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Abstract
The pervasive sensing technologies found in smart environments offer unprecedented opportunities
for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily
life that is important for one's emotional and physical health is social interaction. In this paper we
investigate the use of smart environment technologies to detect and analyze interactions in smart
spaces. We introduce techniques for collect and analyzing sensor information in smart environments
to help in interpreting resident behavior patterns and determining when multiple residents are
interacting. The effectiveness of our techniques is evaluated using two physical smart environment
testbeds.

1. Introduction
A recent convergence of technologies in machine learning and pervasive computing has caused
interest in the development of smart environments to emerge. In addition to providing an
interesting platform for developing adaptive and functional software applications, smart
environments can also be employed for valuable functions such as at-home health monitoring
and automation assistance. The long-term goal of our CASAS smart environment project
[29] is to perform automated health monitoring and to provide automated assistance that will
allow individuals to remain independent in their own homes. Given the aging of the population,
the cost of formal health care, and the importance that individuals place on remaining
independent in their own homes [1,16], these technologies will become an increasingly
important component of our everyday lives.

The emphasis of smart home assistance for individuals with special needs has been to monitor
completion of ADL (Activities of Daily Living) activities [5,23,27]. An area that has not
received as much attention is monitoring of interactions for smart environment residents.
Automating detection and analysis of social interactions in smart spaces is the focus of this
paper. Within this paper, we present and empirically validate algorithms that can visualize and
analyze sensor data collected in a smart space to detect social interaction. Smart environment
technologies have been employed to track activities, to monitor the well-being of residents,
and to provide some context-aware services for the environment inhabitants. Our project
explores a new direction for smart environment research. In particular, we hypothesize that
smart environment sensor data and computational tools can be used to effectively detect certain
types of social interaction in everyday environments. To validate our hypothesis, we first
employ tools to visualize activity levels in smart environments and identify likely times and
places of resident interactions. Second, we design an unsupervised learning algorithm to
automatically identify the likely times and places of these interactions. Third, we make use of
a supervised learning technique to recognize the current activities, including those that involve
resident interactions. To assess the efficacy of the technologies for such real-world settings,
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we evaluate our algorithms using data collected in our on-campus smart apartment and our on-
campus smart workplace with volunteer residents.

2. Social Interaction Detection
Interaction among individuals is foundational to human health. In the movie Cast Away, Tom
Hanks plays a FedEx employee who is stranded alone on an island. His need for interaction
and personal connection is so vital that he names a volleyball “Wilson” and lets the ball play
the role of his companion on the island. Ambady et al. [3] discuss how social signals are
determinants of human behavior. In addition, Baker et al. [4] have shown that work
environments which provide access to other people improve productivity for employees. On
the other hand, socialization for individuals with special needs can be more difficult to achieve.
The CDC [7] reports that older adults tend to experience greater social isolation. In turn, York
and Waite [38] point out that social isolation in turn damages health. Fratiglioni et al. [14] have
even shown that older people who live alone are more likely to develop dementia.

Although there is a growing interest in the design of smart environments and ambient
intelligence applications, only recently have researchers used these technologies to study social
behaviors. Griswold et al. [16] explore the use of PDAs to provide awareness of colleagues'
locations and working contexts. Olguin et al. [26] use Bluetooth and IR sensors to detect
interactions such as proximity and face-to-face time. They use this information to identify
organizational behavior and predict job satisfaction. Eagle and Pentland [13] detect social ties,
and group affiliations together with daily behaviors based on mobile phone usage. Choudhury
and Pentland [8] identify social network organizations among individuals by analyzing phone
conversations.

While these approaches have made effective strides in automatically detecting social
relationships, they tend to rely on mobile wearable or hand-held devices. We are interested in
determining if resident interaction can be detected in a smart environment filled with passive,
unobtrusive [18] sensors. We treat a smart environment as an intelligent agent that perceives
the state of the resident and the physical surroundings using sensors and acts on the environment
using controllers in such a way that the specified performance measured is optimized [9].
Researchers have generated ideas for smart environment software algorithms that track the
location of single residents, that generate reminders, and that react to hazardous situations
[37]. Some projects with physical testbeds have begun to emerge including the MavHome
[39], the Gator Tech Smart House [17], the iDorm [12], and the Georgia Tech Aware Home
[2]. Resulting from these advances, researchers are now beginning to recognize the importance
of applying smart environment technology to health assistance [5,20,21,24,28] and companies
are recognizing the potential of this technology for a quickly-growing consumer base [19].

