cpu max) denotes the maximum CPU
numbers of actual instance running for the instance,
Instik(real cpu avg) denotes the average CPU num-
bers of actual instance running for the instance,
Instik(real mem max) denotes the maximum normal-
ized memory for the instance, Instik(real mem avg) de-
notes the average normalized memory for the instance.
Instik(cpu capacity) denotes the normalized physical CPU
capacity of the machine that has been used by the in-
stance, Instik(mem capacity) denotes the normalized phys-
ical memory capacity of the machine that has been used by
the instance , Ti(cpu requested) denotes the CPU requested
for each instance of the task, and Ti(mem requested) de-
notes the normalized memory requested for each instance
of the task. Then, for each job J , we do a set of mathematical
aggregation operations on the above variables in order
to extract features across layers. Finally, ten features are
generated as follows (all the features have been normalised
based on the number of tasks):

BDSaaS layer:

• X1 : cpu requested per job =

m∑

i=1

Ti(cpu requested)

m

• X2 : memory requested per job =

m∑

i=1

Ti(memory requested)

m
• X3 : num tasks per job =m

BDPaaS layer:

• X4 : num instances per job =

m∑

i=1

Ni

m

• X5 : real cpu max per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(real cpu max)/Ni

m

• X6 : real cpu avg per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(real cpu avg)/Ni

m

• X7 : real mem max per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(real mem max)/Ni

m

• X8 : real mem avg per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(real mem avg)/Ni

m

CIaaS layer:

• X9 : cpu capacity per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(cpu capacity)/Ni

m



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 5

• X10 : mem capacity per job =

m∑

i=1

Ni∑

k=1

Inst
i
k(mem capacity)/Ni

m

As high level features, the above ten features (X1 −X10)
provide an effective representation of each batch job J . We
could also consider other criterion such as Linux CPU load,
disk space requested or running trials number as features.
However, we refrain from using redundant features for the
purpose of preventing the model suffering from overfitting.

6.2 SLA Violation Definition

Besides the features, we also need to formulate the target
SLA violation status [0: ”non-violated”, 1: ”violated”] for
each batch J . According to the dataset, there are four main
types of states for a batch task:

• Terminated: a task goes to ’Terminated’ when all its
instances are done, meaning this batch task success-
fully processed

• Waiting: a task is not initialized yet
• Failed: a task fails
• Running: a task is being processed

In this dataset, most of tasks are terminated in a normal
mode, while 2000 plus have ”waiting” state. Since a job
consists of multiple tasks, we can set the criteria that for
one job, only the state of all of its tasks is ”Terminated”,
the job is regarded as ”Terminated”. If one of its task’s
state is ”Failed”, the job is regarded as ”Failed”. Similarly,
if one of its task’ state is ”Running”, the job is regarded as
”Running”.

There are 12951 jobs in total. We have performed data
quality check and pre-processing work as the foremost step.
We remove some ”abnormal” jobs that have corresponding
tasks with missing values in the dataset, and then drop some
”abnormal” jobs that have latest finished task is earlier than
the earliest created tasks. After this, 11897 valid jobs remain,
where 10774 jobs are labeled ”Terminated” (successfully
processed), and 1123 jobs are labeled ”Failed” based on the
above criteria.

In order to determine SLA violations, we need to have
particular details in terms of the service quality and service
level objectives. Although such information is not available
in this dataset, we could discover SLA violation of a job
according to the availability of its tasks. Specifically, we
detect a job as ”violated” if at least one of its corresponding
tasks is failed and unusable, representing this job failure
causing loss for both providers and customers. Accordingly,
we detect a job as ”non-violated” if all tasks of this job are
terminated normally,representing that this job is success-
fully finished.

Based on this SLA violation definition, the percentage of
”non-violated” batch jobs (10774 in total) among all the valid
jobs (11897 in total) is 90.56%, and hence the ratio of SLA
violation is only 9.44%. We can conclude that the quantity
of violated and non-violated jobs are highly skewed, which
is visualized in the Figure 2 of Appendix C.

6.3 Examples of Features and SLA Violation Status

For the ten features (X1 −X10), their feature ID, fea-
ture name, description, type and corresponding layer are
detailed in Table 2. Further, Table 3 gives specific samples

of two classes (non-violated and violated) in terms of these
feature values.

TABLE 2
Summary of the ten features and their classification by layer

Layer Feature
ID

Feature Name Description Type

BDSaaS X1 cpu requested per job A floating point number indi-
cating the amount of requested
CPU

Float

X2 mem requested per job A floating point number indi-
cating the normalized amount
of requested memory

Float

X3 num tasks per job An integer representing how
many tasks a batch job has, with
one as the minimum number of
tasks

Integer

BDPaaS X4 num instances per job A floating point number indi-
cating the number of instances
per job, with 1.0 as the mini-
mum number of instances

Float

X5 real cpu max per job A floating point number indi-
cating maximum CPU numbers
of actual instance running

Float

X6 real cpu avg per job A floating point number indi-
cating average CPU numbers of
actual instance running

Float

X7 real mem max per job A floating point number in-
dicating maximum normalized
memory of actual instance run-
ning

Float

X8 real mem avg per job A floating point number in-
dicating average normalized
memory of actual instance run-
ning

Float

CIaaS X9 cpu capacity per job A floating point number indi-
cating the capacity of CPU of a
machine

Float

X10 mem capacity per job A floating point number indi-
cating the capacity of normal-
ized memory of a machine

Float

It is observed that the range of values in the above
table varies widely such as the value of feature X2 in the
violated example is 0.0055 while the value of feature X1

in the violated example is 100. This is because, in this
dataset, the values for disk and memory utilization have
been normalized for confidentiality reasons while the values
for requested CPU have not been normalized.

