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Abstract. This paper presents a model and an algorithm for the detection 

of specularities from Lambertian reflections using multiple color images from 

different viewing directions. The algorithm, called spectral differencing, is 

based on the Larabertian consistency that color image irradiance from Lam- 

bertian reflection at an object surface does not change depending on view- 

ing directions, but color image irradiance from specular reflection or from 
a mixture of Lambertian and specular reflections does change. The spectral 

differencing is a pixelwise parallel algorithm, and it detects specularities 

by color differences between a small number of images without using any 

feature correspondence or image segmentation. Applicable objects include 

uniformly or nonuniformly colored dielectrics and metals, under extended 
and multiply colored scene illumination. Experimental results agree with the 

model, and the algorithm performs well within the limitations discussed. 

1 I n t r o d u c t i o n  

Recently there has been a growing interest in the visual measurement of surface re- 

flectance properties in both basic and applied computer vision research. Most vision 

algorithms are based on the assumption that visually observable surfaces consist only of 

Lambertian reflection. Specularity is one of the major hindrances to vision tasks such 

as image segmentation, object recognition and shape or structure determination. With- 
out any means of correctly identifying reflectance types, image segmentation algorithms 

can be easily misled into interpreting specular highlights as separate regions or as dif- 

ferent objects with high albedo. Algorithms such as shape from shading and structure 

from stereo or motion can also produce false surface orientation or depth from the non- 

Lambertian nature of specularity. Therefore it is desirable to have algorithms for esti- 

mating reflectance properties as a very early stage or an integral part of many visual 

processes. In many industrial applications, there is a great demand for visual inspection 

of surface reflectance which is directly related to the quality of surface finish and paint. 

Although the measurement of surface reflectance properties in applied physics has 

been the topic of many research efforts, only a few attempts in computer vision have 

been made until recently. There has been an approach to the detection of specularity 

with a single gray-level image using the Lambertian constraints by Brelstaff and Blake 

[BB88]. They attempted to extract maximal information from a single gray-scale image. 
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Although moderate success was demonstrated in detecting some apparent specularities, 

the problem is physically underconstrained. 

In order to overcome the inherent limitations of a lack of information in a single 
image, the natural development is of course to collect more images in physically sensible 
ways, using optical and physical models which describe how surfaces appear according to 

the reflectance properties and sensor characteristics. Recently the computer vision field 
has increasingly incorporated methodologies derived from physical principles of image 
formation and sensing. There have been three types of approaches so far in solving the 
problem: collection of more images (1) with different light directions, (2) with different 
sensor polarization and (3) with different spectral sensors. 

The photometric-stereo-type approaches are the most comprehensive methods in in- 

vestigating surface reflectance properties. The objective of the approaches is to obtain 
object shape and both Lambertian and specular reflectances separately, and more than 

two light sources are required for recently proposed algorithms [NIK90] [Td91]. The ba- 
sic technique of the photometric-stereo-type approaches is the switching of illumination 

sources. The direction and the degree of the collimation of the illumination need to be 
strictly controlled. Therefore, application is restricted to dark-room environments where 
the illumination can be strictly controlled. 

Wolff proposed a method of detecting specularities using the analysis of the polar- 
ization of reflected light [Wo189]. The polarization approach places restrictions on illu- 
mination directions with only two polarizer angles. Although many angles of polarizer 

filters are suggested for extended light, it is yet to be demonstrated extensively how the 

algorithm performs for rough surfaces under extended light sources. 

The dichromatic model [Sha85] proposed by Shafer has been the key model to the 
recent specularity detection algorithms using color, such as the ones by Klinker, Shafer 
and Kanade, by Gershon, by Healey and Binford, and more recently by Bajcsy, Lee and 

Leonardis [KSK88] [Ger87] [ttB89] [BLL90]. The basic limitation of the color algorithms 

is that objects have to be only colored dielectrics to use the dichromatic model. Another 
limitation is the requirement for image segmentation as an essential part of the algorithm. 

For image segmentation, it is usually assumed that object surface reflectance is spatially 

piecewise uniform and scene illumination is singly colored. The algorithms using color 

detect only probable specularities, since variation in object reflectances or in illumination 

color can result in the spectral variation of the scene that may be interpreted as the 
presence of specularities. 