In order to detect social interactions in smart spaces, we collect sensor data in our smart
environment testbeds. First, we show that event density maps provide initial insights into
resident behavior patterns and likely times and places for resident interaction. Second, we
employ Bayesian updating to track residents through a space and automatically detect
interactions based on proximity. Lastly, we conduct a controlled experiment to determine our
ability to recognize interactions and caregiver assistance using hidden Markov models. All of
our data and experimental validation is performed in the context of our two physical smart
environment testbeds: a smart apartment and a smart workplace.

3. Testbeds
Our smart environment testbeds are located on the Washington State University campus and
are maintained as part of our ongoing CASAS smart home project [29]. As shown in Figure
1, the smart apartment testbed contains three bedrooms, one bathroom, a kitchen, a living room,
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and a dining area. The apartment is equipped with motion sensors distributed approximately
1 meter apart throughout the space. In addition, we have also installed sensors to provide
ambient temperature readings and custom-built analog sensors to provide readings for hot
water, cold water, and stove burner use. Contact switches allow us to monitor usage of key
items including a cooking pot, a medicine container, and the phone book. In addition, Insteon™
power controls monitor usage and control lighting throughout the space. Sensor data is captured
using an in-house sensor network and is stored in a SQL database. Our middleware uses a
XMPP-based publish-subscribe protocol as a lightweight platform and language-independent
method to push data to client tools (i.e., our data analysis and application programs).

In addition, we have equipped an on-campus smart workplace environment, shown in Figure
2. This is a laboratory that is organized into four cubicles with desks and computers, an open
server area, a postdoc office, a meeting area, a lounge, and a kitchen. Like the apartment, the
lab is equipped with motion sensors placed approximately 1 meter apart throughout the space
and magnetic sensors record door openings and closing. In addition, powerline controllers
operate all of the lights in the room. Each sensor event is represented by the event's date, time,
sensor ID, and sensor reading.

The sensors that we use in these environments allow our algorithms to recognize and track
daily activities. While this feature alone has benefits for monitoring the functional and physical
well-being of residents, we hypothesize that the data can be used additionally to detect types
of social interactions. We do not employ cameras or microphones in these testbed. While they
may offer valuable insights for social interaction detection, they are typically not well-accepted
by the community that we want to serve with this technology [11] and therefore are not used
as part of our smart environment testbeds.

4. Visualizing Smart Environment Activities
For our first dataset, we collected data in the smart apartment while two undergraduate students
were living there. While the residents did know each other, they also were taking classes;
therefore, interactions between the residents were likely to occur sporadically or only at key
times during the day and week. The dataset contains a total of 50,048 sensor events spread over
15 days.

As the map in Figure 3 shows, the residents as a whole were most active during mid-to-late
morning and around dinner time. This behavior is intuitive and consistent with the lifestyle of
college students. The next density map, shown in Figure 4, highlights the regions in which
sensor events occurred, totaled over the entire data collection period and normalized to fall
between 0 and 1. As the map indicates, the greatest number of events occurs in the bedrooms
(the resident in the top bedroom is a very restless sleeper) and in the common areas of the living
room, dining room, and kitchen.

Looking at the activity density maps, we hypothesize that the likeliest times and regions for
social interaction between these two residents is in the kitchen followed by the living and dining
areas, from late afternoon until late evening. In the next section of the paper, we will determine
if this hypothesis is supported based on Bayesian-based tracking of the residents.

In order to contrast social interaction in an apartment setting with a workplace, we also perform
data collection in our smart workplace. We collected data in the smart workplace testbed for
three and a half months, resulting in 247,545 collected sensor events. During this time, five
students worked fairly regularly in the lab and another five students occasionally spent time in
the space.

Cook et al. Page 3

Cybern Syst. Author manuscript; available in PMC 2010 October 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Once again, we generate event density maps averaged for each hour of the day (Figure 5) and
averaged over each region in the space (Figure 6). The figures show that the workplace
environment exhibits different behavioral patterns than the apartment. Unlike the apartment,
there appears to be one peak of activity in the lab, around mid afternoon. Activity levels decay
smoothly from the peak on either side. The region with the greatest amount of activity is the
open area (the dark region in Figure 6). Residents move through this area when they enter and
exit the lab and when they move to the meeting area, other cubicles, or to get printouts. The
next most active areas are the meeting area, the postdoc area, and the middle cubicle. The
postdoc office and the middle cubicle house researchers that not only spend the most hours in
the lab but are also the most interactive and social of the lab members. The region-based activity
density map thus also mirrors our intuitive impression of where activities and interactions
would likely occur in the space.