It is worth noting that the absent of normalization
will cause objective functions of most machine learning
algorithms work improperly. This is because the majority
of classifiers in these algorithms use Euclidean distance
method to calculate the distance between two points. The
value of distance will be dominated by a particular feature
that has a broad range of values. Therefore, we normalize all
the above features (from X1 to X10) by applying standard-
ization methods such as Min-Max scaling [16], such that
each feature has approximately proportionate contribution
to the final Euclidean distance.

7 PREDICTION MODELS

After extracting ten features and then defining SLA and
its status [0: ”non-violated”, 1: ”violated”], all these features
will be utilized in prediction models to detect SLA violation.
For detecting SLA violation in the Alibaba dataset, there are
many machine learning prediction models that can be used.
However, we particularly selected Logistics Regression (LR)
[17], Artificial Neural Network (ANN) [18], Random Forest
(RF) [19] and Extreme Gradient Boosting (XGB) [20] for the



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 6

TABLE 3
Samples of two classes (violated and non-violated Job)

Feature Feature Description Violated Job Non-Violated Job
X1 cpu requested per job 100 50
X2 mem requested per job 0.0055 0.0094
X3 num tasks per job 7 14
X4 num instances per job 85.57 87.86
X5 real cpu max per job 0.7819 4.1895
X6 real cpu avg per job 0.4324 0.2622
X7 real mem max per job 0.0083 0.0143
X8 real mem avg per job 0.0057 0.0098
X9 cpu capacity per job 63.5719 63.8789
X10 mem capacity per job 0.6853 0.6886

following reasons (Details of these prediction models can be
seen in Appendix D).

• LR is one of the elementary and likely most com-
monly used machine learning algorithms for solving
all classification problem. It is easy to implement, fast
to train and returns probability scores

• ANN is one of advanced machine learning models
leveraging deep learning technology. It works by
splitting the problem of classification into a layered
network of simpler elements. Hence, it is very mean-
ingful to apply ANN to detect SLA violation for
layer-based big data analytics applications

• RF is one of popular ensemble machine learning
models. It is an improvement over bagged decision
trees and returns the importance of all features,
which provides insightful information regarding fea-
tures contribution to SLA violation detection

• XGB is also one of ensemble machine learning mod-
els and returns the importance of all features. Unlike
RF, it is based on boosting concept

8 TACKLING UNBALANCED DATA

We will feed the dataset to the aforementioned four
machine learning prediction models to detect future SLA
violations. Since the two classes [0: ”non-violated”, 1: ”vio-
lated”] in the Alibaba dataset are heavily unbalanced, this
is known as data skewness which makes the classification
task extremely hard. This is because the classifier will al-
ways tend to predict the dominant class. However, the true
misclassification costs may be much greater when minority
class instances are missed. For instance,, incorrectly predict-
ing the actual ”violated” jobs will cause the degradation of
reputation and loss of profit for providers.

As a broadly adopted approach in handling unbal-
anced datasets, resampling efficiently changes the distribu-
tion training data for the purpose of biasing the classifier
towards the minority class. Basically, resampling can be
divided into two groups (i.e., undersampling and over-
sampling). Undersampling denotes removing samples from
the majority class, while oversampling represents adding
more examples from the minority class. Different forms
of resampling techniques are detailed in Appendix E. The
resampling techniques discussed in this paper are by no
means an exhaustive list.

9 EVALUATION METRICS

In order to measure the performance of the above predic-
tion models in the dataset, evaluation metrics are required,

TABLE 4
Confusion matrix in binary classification

Positive (Real) Negative (Real)
Positive(Prediction) True Positive (TP) False Positive (FP)
Negative(Prediction) False Negative (FN) True Negative (TN)

which helps us indicate how skilfully a model will perform.
Thus, after a prediction model is trained on the training
set, it must be validated on an unseen testing dataset.
This approach is beneficial in choosing a model that will
have reasonably decent performance on unknown dataset.
In this paper, five diverse evaluation metrics have been
used. They include Accuracy, Precision, Recall, Receiver
Operating Characteristic (ROC) area, and Fβ score.

Let us first present the confusion matrix in Table 4 which
will help us to define the above metrics. We can see that
in a confusion matrix, the correctly classified instances are
in the diagonal of the matrix, the True Positive (TP) and
True Negative (TN) cases. The misclassified instances are
the False Positive (FP) and False Negative (FN) ones. In
our problem, FP denotes the quantity of examples that are
erroneously classified as ”violated” where the real label
are ”non-violated”. Similarly, TP represents the number of
examples that are correctly classified as ”violated” where
the real label are ”violated”. Regarding SLA violation de-
tection, it is worth noticing that the most important value
to increase is the number of TPs cases, which correspond
with the correctly detected SLA violations. Metrics involv-
ing the TNs are usually not useful because this number
is usually much higher than its TP counterpart, as SLA
violations are rare events. Therefore, our objective is to find
the right balance of FNs and FPs, while maximizing the
TP observations. Usually, minimizing the FN instances is
prioritized over minimizing the FPs due to the higher value
in detecting new SLA violations and higher loss that new
SLA violations cause. Based on the above confusion matrix,
different metrics can be computed depending on what we
are interested in measuring (details of these evaluation
metrics are described in Appendix F).