All the algorithms mentioned above have their limitations as well as advantages. The 
assumptions involved with each algorithm pose limitations on the applicable domains 

of the objects and illumination. The primary objective of the research presented in this 

paper was to develop a model applicable to more general object and illumination domains 
than the ones of previous algorithms, using color and multiple views. As mentioned above 

the photometric-stereo4ype approaches require strict control of illumination light, and 

the polarization method has a restriction in illumination directions. Illumination control 

is not possible in generM environments. Examples include outdoor inspection, and indoor 

or outdoor navigation or exploratory environments. Even for indoor inspection, a well 
controlled dark room is not always available. 

The color segmentation approaches impose restrictions on the object and illumination 
color, because of the limited information in a single color image. Therefore it would be 

desirable to have any extra information in order to overcome the limitations in the object 
and illumination domains. The idea of moving the observer is motivated by the concept of 
active observer [Baj88]. I t  is well accepted that with extra views added, extra geometric 
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information can be obtained. For low-level vision problems of shape or structure, it has 

been demonstrated that many ill-posed problems become well-posed if more information 
is collected by active sensors [AB87]. Although the paradigms for shape or structure 

based on feature correspondence cannot be directly applied to the study of reflectance 
properties, the idea of an active observer motivates the investigation of new principles by 

physical modeling in obtaining more information. A question to be answered is what kind 
of extra spectral information can be obtained by a moving camera without considering 
object geometry. If there is any, it may alleviate the limiting assumptions required for 
color segmentation approaches and provide higher confidence in detecting specularities. 

In this paper, a model is presented for explaining extra spectral information from 
two or more views, and a specularity detection algorithm, called spectral differencing, is 

proposed. The algorithm does not require any assistance from image segmentation since 

it does not rely on the dichromatic model. The algorithm only exploits the variation of 

different spectral composition of reflection depending on viewing directions, therefore it 
does not require any geometric manipulation using feature correspondence. An important 
principle used is the the L a m b e r t i a n  cons i s t ency  that the Lambertian reflection does not 

change its brightness and spectral content depending on viewing directions, but the 

specular reflection or the mixture of Lambertian and specular reflections can change. 

Basic spectral models for reflection mechanisms are introduced in Sect. 2, and Sect. 

3 explains how the measured color appears in a three-dimensional color space. A model 
is also established in Section 3 for explaining the spectral difference between different 

views for uniform dielectrics under singly colored illumination. The detection algorithm 
of spectral differencing is also described in Sect. 4, and Sect. 5 discusses the spectral 
differencing for various objects that include nonuniformly colored dielectrics and metals, 
under multiply colored illumination. Experimental results are presented in Sect. 6. 

2 R e f l e c t i o n  M o d e l  

Physical models for light-surface interaction and for sensing are crucial in developing the 

algorithms for detection of specularity. Several computer vision researchers have intro- 

duced useful models based on the physical process of image-forming [TS67] [BS63] [Sha85] 
[LBS90] [HB89]. Although there are certain approximations, the models introduced in 

this section are generally well accepted in computer vision for their good approximation 

of the physical phenomena. 

2.1 Ref lec t ion  Type 

There are two physically different types of reflections for dielectric materials according 
to the dichromatic model proposed by Shafer [Sha85], interface or surface reflection and 
body or sub-surface reflection. Reflection types are summarized in Fig. 1. The surface or 

interface reflection occurs at the interface of air and object surface. When light reaches 

an interface between two different media, some portion of the light is reflected at the 
boundary, resulting in the interface reflection, and some refracted into the material. The 

ratio of the reflected to the refracted light is determined by the angle of incidence and 

the refractive indices of the media. Since the refractive indices of dielectric material are 

nearly independent of wavelength (A) over the visible range of light (400 n m  to 700 n m  of 

wavelength), interface reflectance of dielectrics can be well approximated as flat spectrum 

as shown in Fig. 1 [LBS90]. 
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The refracted light going into a sub-surface is scattered from the internal pigments and 
some of the scattered light is re-emitted randomly resulting in the body or sub-surface 
reflection. Thus the reflected light has the Lambertian property due to the randomness 
of the re-emitted light direction. The Lambertian reflection means that the amount of 

reflected light does not depend on the viewing direction, but only on the incident light. 