This type of activity visualization provides us with insights on activity in the space and allows
us to speculate about when interactions between residents are likely to occur. However, no
actual interactions, here defined as time spent in close proximity, are detected or visualized.
Automatically detecting these interactions will be the focus of the next section.

5. Detecting Interactions
In order to detect interactions between residents in a smart space, we need to determine the
locations of each individual in the space. This can be accomplished by asking each resident to
wear a locating device, but such an approach is impractical for general use and is certainly
intrusive for the residents. Instead, we are interested in determining if we can detect
interactions, or time spent in close proximity, using passive sensors in the space.

To detect interactions we use Bayesian updating to track the individuals through the space.
Using Bayesian updating, after processing the tth sensor event we calculate the probability that
a resident is at location loct using the formula shown in Equation 1. Here loct refers to a possible
location for the resident at time step t, sensort refers to the type of sensor event that was observed
at time step t, and loct−1 refers to the location of the resident at the previous time step.

(1)

At the beginning of each day, the probability values of resident locations are initialized to be
0.9 for their bedroom locations (Bed1 for Resident 1 and Bed2 for Resident 2) and uniformly-
distributed small probability values for the other locations. This is consistent with the actual
locations of the residents observed during manual annotation of the data. For each subsequent
location update, Equation 1 sums the probability of all previous locations for the resident
multiplied by the probability of transitioning from the old location to the new. These probability
values, based on transition frequencies found in the data set, are larger for locations that stay
the same (reflecting the fact that residents stay in one location more than they move around).
Smaller probability values are assigned to neighboring locations (as would occur when the
resident moves around the space), and very small non-zero transition values are assigned to
location pairs that are not neighbors (a person cannot jump from one space to another
disconnected space, but they can move stealthily enough that their movement would not be
caught by motion sensors). This summation is multiplied by the probability that the observed
sensor event would occur for a particular resident location loct, and the total is multiplied by
a normalizing constant, α, to make sure that the sum of probabilities for all possible resident
locations is equal to 1. This update is performed independently for each resident after each
observed sensor event.
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Ironically, one difficulty we encountered using Bayesian updating for multiple residents was
actually recognizing when one resident moved into close proximity with another resident. If
Resident 1 is in a specific location and a sensor event occurs at that location, it initially seems
more likely that Resident 1 triggered the event than that Resident 2 moved into the location.
Looking at sample sensor data, we found one source of information that was not reflected in
our initial probability assignments. Our previous single-resident datasets showed that when
the resident was in the space a sensor event (motion, door, or item) would be generated at least
every four minutes when they were awake (they were outside their bedroom) and at least every
ten minutes when they were asleep (they were inside their bedroom). In the smart workplace,
sensor events were generated in an individual's location at least every two minutes. We updated
our probability distributions (specifically, the probability of transitioning from one location to
another) to reflect this observation. As a result, the automatically-detected interactions between
residents closely approximated the interactions we detected through manual inspection of the
data.

Figures 7 shows the frequency of resident interactions for each hour of the day in the smart
apartment, and Figure 8 shows the proportion of sensor events each hour that occur when the
residents are together or are separated in the space. Both of these figures highlight the fact that
almost all of the interactions occur around dinner time. Even though a great number of sensor
events do occur in the middle of the night, the residents are not interacting during that time. In
fact, a large number of these sensor events are hypothesized to be noisy events triggered by
floor heaters that generate sudden warm air gusts near a motion sensor in the cold hours of the
night. Detecting anomalous events of this type that do not fit a known activity pattern is an
interesting area of additional research with application to resident security.

Similarly, we performed automatic detection of resident interaction in the smart workplace and
generated interaction density maps for this testbed, as shown in Figures 9 and 10.

The findings for the smart workplace reflect different dynamics than for the apartment. While
interactions do occur in the workplace, they typically have shorter duration. There are fewer
interactions overall as a proportion of the number of residents. Interestingly, most interactions
occur late in the evening when students are working and close to lunch time.