10 EVALUATION AND ANALYSIS OF THE

PREDICTION MODELS

In order to train and validate the skill of the four pre-
diction models on unknown data, a 10-fold stratified cross
validation has been used on 11897 batch jobs obtained from
the Alibaba trace.

The 10-fold stratified cross-validation method validates
predication technique by splitting the dataset into 10 equal
size subsets, ensuring that each subset is a representation
of the entire data. In each fold, the original dataset has
been randomly split into two parts, where one part is
used for training phrase while the remainder is retained as
test set for validation phrase. The ratio of ”non-violated”
and ”violated” jobs in the validation part remains equally
with the ratio in the original dataset. To avoid leaking
the information of validation data to training data, which
often results in overfitting, it is critical to perform the cross
validation before resampling. Resampling can only be done
on the samples which are applied for training the particular
type of machine learning predictor.

The value of accuracy, precision, recall, F2 score and



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 7

ROC area for each prediction technique (representing a
particular predictor performing either in the original im-
balanced dataset or in the resampled dataset using a par-
ticular skewness handling technique) are calculated in each
fold. Then, their statistics information can be acquired after
repeating the experiments ten times. Moreover, we intro-
duced two more classifiers to compare how skilful the four
prediction models perform.

Ideal Classifier: represents a classifier that can perfectly
predict those actual ”non-violated” batch jobs as ”non-
violated” and those actual ”violated” batch jobs as ”vio-
lated”. In this case, all of evaluation metrics (i.e., accuracy,
precision, recall, F2 and ROC area) are 1.0. This is an ideal
classifier and could be regarded as the best case.

Baseline Classifier: this classifier applies the simplest
rule on our SLA violation detection problem that it simply
predicts every sample in the dataset as the majority class
(i.e., ”non-violated”). It can be derived that the accuracy of
Baseline classifier is 0.9056 and the ROC area is 0.5. The
value of precision, recall and F2 score are 0.0. This classifier
involves the less effort of prediction and could be regarded
as the baseline.

10.1 Results of Cross Validation

For each prediction model, the table of the cross valida-
tion result is detailed in Appendix G.

10.1.1 Logistics Regression

It is observed from Table 1 in Appendix G that LR
using all of the resampling techniques except one-sided
selection (OSS) outperform LR in the original dataset re-
garding F2 score and ROC area. However, none of the
above techniques achieve an acceptable F2 score. The top
F2 score achieved by Borderline-1 is only 59.96%. It is
also found that Borderline-1 has the highest ROC value
(81.18%) outperforming other techniques, Regarding the
recall value, NearMiss-1, NearMiss-2 and Borderline-2 rank
the top three, 92.07%, 90.02%, and 89.04% respectively.

In summary, LR’s performance is under par as regards to
predict SLA violation on this Alibaba dataset. It means LR is
a simple model without the capability of finding the hidden
pattern among the multiple configurations across layers. It
gives us an indicator that a more complex model should be
explored.

10.1.2 Artificial Neural Network

It can be seen from Table 2 in Appendix G that the
prediction outcome is much better than that of logistics
regression (LR). The highest recall value is 93.14%, achieved
by Borderline-2. Regarding F2 score, 62% of the above 13
approaches achieve higher than 60%. The top three F2 score
achiever are SMOTE-ENN, Borderline-1 and ROS, 71.7%,
69.66%, and 69.55% respectively. Notably, SMOTE-ENN also
ranks the top in the ROC area (87.93%), with an acceptable
accuracy value of 85.58%.

It can be concluded that although ANN that we designed
and implemented is as simple as ten features in the input
layer and three neurons in the hidden layer, it achieves a
very decent detection of SLA violation in this dataset. In
comparison to LR, ANN is much better at understanding the
hidden relationship of those multiple configurations across
layers and hence leads to better prediction efficiency. It is
worth noting that the performance of ANN in the original

dataset is unacceptable (recall and F2 score are only 51.83%
and 54.77% respectively), which shows that ANN suffers
from data skewness.

10.1.3 Random Forest

Based on Table 3 in Appendix G, it is seen that RF
outperforms LR and ANN. This time, NearMiss-2 wins the
highest recall values, which is 95.9%. In comparison with the
top recall winner by ANN, RF also improves the recall value
by 3% using NearMiss-2. Among the above 13 approaches,
54% of them achieve F2 score that is above 80%, which
is very encouraging. The top F2 score is 83.57%, achieved
by borderline-2. Compared with the top F2 score winner
by ANN, RF significantly improved the F2 score by 17%
through the application of borderline-2. Regarding ROC
area, SMOTE-ENN achieved 91.95%, ranking the first. Also,
SMOTE-ENN has a very high accuracy rate of 95.24%.

It demonstrates that RF is more effective than LR and
ANN in predicting SLA violation in this Alibaba dataset.
Even without resampling, it still achieves an admissible
performance (accuracy = 97.04%, recall = 74.08% and F2 =
77.22%). RF has better performance because it is a bagging-
based tree classifier, which are less sensitive to class distribu-
tions, while LR and ANN are very sensitive with the highly
biased class distribution and cannot generate any acceptable
results without leveraging resampling techniques.

10.1.4 Extreme Gradient Boosting

It is shown in Table 4 in Appendix G that XGB plus
NearMiss2 achieved a stunning recall value of 97.15%. In
comparison with the top recall score achiever by random
forest (RF) plus NearMiss-2, XGB plus NearMiss-2 im-
proved the recall score by 1.3%. Regarding F2 score, the
performance of XGB plus random oversampling (ROC) (F2

score = 82.99%) is marginally lower than that of RF plus
borderline-2 (F2 score = 83.57%).