Depending on the pigment material and distribution, the reflected light undergoes a spec- 

tral change, i.e., the spectral power distribution (SPD) of the reflected light is the product 
of the SPD of the illumination and the body reflectance. The fact that the interface and 

the body reflections are often spectrally different is the key concept of the dichromatic 

model, and central to many detection Mgorithms by color image segmentation. 

For metals, electromagnetic waves cannot penetrate into the material by more than 
skin depth because of the large conductance that results in large refactive index. Therefore 
all the reflections occur at the interface, and due to the lack of the body reflection, metals 
are unichromatic [HB89]. Interface reflections from most metals are white or grey, e.g., 
from silver, iron, aluminum. However, there are reddish metals such as gold and copper. 
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Fig, 1. Reflection models 

Reflections can also be categorized as glossy specular and nonglossy diffuse reflections 

depending on the appearance. This categorization depends on the degree of diffusion in 
the reflected light direction. Body reflection can be modeled as a perfectly diffuse re- 
flection, i.e., Lambertian reflection. Specularity results from interface reflection, and the 

reflected direction of the specularity depends both on the illumination direction and sur- 

face orientation. The specularity is diffused depending on the surface roughness. There 
have been some models that describe the scattering of light by rough surfaces. The 
physical modeling of Beckman and Spizzichino [BS63] is based on the electromagnetic 

scattering of light waves at rough surfaces. The simpler geometric modeling by Torrance 

and Sparrow is widely accepted in computer vision and graphics as a good approximation 

of the physical phenomenon [TS67]. The Torrance-Sparrow model assumes that a sur- 
face is composed of small, randomly oriented, mirror-like microfacets, and the Gaussian 
function is used for the distribution of the microfacets. A rougher surface has a wider 
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distribution of the microfacets, and the direction of the reflected light is more diffuse, as 
is illustrated in Fig. 1. 

Diffusion in the direction of the interface reflection may result from extended and 

diffuse illumination as shown in Fig. 1. When illumination is extended and diffuse, the 

incident angle of light to a surface patch is extended and interface reflections at even a 

smooth surface appear diffusely. When the surface is rough, the reflection is more diffuse. 
In this paper, "specular reflection" is used to denote interface reflection, while "Lam- 

bertian reflection" is used to denote body reflection. Use of "surface reflection" for denot- 
ing the interface reflection is avoided, since, in a wider sense, it means all the reflections 
from surface and sub-surface. In this paper, "surface reflection" is used in the wider sense. 
When "diffuse reflection" is used, it can be either diffuse interface or body reflection. 

2.2 R e p r e s e n t a t i o n  and  Sensing 

For singly colored illumination e(~), whether geometrically collimated or extended, scene 
radiance is given as the product of illumination and reflection, i.e., 

Lr(~) = e(~)s(~). (1) 

where s(A) is the reflection, and A is the wavelength of light. The surface reflection is the 

linear combination of specular and Lambertian reflections with the different geometric 
weighting factors, i.e., 

= ps( )Gs(0r, + pB( )G8 (2) 

where ps(A) and pB(A) are the specular and the Lambertian refiectances, i.e., Fresnel re- 
flectance and albedo, respectively, (0r, Cr) denotes the reflection direction, and Gs (Or, Cr) 
and GB are the purely geometric factors which are independent of spectral information. 
The geometric factors are determined by illumination and viewing directions with respect 
to surface orientation. Observation of the specular reflection is highly dependent both 
on the viewer and on the illumination directions, while observation of body reflection 

depends only on the illumination direction. 
Note that, for metals, pB(A)GB is 0, and for dielectrics, Gv is independent of the 

viewing angle (0~, r It has been reported that the spectral composition of Lambertian 

reflection slightly changes when the incident light direction approaches 90 ~ with respect 
to surface normal (glancing incidence) [HB89]. However this effect is small even near the 

glancing incidence of light, and thus is neglected in the model. 