This approach to unsupervised detection of resident interaction is useful for determining the
amount, times, and locations of resident interactions. The information that is provided can in
turn shed light on the types of interactions that most likely occur. In our final approach we
design a supervised learning algorithm to recognize activities, both those that occur
individually and those that involve regular or sporadic interaction with another resident.

6. Recognizing Interactions
For our last approach, we design a supervised learning algorithm to recognize activities that
occur in a smart environment. Using this approach we can identify activities that typically
involve a single resident and those that involve multiple residents. We will also use this
information to verify the accuracy of our unsupervised interaction detection algorithm.

For this study, we collected data while 40 WSU undergraduates came into the smart apartment,
two at a time, and performed the following set of eight activities:

1. Resident 1: Fill a medication dispenser, found in the kitchen, with pills from a bottle.

2. Resident 2 (at the same time): Hang up clothes that are laid out on the couch in the
living room.
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3. Resident 2: Move the couch to the other side of the living room. During this task, ask
Resident 1 to come and help.

4. Resident 1: Water plants around the apartment using a watering can from the kitchen
closet.

5. Resident 2 (at the same time): Sweep the kitchen floor using a broom and dust pan
from the kitchen closet.

6. Resident 1 and Resident 2 (together): Play a game of checkers.

7. Resident 1: Prepare dinner using the ingredient and recipe on the kitchen counter.

8. Resident 2 (at the same time): Simulate paying bills. During the task ask Resident 1
to come help find a number in the phone book.

The selected activities include basic and complex ADL activities that are typically found in
clinical questionnaires [30]. Researchers have conducted studies that assess the ability of
machine learning technologies to recognize activities using wearable sensors [23], by
monitoring interactions with objects in the environment [25,27], by videotaping activities [6],
and by analyzing motion sensor data [7]. A variety of models including naïve Bayes classifiers
[6,17,34], decision trees [23], and probabilistic model such as Markov models, dynamic Bayes
networks, and conditional random fields [10,22,27,32] have been tested. While these studies
have indicated the power of algorithmic methods for activity recognition, they have been tested
in single-resident settings where the activities are uninterrupted. In contrast, our approach
handles and is tested here on cases where some of the activities are interrupted (Resident 1's
activities are interrupted when Resident 2 calls for help), some activities occur in parallel, and
some activities involve multiple residents. The resident interactions occur when an activity is
performed together (e.g., checkers) or when one person requests help of the other (e.g., Resident
2 asks for help finding a phone number). Recognizing these types of interactions can be helpful
in assessing an older adult's need for assistance from a caregiver.

In order to recognize these activities in a smart environment, we use a portion of the data as
sample data for creating a model of the activities. Specifically, we use a hidden Markov model
(HMM) as a statistical model of the dynamic system. A HMM models the system using a finite
set of states. Each observable and hidden state is associated with a multidimensional probability
distribution over a set of parameters. The system is assumed to be a Markov process, so the
current state depends only on the previous state. Transitions between states are governed by
transition probabilities. We constructed two HMMs. In the first model, the Resident
Identifier model, a hidden state is used to represent each of the two residents. In the second
model, the Activity Identifier model, a hidden state is used to represent each of the separate
activities. We use the training data to learn the transition probabilities between hidden states
for each model and to learn the relationship probabilities between the hidden states and the
observable states (one for each configuration of sensor values).

To label a sequence of sensor event observations with the corresponding activity, we use the
Viterbi algorithm [35] to compute the most likely sequence of hidden states that correspond to
a sequence of observable sensor events. Applying this algorithm to the Resident Identifier
model, we can label each sensor event with the resident that most likely triggered the event.
Applying the algorithm to the Activity Identifier model using the labeled event data, we can
label each sensor event with the activity that was being performed when the event occurred.

Figure 11 summarizes the accuracy results for the hidden Markov model using 3-fold cross
validation on our set of 20 activity sensor streams which provide a total of 160 training
examples. As can be seen from this summary, the Markov model correctly identified the
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majority of activities, even when they were performed in parallel with other activities, were
interrupted, or were performed with multiple individuals.