It is also found that without using resampling technique,
the performance of XGB (accuracy = 96.91%, recall = 74.17%,
F2 = 77.07% and ROC area = 96.91%) is very similar with the
performance of RF (accuracy = 97.04%, recall = 74.08%, F2

= 77.22% and ROC area = 86.76%)). Like RF, XGB has better
performance because it is also a decision tree-based classi-
fier, which is more tolerable to class distributions. Thus, it
achieves decent performance even without resampling.

10.2 Analysis of Prediction Outcome

According to the above extensive experiments results,
for each evaluation metrics, we can study how skilful these
prediction techniques are when compared with the ”Ideal”
and ”Baseline” classifiers.

According to Figure 3, it is observed that among the
top 10 accuracy value, only one undersampling technique
(one-sided selection) performs well, the remaining are all
oversampling techniques. Moreover, two predictors (ran-
dom forest and extreme gradient boosting) occupy the top
ten accuracy list. Specifically, RF plus one-side selection
(OSS), and XGB plus OSS achieve very high accuracy,
97.02%, and 96.92% respectively. However, their accuracy
value are gently lower than the accuracy achieved by RF
in the original dataset. It is also noted that RF or XGB plus
some resampling techniques (one-sided selection, random
oversampling, SMOTE, Borderline family, ADASYN and
SMOTE - Tomek) significantly improve the accuracy com-



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 8

Fig. 3. Top 10 techniques measured by accuracy

Fig. 4. Top 10 techniques measured by precision

pared with the Baseline classifier (accuracy = 90.56%). It is
concluded that random forest is the technique winning the
top accuracy value.

From Figure 4, it is found that among the top 10 predic-
tion techniques, only one uses the undersampling technique
(one-sided selection), the remaining are all oversampling
techniques. One-sided selection (OSS) performs better in
achieving high precision compared with other resampling
techniques. Take random forest (RF) as an example, the
precision value of RF plus OSS is higher than RF plus
other resampling techniques. However, the precision of
OSS plus OSS (91.69%) is slightly lower than the precision
of RF without using resampling techniques (93.28%). This
is the same case for RF plus OSS, and extreme gradient
boosting (XGB) plus OSS. Notably, these top ten prediction
techniques significantly outperform the baseline classifier
with the precision value only 0. It is concluded that random
forest is the technique winning the top precision value.

According to Figure 5, it is clearly seen that the highest
recall value (97.15%) is achieved by XGB plus NearMiss-2.
For the predictors of XGB and RF, it is also observed that
NearMiss-2 outperforms its counterpart NearMiss-1 regard-
ing recall value. For instance, the recall value of NearMiss-
2 plus XGB is 2.92% higher than that of NearMiss-1 plus
XGB. Similarly, the recall value of NearMiss-2 plus RF is
2.86% higher than that of NearMiss-1 plus RF. Moreover,
it is interesting to find that ANN occupies three positions
(i.e., ANN + Boderline-2, ANN +NearMiss-1, and ANN +
ADASYN) in the top 10 prediction techniques regarding

Fig. 5. Top 10 techniques measured by recall

Fig. 6. Top 10 techniques measured by F2

recall value. Specifically, ANN plus Borderline-2 surpasses
ANN plus NearMiss-1, and ANN plus NearMiss-1 performs
slightly better than ANN plus ADASYN. Since the recall
value of Baseline classifier is only 0, these top 10 prediction
techniques considerably improve their recall value. It is con-
cluded that XGB plus NearMiss-2 is the technique winning
the top recall value.

Figure 6 shows that RF and XGB play a dominant role
in those techniques achieving top ten F2 value. From the
perspective of resampling techniques, the top ten F2 value
is only achieved by oversampling techniques. Especially,
SMOTE, its variants the family of Borderline, two combined
resampling method (SMOTE-Tomek and SMOTE-ENN),
and random oversampling (ROS) are the most outstanding
methods to get high F2 value. RF beats XGB regarding F2

score because the top 4 F2 value are all achieved by RF.
Specifically, RF plus Borderline-2 won the top F2 value,
followed by RF plus SMOTE-ENN, RF plus SMOTE, and RF
plus Borderline-1. It is concluded that random forest (RF)
plus Borderline-2 is the technique winning the top F2 value.

Figure 7 presents that still RF and XGB stand out in
the top ten ROC. Regarding resampling techniques, the
top ten ROC value are dominantly achieved by oversam-
pling techniques. Only one undersampling technique (ran-
dom undersampling) achieved a decent ROC value. Espe-
cially, random oversampling (ROS), SMOTE, its variants the
family of Borderline, ADASYN, two combined resampling
method (SMOTE-Tomek and SMOTE-ENN), and random
undersampling are the most superior methods to get high



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 9

Fig. 7. Top 10 techniques measured by ROC

ROC value. This time XGB excels RF because the top 8
ROC value are all achieved by XGB. Specifically, XGB plus
ROS ranks the top, followed by XGB plus Borderline-2,
and XGB by SMOTE-ENN. It is concluded that extreme
gradient boosting (XGB) + random oversampling (ROS) is
the technique winning the top ROC value.

We summarise our finding as follows:

• The technique of winning the top accuracy and pre-
cision value: RF.

• The technique of winning the top recall value: XGB
+ NearMiss-2.