When there are more than one illumination sources with different colors from different 

directions, the addition of reflections under different illumination sources 

Lr(A) = el(A)sl(A) + e2(A)s2(A) -F . .  (3) 

is used for establishing models presented in this paper. 
The color image sensing is usually performed with a CCD camera using filters of 

different spectral responses. With 3 filters (usually R, G and B), the quantum catch or 
the measured signal from the camera is given by 

1 

where Qk(,~) and qk for k = O, 1, 2 are the spectral response of the k - t h  filter, and the 

camera output through the k - t h  filter, respectively. The wavelengths ~1 = 400 nm and 

As = 700 nm cover the range of the visible spectrum. 
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In many works in color science, interpretation of measured color is often performed 

with three-dimensional color space on three basis functions, as well as the RGB sensor 

space, and some basis functions have been suggested and used [Coh64] [MW86]. In this 

paper, the scene radiance model is explained in a general three-dimensional color space 
although the proposed algorithm is implemented with the I%GB space. 

The scene radiance Lr(A) can be approximated with three basis functions S0(A) SI(A) 
and S2(A) as 

2 

Lr(A)  = (5) 
i--O 

where 7~'s are the scalar weighting factors. The relationship between the sensor responses 
qk's and 7/'s is a linear transformation given as 

f/' q = A 7, 7 = V q_, Aki = SI(A)Q~(A)dA, (6) 
1 

where q = [qo,ql,q2] T, 3' = [70,71, 72] T, V__ = A -1, and Aki is the element of A in the 
k-th row and i-th column. 

3 S p e c t r a l  S c e n e  R a d i a n c e  f r o m  D i f f e r e n t  V i e w s  

The  vetor q or the linear transformation 7 represents the measured scene radiance that 

results from the illumination and reflectance color and from geometric weighting. In 

this section, it is explained how the measured q's or 7 's  from a color image appear in 
a general three-dimensional color space, and a model is established for a specularity 

detection algorithm using color information from different views. The three-dimensional 

spectral space constructed from the RGB values or from the basis functions S0(A)SI(A) 

and S~(A) is generally called S space in this paper. 

In this section, the spectral scene radiance is considered only for dielectric objects 

with uniform reflectance under singly colored illumination. Dielectric materials with re- 

flectance variation and metals under multiply colored illumination will be discussed in 

Sect. 5. 

3.1 L a m b e r t i a n  Ref lec t ion  

For Lambertian surfaces, shading results from the variation in surface orientations rela- 

tive to illumination directions. In the S space, the scene radiance generated by shaded 

Lambertian reflections form linear clusters. 

Scene radiance from Lambertian reflection is given from (1), (2) and (5) by 

2 

Lr(A) = e(A)pB(A)GB ,= ZTiSI(A). (7) 
i=0 

Shading on a surface of uniform reflectance is due to variations in geometry GB in (7), 

and the spectral curve of Lr(A) is scaled depending on GB. When the spectral curves of 

e(A) and pB(A) are assumed to be constant over the differently shaded object patches, 

the ratio of 7i's such as 71/70 and 72/7o are independent of shading by GB, and thus the 

ratios of 7{'s are constant over the differently shaded patches. Therefore 7/'s form a linear 

cluster in the S space as shown Fig. 2 (a). This property has been previously suggested 
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Fig. 2. Shading; (a) linear duster (b) coordinates for simulated images (c) Lambertian shading 
(d) linear duster in S space 

and used in segmentation [Sha85] [KSK88]. The orientation of the vector 7 is determined 

by the Lambertian reflectance and illumination, and independent of geometry. 

Examples are shown by simulation with a spherical object for the geometry shown in 
Fig. 2 (b). Figure 2 (c) and (d) show a simulated image of a sphere, and its color cluster 
in the S space with (Ov,r = (35~ ~ and (0i,r = (0~176 respectively. For the 

simulation, a spectrum measured from a real blue color plate is used for the reflectance, 

and a linear cluster is shown in the S space for spectrally flat neutral light. The Fourier 

basis functions S0(A) = 1, Sz(A) = sin~ and S2(A) = cosA are used for the S space in 
Fig. 2 (d). 

vie 2 Xhading 

Lambertian ~ ~ S = 
shading ~ / N,/-~ 

.s, 
for view 1 

(a) Co) 

