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ABSTRACT We adopt Bidirectional Long Short-Term Memory (BiLSTM) neural network and Wavelet

Scattering Transform with Support Vector Machine (WST-SVM) classifier for detecting speech impairments

of patients at the early stage of central nervous system disorders (CNSD). The study includes 339 voice

samples collected from 15 subjects: 7 patients with early stage CNSD (3 Huntington, 1 Parkinson, 1 cerebral

palsy, 1 post stroke, 1 early dementia), other 8 subjects were healthy. Speech data is collected using voice

recorder from Neural Impairment Test Suite (NITS) mobile app. Features are extracted from pitch contours,

Mel-frequency cepstral coefficients (MFCC), Gammatone cepstral coefficients (GTCC), Gabor (analytic

Morlet) wavelet and auditory spectrograms. 94.50% (BiLSTM) and 96.3% (WST-SVM) accuracy is achieved

for solving healthy vs. impaired classification problem. The developed method can be applied for automated

CNSD patient health state monitoring and clinical decision support systems as well as a part of Internet of

Medical Things (IoMT).

INDEX TERMS Neural impairment, mobile app, deep learning, wavelet scattering, decision support, speech

processing, digital health, Internet of Medical Things.

I. INTRODUCTION

Central nervous system disorders (CNSD) include Hunting-

ton Disease (HD), Parkinson Disease (PD), Alzheimer Dis-

ease (AD), mild cognitive impairment (MCI) and dementia.

These diseases cover a broad range of symptoms, in par-

ticular, tremor (muscle stagnancy, body balance disorders,

involuntary movements, etc.), cognitive (decision-making

difficulties, behavioral disorders, attention problems, mem-

ory loss, etc.), speech (lack of pronounced words, use of

shorter phrases, pauses) and energy expenditure (weight loss,

negative energy balance) impairments [1].

Speech impairments are long known to be one of the most

commons symptoms in HD [2] and PD [3]. Although, HD

and PD have many different symptoms, which are related

only to that one specific disease, they present a similar set

of deficits expressed in speech e.g. slow, weak, imprecise,

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

uncoordinated speech (dysarthria) [4], swallowing difficul-

ties (dysphagia) [5], trouble sequencing the sounds in sylla-

bles and words (apraxia) [6], difficulty to express thoughts

orally (aphasia) [7]. Such circumstances (also combined

with cognitive impairments) lead to the need of specialized

assessment and speech treatment for people with HD or PD.

Usually, this treatment is provided by a speech-language

pathologist (SLP) who checks for speech dysfunctions. SLP

gives guidelines for maintaining safe swallowing, evaluates

speech acceptance criteria i.e. pitch (degree of voice high-

ness or lowness), loudness (ability for patient to project his

own voice), articulation (ability to pronounce sounds), voice

quality (ability to hold pitch properly), respiration (coordina-

tion of speech with breathing), resonance (quality of voice

that is determined by the balance of sound vibration dur-

ing speech), prosody (rhythm, stress and intonation during

speaking) [5]–[7].

Current research in the computer science field focuses on

replicating the analysis of SLP with assistive
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devices [8]–[11], adapting heuristic algorithms [12], [13]

and deep learning [14]–[16] for monitoring change

in speech patterns, speech recognition and classifi-

cation [17]–[20]. In addition, wavelet transforms (dis-

crete, continuous, tunable-Q) are successfully utilized

for speech impairment monitoring based on voice signal

analysis [21], [22]. Here we focus on adopting bidirec-

tional recurrent neural network (BiRNN) with long short-

term memory (LSTM) [23], [24] and wavelet scattering

transform–Gabor [25]) methods for solving healthy vs.

impaired test subject classification problem based on speech

signals. Our approach is based on the digitized data collection

using the extended self-administered gerocognitive examina-

tion (SAGE) [26] methodology via non-invasive interface of a

smart device (mobile phone or tablet) adapted for early stage

patients with the CNSD disorders.

The structural organization of the paper is as follows.

Section II analyses and compares the relatedwork by showing

limitations of existing solutions. Section III covers materials

and methods used, i.e. the implementation and working prin-

ciple of voice recorder task as part of proposed neural impair-

ment screening software, audio file collection procedure,

test subjects involved and definition and formularization of

feature extraction methods for analysis of speech signal.

Section IV describes two experiments for solving binary clas-

sification problem (healthy vs. impaired). Section V contains

discussion, conclusion and future works.