• The technique of winning the top F2 value: RF +
Borderline-2.

• The technique of winning the top ROC value: XGB +
ROS.

11 MATHEMATICAL MODEL AND ASSUMP-

TIONS ON PROVIDERS’ PROFIT

So far, we identified the four prediction techniques in
achieving the highest value of accuracy, precision, recall,
F2 and ROC respectively. However, it is not clear for
providers how each prediction technique impacts the profit
they can earn. Hence, providers would not be able to choose
which prediction technique is best given their workload
characteristics. In order to answer this question, we further
investigate the capability of these 4 prediction techniques in
achieving the profit and compare them with the Ideal and
Baseline classifiers.

For clarity and quick reference, we develop a set of math-
ematical symbols in Table 5 to characterize the elements in
our mathematical model frequently used hereafter.

For simplicity, we assume that each job Ji in J shares the
equal expense E and revenue R, hence, their profit margin
is also equal. Therefore, we have the following formulas:

Margin = R−E
R

Profitmax = Margin ∗R ∗ (NTN +NFP )

Profit of the provider will be dependent on how many
jobs that are not violated. Therefore, number of false positive
and true negatives are considered to calculate the profit.

11.1 Admission Control Policy and Profit Loss Matrix

Given the outcome of each prediction technique,
providers consider the following admission control policies
shown in Table 6 in order to optimize their profit:

TABLE 5
Notation used in the mathematical model of providers’ profit

Symbols Description
J A set of batch jobs or workloads
Ji a batch job or workload instance in J
NTN The quantity of True Negative (TN) jobs in J
NFP The quantity of False Positive (FP) jobs in J
NFN The quantity of False Negative (FN) jobs in J
NTP The quantity of True Positive (TP) jobs in J
Ei The expense of processing a job Ji

Ri The revenue that a provider receives if he processes the
job Ji successfully

Ei the expense of processing a job Ji

Margini The profit margin that a provider makes if successfully
processing a job Ji

PenaltyRate The penalty ratio when a provider violated SLA
ProfitJ The actual profit that a provider makes after processing

J
Profitmax The maximum amount of profit the provider can make
ProfitRatio The percentage of the actual profit after processing J

over the maximized profit that a provider makes. It is

defined by
ProfitJ

Profitmax

TABLE 6
Admission control policy matrix by providers

Violated (Real) Non-Violated (Real)
Violated (Prediction) Reject Reject
Non-Violated (Prediction) Accept Accept

• Accept: provider will accept a batch job Ji if it is
predicted as ”non-violated”. In this case, NTN plus
NFP jobs will be accepted by providers.

• Reject: providers will reject a batch job Ji if it is
predicted as ”violated”. In this case, NFN plus NTP

batch jobs will be rejected by providers.

According to Table 6, there are four situations consid-
ered:

• TN (True Negative): means a job Ji is actually ”non-
violated” and the prediction technique successfully
predicts it as ”non-violated”. This is a good situation,
and hence no profit loss will be produced. Clearly,
providers will accept this job Ji

• FN (False Negative): means a job Ji is actually ”vi-
olated” and the prediction technique misclassifies it
as ”non-violated”. In this case, providers will accept
this job Ji. However, processing Ji in the production
environment will cause loss not only the cost E,
but also the penalty (equals to PenaltyRate ∗ E)
generated due to SLA violation contract. The total
profit loss can be calculated as (1+PenaltyRate)∗E

• TP (True Positive): means the job Ji is actually
”violated” and the prediction technique successfully
predicts it as ”violated”. This is a good situation and
providers would reject Ji. In this case, no profit loss
will be produced

• FP (False Positive): means the job Ji is actually ”non-
violated” and the classifier mistakenly predicts it
as ”violated”. In this case, providers will reject to
process this job Ji. However, giving up processing Ji
in the production environment will cause the profit
loss with the value of (R− E).

As profit loss is generated either by accepting or rejecting
admission control policy, matrix based on the profit loss of
every decision can be derived from the above admission



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 10

TABLE 7
Profit loss matrix for SLA violation detection problem (Unit: $/job)

Violated (Real) Non-Violated (Real)
Violated (Prediction) 0 -(R-E)
Non-Violated (Prediction) (1+PenaltyRatio) * E 0

TABLE 8
Different combination of PenaltyRate and ProfitMargin

PenaltyRate PenaltyMargin Comment
0.1 0.1 Low Penalty Rate, Low Profit Margin
0.25 0.1 Medium Penalty Rate, Low Profit Margin
1 0.1 High Penalty Rate, Low Profit Margin
0.1 0.2 Low Penalty Rate, Medium Profit Margin
0.25 0.2 Medium Penalty Rate, Medium Profit Margin
1 0.2 High Penalty Rate, Medium Profit Margin
0.1 0.3 Low Penalty Rate, High Profit Margin
0.25 0.3 Medium Penalty Rate, High Profit Margin
1 0.3 High Penalty Rate, High Profit Margin

control matrix and can be useful to evaluate the business
value (profit-oriented) of a prediction technique. The details
of profit loss information are shown in Table 7.

11.2 The Formulation of a Provider’s Profit

Now, we can derive the formula of a provider’s profit
ProfitJ after processing J based on the SLA violation
detection outcome by a particular prediction technique.

ProfitJ =
(R−E)∗(NTN+NFP )−(1+PenaltyRate)∗E∗NFN−(R−E)∗NFP

= Margin ∗R ∗NTN − (1+PenaltyRate) ∗R ∗ (1−Margin) ∗NFN

The final profit will depend on the number of non-
violations predicated corrected and the number of violations
that are not predicated correctly.