Fig. 3. Lambertia_n surface from multiple views (a) geometric illustration (b) color clusters in S 
space 

Figure 3 (a) illustrates Lambertian surfaces at two different views. When illumination 

is the same between different views, Lambertian reflections from a surface appear in the 

same locations in the S space regardless of the viewing angle. However occlusion of 

surfaces by other object surfaces can affect the distribution of color points in the linear 

cluster. For the view 1, not all the Lambertian surfaces are visible due to occlusion, and 

color clusters from only a part of the object are observable in the S space. The visible color 

clusters are shown as a dark solid line in Fig. 3 (b). On the other hand, those invisible 

surfaces are disoccluded in the view 0. Disocclusion is the emergence of object points or 

patches into visibility from behind occlusion. Depending on the shading of the disoccluded 

part, emerging color clusters of the object from occlusions can be included in the linear 

cluster, or can appear outside the cluster yet in the extended line, since the disoccluded 

part is a part of the same object. An example of spectrM difference between the two views 

is shown as the gray lines in Fig. 3 (b). Note that orthographic projections are illustrated 

in Fig. 3 (a), but the above explanation also applies to perspective projections. 
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3 . 2  S p e c u l a r  R e f l e c t i o n  

Highlights are due to specular reflections from dielectrics or metals. Since scene radiance 

from specular reflection is given by 

2 

Lr()t) = e(~)ps()t)Gs(t~r,r = ~--~%Si(~). (8) 
i=0 

Specular reflections alone, e.g., from metals or from black dielectrics, form linear clusters 

in the S space like the Lambertian reflections. Because of the neutral reflectance, the 
direction of the linear cluster from the dielectrics is the same as the illumination direction 

in the S space. On the other hand, the direction of a linear cluster from a metal is 

determined by the spectral reflectances and illumination. 

For dielectrics, specular reflections are added to Lambertian reflections as shown in 

Fig. 4 (a). With extended illumination or with roughened surfaces, the distribution of 

specular reflections can spatially vary over a wide area of the shaded surface as shown 

in Fig. 4 (a). Therefore specular reflections form planar clusters which include the linear 
clusters formed by shading on the S space. The orientation of the plane is dependent on 

the illumination color. When illumination is well collimated and the surface is smooth the 

color clusters form generally skewed T or L shapes as suggested by Shafer [Sha85], since 

the specular reflection is distributed in a small range of shading and forms a linear cluster 

connected to a linear cluster of the Lambertian reflections. However, when illumination 
is spatially extended or the surface is rough, the color clusters generally form skewed P 

shapes, and the color cluster of specular reflections is planar and coplanar with a linear 

cluster of Lambertian reflections. 

So, . .  So  s o  

specularity ' vi vie view 1 

_,  : S 1 \F.~r_ambertian - ,  "I  

(a)  (b) shading (C) (d) 

Fig. 4. Specularity; (a) in S space (a) geometric illustration for multiple views (b) color clusters 
in S space for smooth surface (c) for rough surface 

Figure 4 (b) illustrates positions of specularities on shaded a Lambertian surface at 

two different views. Depending on the viewing directions, the specularities h0 and hl in 

Fig. 4 (b) are located on spatially different shaded surfaces. 

In the S space, color clusters from the specularities are located on differently shaded 

Lambertian clusters as shown in Fig. 4 (c) and (d). The shape and position of the spec- 

ular clusters depend on viewing directions and surface roughness as well as on surface 

orientations and illumination directions. Figures 5, 6 and 7 show the color clusters of 

specular and Lambertian reflections by simulation for different surface roughness and for 

different collimation of neutral illumination. As shown in the figures, the planar color 

clusters in the $ space are differently shaped depending on the viewing directions. 
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Except for Lambertian occlusions, the spectral difference between the views results 

from specularities, although it does not account for all the specularities due to the over- 

lap of  specularities in the S space. In Fig. 4 (c), all the specularities are the spectral 

difference, but in Fig. 4 (d), only part of the specularities is the spectral difference since 

there is an overlap between the specular clusters from the two views. Since the amount  

of spectral displacement of the specularities is determined by the difference in the view- 

ing angles, object shape, variations in object shape and il lumination distribution, it is 

difficult to predict it in a simple manner for general objects and illumination. However 

the general rule is that as the difference in the viewing directions increases, the spectral 

overlaps between the specularities decrease. If the object shape varies more geometri-  

cally, specularities are likely to change more. Specularities often completely disappear 

depending on the views. 