As the graph in Figure 11 shows, the hidden Markov model recognized the activities with good
regularity, averaging an accuracy of 90%. The average precision over the 8 classes is 0.93, the
average recall is 0.96, and the average f-score is 0.94. The activity that created the most
difficulty for the algorithm, moving the couch, was particularly challenging because both
residents moved around the space in an almost-random pattern while they positioned
themselves and the couch in the apartment. The fact that even activities involving multiple
residents, such as playing checkers, could be recognized indicates that resident interaction can
be automatically recognized in smart spaces when it is associated with known activities.
Similarly, when caregiver intervention is consistently required for an activity (e.g., for moving
furniture and for paying bills), then this type of interaction will also be automatically
recognized. As a point of comparison we also created a naïve Bayesian classifier (NBC) that
determined activity labels probabilistically based on the number of each type of sensor event
that occurred during the activity. The NBC averaged 49% accuracy for this dataset, providing
evidence that the hidden Markov model is a more effective approach for this type of
classification problem.

In our final experiment, we applied our automated interaction detection algorithm to the data
collected while the undergraduates performed these 8 ADL activities. Using the Bayesian
updating, we identified the sensor events that occurred when the residents were in the same
locations and those that occurred when they were apart (see Figure 12). We also tagged events
as “coming” when one resident moved into a space that was occupied by the other resident and
tagged events as “going” when one resident moved away from the other.

We note that there are a much larger number of sensor events that were generated while the
residents were told to interact than were automatically detected. Specifically, 2,326 sensor
events were generated while the residents were playing checkers or during the times that
Resident 1 assisted Resident 2 with an activity. In contrast, only 1,131 sensor events were
automatically detected as resident interactions. This is due primarily to the fact that some
interactions occurred when the residents were not in close proximity. For example, 769 sensor
events were generated while the residents moved a couch together. During a portion of that
time the residents were not in the same location zone because they were holding the far ends
of the couch. This type of discrepancy indicates that not all interactions can be determined by
physical proximity – residents can interact functionally without being close to each other. We
will need to continue to investigate methods by which other types of interaction can be detected.

7. Conclusions
In this work we described an approach to analyzing resident interaction in smart spaces. Our
algorithmic approach to interaction analysis includes visualization of sensor event density,
automatic detection of close-proximity interactions, and automatic recognition of activities that
involve resident interaction. We evaluated our algorithms on real data collected in our CASAS
smart environment testbeds and demonstrated that each of the techniques provides a unique
type of insight that is valuable for automated detection, recognition, and analysis of resident
interaction.

This paper offers some algorithmic approaches to analyzing data in a very complex situation.
There are clear challenges that still need to be addressed in this topic. For example, our approach
has only been tested for two residents in a single environment. Detecting social interactions
for three or more residents, for families, and for large groups will significantly increase the
complexity of the analysis task and is a direction that we want to pursue in the future. Adding
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information from additional sensors, microphones, and RFID tags would also allow us to detect
and analyze a greater variety of interaction types. In addition, fusing the resident identification
model and activity identification model into a multi-layer hierarchical model might improve
the activity recognition task for multi-resident settings. We would also like to apply these
techniques to data that is collected in environments with older adults in order to analyze
differences in amount and types of interactions between younger and older adults.

Ultimately, we want to use our algorithm design as a component of a complete system that
performs functional assessment of adults in their everyday environments. This type of
automated assessment also provides a mechanism for evaluating the effect of social interactions
on the overall health of a smart environment resident and for evaluating the effect of targeted
interventions on the social health of the resident. We believe these technologies are valuable
for providing automated health monitoring and assistance in an individual's everyday
environments.
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Figure 1.
WSU smart apartment testbed. Sensors in the apartment monitor motion (M), temperature (T),
burner (B), telephone (P), and item (I) use.
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Figure 2.
WSU smart workplace testbed.
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Figure 3.
Hour-by-hour event density map for the smart apartment with two residents.
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Figure 4.
Region-based density map for the smart apartment with two residents.
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Figure 5.
Hour-by-hour event density map for the smart workplace.
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Figure 6.
Region-based density map for the smart workplace.
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Figure 7.
Resident interaction frequency in the smart apartment.
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Figure 8.
Relative frequency of resident interactions in the smart apartment.
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Figure 9.
Resident interaction frequency in the smart workplace.
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Figure 10.
Relative frequency of resident interactions in the smart workplace.
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Figure 11.
Activity recognition accuracy.
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Figure 12.
Detected and actual resident interactions. The number of events generated while residents
interacted (2,326) is larger than the number of detected interactions (1,331).
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