Then, the ProfitRatio can be calculated according to the
following formula:

ProfitRatio =
ProfitJ

Profitmax

=
Margin ∗ R ∗ NTN − (1 + PenaltyRate) ∗ R ∗ (1 − Margin) ∗ NFN

Margin ∗ R ∗ (NTN + NFP )

=
Margin ∗ NTN − (1 + PenaltyRate) ∗ (1 − Margin) ∗ NFN

Margin ∗ (NTN + NFP )

It is seen that ProfitRatio is irrelevant with the revenue
R, but dependents on the PenaltyRate and ProfitMargin. To
explore how a provider’s profit varies as the PenaltyRate
and ProfitMargin changes given by the outcome of a pre-
diction technique, we consider three types of PenaltyRate
= [Low, Medium, High], which matches Alibaba’s SLA
definition [21], and three different types of ProfitMargin
= [Low, Medium, High]. Their possible combinations are
detailed in Table 8.

12 EXPERIMENTS AND DISCUSSION

To measure how much profit a prediction technique
can generate based on its prediction outcome, we calculate
the value of ProfitRatio using the above formula for each
of the four prediction techniques over the nine different
combinations of PenaltyRate and ProfitMargin described in
Table 8. The result in comparison with the ProfitRatio value
of the Ideal and Baseline classifier is shown in Figure 8.

It is found that for each prediction technique using
the same PenaltyRate, the value of ProfitRatio increases as
the profit margin increases. This is because providers can
get more profit from a prediction technique that correctly
predicts more true negative jobs. For example, XGB plus
NearMiss-2 (the top recall winner) increases its ProfitRatio

4.98% from low profit margin to medium profit margin, and
1.59% from medium profit margin to high profit margin
given a low PenaltyRate.

Overall, XGB plus ROS and RF plus Borderline-2 are
the top two prediction techniques to acquire profit. Next
is RF (the top accuracy and precision value winner), while
XGB+NearMiss-2 (the top recall value winner) ranks the
last. Specifically, when a low profit margin is applied, it
is seen that XGB plus ROS (the top ROC winner) clearly
outperforms RF plus borderline-2 (the top F2 value). The
most improvement ratio by XGB+ROS over RF+borderline-
2 is 11.7% when a high PenaltyRate is set. On the contrary, if
a high profit margin is set, it is seen that RF plus borderline-
2 (the top F2 value) is slightly stronger than XGB plus ROS
(the top ROC winner) regarding the capability of making
a profit. Similarly, if a medium profit margin is applied,
RF plus borderline-2 (the top F2 value) is gently better
than XGB plus ROS (the top ROC winner) except a high
PenaltyRate is set.

Even though XGB plus NearMiss-2 achieves the top
recall value, it performs worse in maximizing the profit.
The reason is that XGB+NearMiss-2 featured by a very high
recall value (97.15%) and an extremely low precision value
(only 13.64%), suffers lots of false positive cases. According
to the admission control policies, lots of false positive mis-
classification makes providers reject these batch jobs, and
hence causes a heavy loss of profit. Comparatively, RF plus
borderline-2 (precision = 75.36%, recall = 86.02%), XGB plus
ROS (precision = 59.12%, recall = 92.43%), and RF (precision
= 93.28%, recall = 74.08%) reasonably balanced the precision
and recall, and hence they achieve a more decent profit.

Moreover, it is observed that the Baseline classifier fluc-
tuates significantly over the nine combinations of Penal-
tyRate and ProfitMargin. Specifically, when a low profit
margin is applied, the profit it gets is minus. This is because
the precision and recall value of Baseline classifier is zero,
which causes a very high penalty, and the benefit from
correctly predicting true negative jobs is very limited when
a low profit margin is set. This situation has been changed
since higher profit margins (e.g., medium ProfitMargin and
high ProfitMargin) are applied. It can be concluded that
RF plus borderline-2 and XGB plus ROS are the two best
prediction techniques that provider can make optimal profit
based on their prediction outcome of SLA violation.

It is worth noting that both RF and XGB provide hu-
man interpretable results. According to the aforementioned
working mechanism of RF and XGB, multiple single de-
cision trees are generated and work together towards the
final prediction outcome. Each single decision tree provides
a very intuitive way to understand how it works on the
prediction because it follows a method of decision-making
that is very similar to how humans make decisions with
a chain of simple rules. Both RF and XGB can visualize
any single decision trees inside them. An example of the
selected single decision trees (the depth of the tree is set
to 3 for better visualization) for RF and XGB respectively
is shown in Figure 7 in Appendix H. It is observed from
Figure 7(a) that among totally five appeared features, there
are three features (i.e.,X6,X7, and X8) belong to BDPaaS
layer. Similarly, according to Figure 7(b), among totally five
appeared features, there are four features (i.e.,X4,X5,X7, and



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 11

X8) belong to BDPaaS layer. This demonstrates that the
features at BDPaaS layer (i.e.,X4X8) play a dominant part
in determining the final violation status compared to other
features from BDSaaSand CIaaS layer.