A point to note is occlusion by specularity. In some views, specularities can be dis- 

tributed such that some Lambertian shading may not be visible at all. In other views, 

the Lambertian shading may appear as new clusters in the S space, therefore can be 

detected as spectral difference. 

4 S p e c t r a l  D i f f e r e n c i n g  A l g o r i t h m  
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Fig. 7. Reflections for rough surface and collimated illumination for 
(0v, Cv) -- (0 ~ 0~ (35 ~ 0~ (70 ~ 0 ~ and relative surface roughness =0.3 
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Fig. 8. Spectral differencing (a) images from different views (b) color clusters in S space 

For two color images with different viewpoints, the spectral differencing is an algorithm 
for finding the color points of one image which do not overlap with any color points 
of the other image in a three-dimensional spectral space (e.g., the S space or a sensor 

space with RGB values). In order to detect the view-inconsistent color points, the spec- 
tral differencing algorithm computes the minimum spectral distance (MSD) images. The 
computation of an MSD image is explained as follows with an example shown in Fig. 8. 

Let c~ and/~ be two color images obtained from two different views. The notation 

MSD(~ ,--/9) 

represents the MSD image of c~ from/~. A pixel value of the MSD image MSD(a ~ #) 
is the minimum value of all the spectral distances between the pixel in the image c~ and 
all the pixels in the image #. The spectral distance is defined as the euclidean distance 

between two color points in a three-dimensional spectral space. Any MSD's above a 
threshold indicate the presense of specular reflections or Lambertian disocclusions. The 
threshold for the MSD image is determined only by sensor noise, and no adjustment is 
required for different environments. 

Figure 8 (a) illustrates two images of an object with specularity from two different 

viewpoints, and the corresponding color clusters in the S space are shown in Fig. 8 (b). 
The pixel P in the image a is distantly located from the specular and Lambertian color 

points of the image/~, which indicates specular reflection at P. On the other hand, the 

Lambertian reflections from the views o~ and fl have the same linear cluster. Since the 
pixel R in the region of Lambertian reflection in the image a is close to the Lambertian 

points in the image j3 in the S space, it should not be detected by spectral differencing. 

The spectral differencing does not detect all the specularities in a view. In Fig. 8 (b), 

the color point from the pixel Q is located in the overlapped region between the planar 

clusters in the views a and #. Since Q is located within the planar cluster formed by 
specular reflection in the view #, it is hard to detect Q as a specular reflection when the 
color points in planar cluster in the view/~ is densely populated. The specular reflection 
at Q can be detected by this algorithm only when the color points in the planar cluster 

in the view ~ are sparsely distributed around Q. 
In this paper, no study for finding faster algorithms for spectral differencing is pre- 

sented. However, an important point to note is that the algorithm is pixelwise parallel. 

Therefore with a parallel machine, the computation time depends only on the degree of 

achievable parallelism of the machine. 
Spectral differencing is performed for the three simulated images shown in Fig. 7, and 

the three images and the MSD images are shown in Fig. 9. The table of image arrange- 
ment is also shown in Fig. 9. All the MSD images in Fig. 9 show detected specularities. 
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view 0 

MSD(O~-I) 

MSD(O,~2) 

MSD( ,-O) 

view 1 

MSD(I~-2) 

MSD(2~O) 

MSD(2~I) 

view 2 

Fig. 9. Spectral differencing for the simulated images in Fig. 9 

The detection is always an underestimation of the specular region except for disocclu- 

sions. The disoccluded Lambertian reflections are shown in MSD(0#--2), and there is a 
region detected due to specular disocclusion in MSD(I~2).  In the view 2, the brightest 
shading is occluded by specularities. 

5 E x t e n d e d  O b j e c t  a n d  I l l u m i n a t i o n  D o m a i n  

In the previous sections, the spectral differencing is explained only for dielectrics with 

uniform reflectance under singly colored illumination. In this section, it is discussed that 
the spectral differencing is effective as well for various objects under multiply colored 
illumination. 