In addition, both RF and XGB allow us to disclose
each feature’s importance playing in the classification of
SLA violation. Based on our well-trained model, the av-
erage importance of these ten features based on 10-fold
stratified cross validation is shown in Figure 9(a) for RF
plus Borderline-2 and in Figure 9(b) for XGB plus ROS
respectively. It is observed that the real cpu max has
the highest contribution, followed by memory requested

and the number of instances for XGB plus ROS. Also,
it is seen that the real cpu max has the top contribu-
tion, next is real cpu avg, followed by real mem avg

for RF + Borderline-2. Moreover, memory capacity and
cpu requested have much lower contributions than other
features in both RF and XGB predictors.

Further, we aggregate the feature importance by layers
and present the graphical representation in Figure 10. It
is found that for XGB plus ROS, the aggregated features
importance at BDPaaS layer is dominant, occupying 63%,
roughly two times than that at BDSaaS layer (29%), and
eight times than that at CIaaS layer (8%). Similarly, for
RF plus Borderline-2, the aggregated features importance
at BDPaaS layer is also dominant, occupying 72%, roughly
three times than that at BDSaaS layer (20%), and nine times
than that at CIaaS layer (8%).

It can be concluded that both XGB and RF attach
more importance to the features from BDPaaS layer (i.e.,
real cpu max, real cpu avg, number of instances, and
real mem avg) compared to the feature (cpu requested)
at BDSaaS layer and feature (memory capcacity) at CIaaS
layer. This is a further evidence that the features at BDPaaS
layer (i.e., X4 − X8) are determinant factors to detect final
violation status.

Such findings uncover the hidden patterns of the mul-
tiple configurations across layers and provide insightful
information to providers for decision making. Concretely,
BDPaaS layer needs more attention that can better serve the
batch job workloads. For example, at BDPaaS layer, schedul-
ing a batch job that better allocates the CPU or memory or
reasonably split the job into the number of instances can
improve the efficiency in reducing SLA violations. On the
contrary, paying attention to the capacity of memory or
CPU at CIaaS layer or the requested CPU at BDSaaS layer,
will generate insignificant efficiency in reducing the SLA
violations.

13 CONCLUSIONS AND FUTURE WORKS

In this paper, we addressed the problem of detecting
SLA violations for a real cloud-hosted BDAA. We used
the dataset that is newly released by Alibaba and con-
tains detailed trace information regarding batch workloads
among 1300 machines in 12 hours. We explored four diverse
machine learning-based predictors (i.e., logistics regression,
artificial neural network, random forest, and extreme gradi-
ent boosting) to detect the SLA violations. Since the dataset
is heavily skewed, we also examined 12 different resampling
techniques to handle the challenge of data skewness in

Fig. 8. The capability of a prediction technique in achieving profit on
different PenaltyRatio and ProfitMargin combination

(a) Random forest plus Borderline-2

(b) Extreme gradient boosting plus random oversampling

Fig. 9. The average importance of each feature in RF and XGB



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 12

(a) Random forest plus Borderline-2

(b) Extreme gradient boosting plus random oversampling

Fig. 10. The aggregated feature importance by layer in RF and XGB

order to acquire better performance. Standard statistical
significance metrics, such as accuracy, precision, recall, F2,
and ROC has been applied to test the practicality and
efficiency of the predictors. Most importantly, we designed a
novel mathematical model regarding provider’s profit and
evaluated the capability of these prediction techniques in
helping providers’ optimizing their profits.

Two future works might arise from our study on the
detection of SLA violation for BDAAs in cloud. The first re-
search direction is to formulate our problem as an anomaly
detection problem, such that diverse techniques could be
investigated to identify unusual patterns (i.e., the batch
job is ”violated”). Our work is very constructive for future
researchers in the application of the anomaly detection tech-
nique to detect SLA violations for BDAAs in cloud because
the extracted features and proposed mathematical profit
model can be utilized by future researchers. The second
research direction is to extend our prediction techniques and
data skewness handling techniques to stream-based BDAA
workload. Still, our work is very helpful to conduct further
investigation.

REFERENCES

[1] D. Lehmann, D. Fekete, and G. Vossen, “Technology selection for
big data and analytical applications,” Working Papers, ERCIS-
European Research Center for Information Systems, Tech. Rep.,
2016.

[2] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of big data on cloud computing: Review
and open research issues,” Information systems, vol. 47, pp. 98–115,
2015.

[3] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems for

big data analytics: A technology tutorial,” IEEE access, vol. 2, pp.
652–687, 2014.

[4] L. M. Pham, “A big data analytics framework for iot applications
in the cloud,” VNU Journal of Science: Computer Science and Com-
munication Engineering, vol. 31, no. 2, 2015.

[5] L. Wang, Y. Ma, J. Yan, V. Chang, and A. Y. Zomaya, “pipscloud:
High performance cloud computing for remote sensing big data
management and processing,” vol. 78. Elsevier, 2018, pp. 353–368.

[6] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar,
and F. Leymann, “Runtime prediction of service level agreement
violations for composite services,” in Service-oriented computing.
ICSOC/ServiceWave 2009 workshops. Springer, 2010, pp. 176–186.

[7] O. Jules, A. Hafid, and M. A. Serhani, “Bayesian network, and
probabilistic ontology driven trust model for sla management of
cloud services,” in Cloud Networking (CloudNet), 2014 IEEE 3rd
International Conference on. IEEE, 2014, pp. 77–83.

[8] B. Tang and M. Tang, “Bayesian model-based prediction of service
level agreement violations for cloud services,” in Theoretical As-
pects of Software Engineering Conference (TASE), 2014. IEEE, 2014,
pp. 170–176.

[9] R. A. Hemmat and A. Hafid, “Sla violation prediction in cloud
computing: A machine learning perspective,” arXiv preprint
arXiv:1611.10338, 2016.