5.1 Dielectrics with Reflectance Variation 

When the reflectance pB(A) is not uniform in color for a surface, but has gradual variation, 

the measured colors from shaded Lambertian surface do not form a linear cluster. The 
color cluster is dispersed depending on the degree of variation in the reflectance, as 
illustrated in Fig. 10 (a). Some natural surfaces such as wood grains, leaves and human 
faces have variation in reflectance. 

Figure 10 illustrates the color clusters of a dielectric object with varying Lambertian 
reflectance. The Lambertian cluster is not linear due to the variation in pB(A) in (1) 
which is written again below 

Lr(;~) = e()t)[pa()t)Gs(Sr, Cr) + pB(~)Gs]. (9) 

Even with the volume or planar clusters from Lambertian reflection, the Lambertian 

consistency applies (except for disocclusion), since the geometric factor GB is independent 
of the viewing angle (0r, Cr). On the other hand, specularities are mixed with differently 

shaded and colored Lambertian reflections depending on the viewing directions, since the 

geometric factor Gs(~r , r  for specular reflections varies depending on (gr,r  in (9). 
Therefore the spectral differencing can detect specularities that have different spectral 
values over different views. 
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S= S= S = ~  

S,  = S ,  ~ S ,  

(a) (b) (c) 
Fig. 10. Dielectric with variation in reflectance 

5.2 Die lec t r ics  u n d e r  Mu l t i p l y  Co lo red  I l l u m i n a t i o n  

Under multiply colored illumination, Lambertian clusters even f rom uniform dielectrics 

are not linear, but dispersed in the S space due to the variation in the illumination. 

However, the distribution of Lambertian color points is invariant with respect to viewing 

directions except for occlusions and disocclusions. On the other hand, the distribution of 

color points from specularities changes depending on the viewing directions due to the 

different mixture of colors between the specular reflections or between the specular and 

Lambertian reflections. 
From (1) and (3), scene radiance with two illumination sources is given as 

Lr(A) = ps(A)[el(A)Csl(8r, r § e2(A)Gs2(#r, Cr)] (10) 
+ pB(A)[el(A)a81 + ~2(A)G~2], 

and Fig. 11 shows an example with two illumination sources. The Lambertian reflection 

forms a planar cluster with two illumination colors, and independent of (6r, r When 

there are more than two illumination sources with different colors, or when pB(A) varies, 

the Lambertian reflection generally forms a volume cluster. 

S o S o S o reflection global illumination 

_--S~ ~, :S~ ~, ~S~ object r 

(a) (b) (c) (d) 

Fig. 11. (a) (b) (c) Dielectric under multiply colored illumination from varying viewpoints (d) 

inter-reflection 

The specular reflection is a linear combination of the two components from the two il- 

lumination colors el and e2. Each component as well as the combination varies depending 

on the viewing angle (0r, Cr). When the specularities appear in different Lambertian sur- 

faces without overlap, they represent illumination colors in two directions separately as 

shown in Fig. 11 (a). When the viewing geometry changes, the specularities can be mixed 

in a surface and produces new specular points in the S space as shown in Fig. 11 (b) and 
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(c). Therefore spectral differences result from specular reflections except for Lambertian 
disocclusions. 

Inter-reflect ion When there are many objects, the object surface of interest receives 

not only the light from the illumination sources, but the reflected light from the other 

objects. The latter causes a local change of illumination, as illustrated in Fig. 11 (d). The 

reflection from more-than-one surfaces is called inter-reflection. Object surfaces for the 

first reflection are secondary light sources which are generally extended depending on the 

object size. Together with the direction global illumination, the first reflection provides 

multiply colored illumination for other surfaces as shown in Fig. 11 (d), and influences 

the distribution of color clusters of the other surfaces. In indoor environments, reflections 

from walls and ceiling are the major sources of ambient light. 

5.3 Meta ls  

Since metals have only specular reflectance, there are no Lambertian reflections. When 

there is only a single illumination source for a uniform metallic object without any ambi- 

ent light, only a linear cluster appears in the S space. In most cases, however, metals are 

observed with reflections from many light sources that include scene illumination sources 

and many surrounding objects. Especially shiny metals reflect all the incoming light 

from surrounding objects. The mixture of reflected light from direct illumination sources 
and inter-reflections changes depending on viewing directions, with different geometric 

weighting of the light coming from different directions. Therefore the color changes due 

to the different mixture of light can be detected by spectral differencing. 

An example is shown in Fig. 12 for the scene radiance under two different illumination 

sources. Without any Lambertian components in (10), the scene radiance is a combination 

of two specular components as 

(11) 

When the two components separately appear in a measured image without being mixed, 

the color points in the S space form two different linear clusters as shown in (a). Depend- 

ing on the viewing directions, the two colors can be differently combined as shown in (b) 

and (c), and the spectral differencing can detect different reflections in color. 

S o 

~1 m $1 

(a) 

So So 

(b) (c) 

Fig. 12. Metal under multiply colored illumination from varying viewpoints 
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6 E x p e r i m e n t a l  R e s u l t s  a n d  D i s c u s s i o n  

In order to test the algorithm, some experiments were carried out on various objects 
all under multiply colored illumination. Illumination was provided by fluorescent light 

in two directions on the ceiling of the room and by tungsten light in another direction 
located closer to the objects. Four large fluorescent light tubes were used, two in each 

direction, and half of a tungsten light bulb was screened with white paper for diffusing the 

light and the remaining half was exposed. White walls and ceiling provide some ambient 

illumination. The illumination environment is a normal indoor one, unlike a dark room 
with collimated light. 

Fig. 13. Specularity with variation in Lambertian reflectance 

Figure 13 shows images of dielectric objects with smooth reflectance variation. The 

arrangement of measured images and MSD images is the same as that  in Fig. 9. The 

porcelain horse has variation in its Lambertian reflectance, especially near its shoulder 

and the saddle. The MSD images show nonzero values where most of the sharp and diffuse 

specularities are. The threshold for the MSD images was experimentally determined as 
2 in terms of the RGB input values (0-255). 
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Fig. 14. Specularity from metal 

Figures 14 shows the results from a metallic object. The MSD images clearly show 

most of the sharp specularities, indicating that the spectral movement of the sharp spec- 

ularities are large. Some of the diffuse specularities are also detected. For a given shape 

of object, the diffuse specularities are better detected with wider angles between the 

views. In fact, all the reflections from metals are specular reflections. However the very 
diffuse reflections are not detectable when they form densely populated color clusters 

like Lambertian reflections in a three-dimensional color space, and the different viewing 
geometry does not generate enough spectral differences. 

The experimental results with real objects demonstrate that spectral differencing is a 
remarkably simple and effective way of detecting specularities without any geometric rea- 
soning. The algorithm does not require any geometric information or image segmentation. 

Therefore it can provide independent information to other algorithms such as structure 

from stereo, structure from motion, or image segmentation algorithms. Since the spectral 

differencing does not depend on any image segmentation, there are no assumptions of 
uniformly colored dielectric objects and singly colored illumination. 

A limitation of the spectral differencing algorithm is that disocclusions are detected 

together with specularities and they are indistinguishable. Separation between the spec- 

ularity and disocclusion may be achieved with other algorithms such as color image seg- 
mentation algorithms [BLL90]. As mentioned above, the spectral differencing algorithm 

can be easily intergrated with a color segmentation algorithm, and we are currently 
developing some integrated methods. 
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7 Conclusion 

In this paper, an algorithm is proposed for the detection of specularities based on physical 

models of reflection mechanisms. The algorithm, called spectral differencing, is pixelwise 

parallel, and it detects specularities based on color differences between a small number of 

multiple color images without any geometric correspondence or image segmentation. The 

key contribution of the spectral differencing algorithm is to suggest the use of multiple 

views in understanding reflection properties: Although multiple views have been one 

of the major cues in computer vision in obtaining object shape or structure, it has 

not been used for obtaining reflection properties. The spectral differencing algorithm is 

based on the Lambertian consistency, and the object and illumination domains include 

nonuniformly colored dielectrics and metals, under multiply colored scene illumination. 

The experimental results conform well to our model based on the Lambertian consistency. 
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