[10] (2013) Google cluster workload traces. [Online]. Available:
https://github.com/google/cluster-data

[11] R. B. Uriarte, S. Tsaftaris, and F. Tiezzi, “Service clustering for
autonomic clouds using random forest,” in Cluster, Cloud and Grid
Computing (CCGrid), 2015 15th IEEE/ACM International Symposium
on. IEEE, 2015, pp. 515–524.

[12] (September 2017) Alibaba cluster trace v2017. [Online].
Available: https://github.com/alibaba/clusterdata/tree/master/
cluster-trace-v2017

[13] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai, “Imbalance in the cloud:
an analysis on alibaba cluster trace,” in Big Data (Big Data), 2017
IEEE International Conference on. IEEE, 2017, pp. 2884–2892.

[14] Q. Liu and Z. Yu, “The elasticity and plasticity in semi-
containerized co-locating cloud workload: a view from alibaba
trace,” in Proceedings of ACM Symposium on Cloud Computing
(SOCC), 2018.

[15] Y. Cheng, Z. Chai, and A. Anwar, “Characterizing co-located
datacenter workloads: An alibaba case study,” arXiv preprint
arXiv:1808.02919, 2018.

[16] O. Kramer, “Scikit-learn,” in Machine learning for evolution strate-
gies. Springer, 2016, pp. 45–53.

[17] S. Sperandei, “Understanding logistic regression analysis,” Bio-
chemia medica: Biochemia medica, vol. 24, no. 1, pp. 12–18, 2014.

[18] A. K. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks:
A tutorial,” Computer, no. 3, pp. 31–44, 1996.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[20] L. Torlay, M. Perrone-Bertolotti, E. Thomas, and M. Baciu, “Ma-
chine learning–xgboost analysis of language networks to classify
patients with epilepsy,” Brain informatics, vol. 4, no. 3, p. 159, 2017.

[21] (September 2018) Alibaba elastic compute service service level
agreement. [Online]. Available: https://www.alibabacloud.com/
help/doc-detail/42436.htm/

Xuezhi Zeng has a PhD from the Australian
National University. He has research and de-
velopment interests in Machine Learning, Deep
Learning, Nature Language Processing, Knowl-
edge Graph and Big Data.



JOURNAL OF IEEE TRANSACTIONS ON COMPUTER 13

Saurabh Garg is a Senior Lecturer at the Uni-
versity of Tasmania, Tasmania. He is one of the
few Ph.D. students who completed in less than
three years from the University of Melbourne in
2010. He has gained about three years of expe-
rience in the Industrial Research while working
at IBM Research Australia and India. His area
of interests are Distributed Computing, Cloud
Computing, HPC, IoT, BigData analytics, and
education analytics.

Mutaz Barika has obtained his BSc. and MSc.
in Computer Science from University of Petra
and King Saud University respectively. He is cur-
rently a PhD Candidate in the School of Tech-
nology, Environments and Design at University
of Tasmania. He has been awarded an Aus-
tralian Government Research Training Program
(RTP) Scholarship for supporting his studies. His
current research interests include Big Data, Big
Data Workflow, Cloud Computing, IoT, and Data
Security.

Sanat Bista leads the area of Data, AI and
Autonomous Systems within an Australian Gov-
ernment agency where he overseas projects to
deliver autonomous analyst capability in support
of operations analysis and intelligent decision
superiority. Cognitive information fusion, knowl-
edge synthesis, machine learning and enhance-
ment of trust in autonomous systems through
the application of explainable algorithms are his
areas of research and development interest. As
an executive technology leader, he has over

two decades of experience in leading and delivering projects across
academia, IT and strategic consulting area. He has published widely
and looks forward to developing collaborative projects with universities
to solve complex next generation technological challenges.

Deepak Puthal is a Lecturer (Assistant Pro-
fessor) in the School of Computing, Newcastle
University, United Kingdom. Before this position,
he was a Lecturer (2017-2019) in the University
of Technology Sydney (UTS), Australia and an
associate researcher (2014-2017) at Common-
wealth Scientific and Industrial Research Orga-
nization (CSIRO Data61), Australia. He has a
Ph.D. (2017) from the Faculty of Engineering and
Information Technology, University of Technol-
ogy Sydney. His research spans several areas in

Cyber Security, Blockchain, Internet of Things, and Edge/Fog Comput-
ing and has received several recognitions and best paper awards from
the IEEE.

Albert Y. Zomaya is currently the Chair Profes-
sor of High Performance Computing amp; Net-
working in the School of Information Technolo-
gies, University of Sydney. He is also the Director
of the Centre for Distributed and High Perfor-
mance Computing which was established in late
2009. Professor Zomaya was an Australian Re-
search Council Professorial Fellow during 2010-
2014. He published more than 600 scientific
papers and articles and is author, co-author or
editor of more than 20 books.

Rajiv Ranjan is a Chair Professor for the Inter-
net of Things research in the School of Com-
puting of Newcastle University. Before moving to
Newcastle University, he was Julius Fellow (2013
- 2015), Senior Research Scientist and Project
Leader in the Digital Productivity and Services
Flagship of Commonwealth Scientific and Indus-
trial Research Organization. Prior to that he was
a Senior Research Associate (Lecturer level B)
in the School of Computer Science and Engi-
neering, University of New South Wales. He has

a Ph.D. (2009) from the department of Computer Science and Software
Engineering, the University of Melbourne.