II. RELATED WORK

There are many studies being conducted in detection of

speech impairments in central nervous system disorder

patients (CNSD). Gillivan-Murphy et al. [27] use voice

recordings (collected in sound-treated laboratory with ambi-

ent noise measured at 50 dB level by using a AKG-C420 head

mountedmicrophone) to detect speech tremors in PD. Acous-

tic analysis was performed with a Voice and Tremor Pro-

tocol (VTP), i.e., amplitude of voice, periodicity, rate, and

magnitude of frequency signal features. Gaballah et al. [28]

investigate subjective and objective assessment of the PD

speech quality. The analyzed features are derived from the

speech recordings (collected with 7 amplification devices)

based on cepstral, spectral, and/or temporal parametrization

(mel-frequency cepstral coefficients (MFCC) [29], gamma-

tone frequency cepstral coefficients (GTCC) [30], discrete

cosine transform (DCT) [31], speech-to-reverberation mask-

ing ration (SRMR) [32], modulation area (ModA) [33], Low

Complexity Quality Assessment (LCQA) [34]. Support vec-

tor regression (SVR), Gaussian process regression, machine

learning methods and correlation analysis were used achiev-

ing an accuracy of 0.85.

Identification of acoustic and spectral features in PD is

analyzed in [35] with data recording at 44.1 kHz, 16bits

per sample by using the same microphone. MFCC, linear

prediction coefficients (LPC) [36], discrete wavelet transform

(DWT) [36], Gaussian mixture model (GMM) [37], time

domain entropy (ET) [38], spectral entropy (ES) [39] features

were used for the evaluation (77.2% accuracy was achieved

by using SVM with linear kernel).

Wu et al. in [40] target learning acoustic features (MFCC,

spherical K-means, pooling method) to detect PD. All data

was captured in a soundproof room and then resampled at a

16 kHz rate. Random Forest (RF) and SVM methods were

used for the evaluation of detection accuracy (best achieved

result is 96.37% with RF classifier). Perez et al. [41] dif-

ferentiate between healthy controls and HD patients) based

on acoustic and lexical features (MFCC, GMM, pause,

speech rate, goodness of Pronunciation (GoP) [42]). The

results were evaluated with k-Nearest Neighbours (k-NN)

and Long-Short-Term Memory Recurrent Neural Networks

(LSTM-RNN) algorithms (0.87 correlation).

Sakar et al. in [43] provide a comparative analysis of

speech processing algorithms for PD recognition using

detrended fluctuation analysis (DFA), pitch period entropy

(PPE), recurrence period density entropy (RPDE), MFCCs,

wavelet transform (WT) methods for feature extraction. The

results were validated with a set of supervised classifiers

(Logistic Regression, Multilayer Perceptron, Naive Bayes,

Random Forest, SVMs with linear and RBF kernels, and

k-NN algorithms) (0.86 best achieved correlation).

The classification of PD severity is introduced by

Oung et al. in [44]. The data for speech signals were acquired

by using a Sennheiser DW Pro2 headset positioned in 5 cm

distance from the mouth of a subject. The researchers for fea-

ture extraction in speech adapted wavelet energy (WE), Shan-

nonwavelet entropy (ShWE), Renyi wavelet entropy (ReWe),

Tsallis wavelet entropy (TsWe), permutation entropy (Pe)

and fuzzy entropy (Fe). The classifiers used were extreme

learning machine (ELM), K-nearest neighbour (KNN), prob-

abilistic neural network (PNN) and (best accuracy 91.11%).

Ali et al. [45] use Parkinson speech-based dataset from the

UCI repository to investigate the classification of early diag-

nosis of PD. 15 acoustic features were considered in research:

jitter, number of pulses, number of periods, mean period,

standard deviation of period, number of voice breaks, degree

of voice breaks, mean pitch, standard deviation, minimum

pitch, autocorrelation, noise-to-harmonic ratio and harmonic-

to-noise ratio. Four classifiers were examined: Bayes Net,

Random Forests, Decision Stump and SVM (95.6% best

accuracy).

The fusion of wavelet packet transform (WPT) and MFCC

methods were applied for the diagnosis of PD from recorded

speech signal by using Hidden Markov Models (HMM) and

SVM classifiers [46]. Burk et al. in [47] analysed acoustic

recordings (special software and hardware were used for the

data collection) from PD patients based on the cepstral peak

prominence (CPP) and aerodynamic measures of transglottal

airflow (TAF) features in order to distinguish between speak-

ers with no tremor and tremor (correlation 0.96).

Burk et al. [47] target vocal impairment detection for early

prediction in PD. They applied MFCC and GMM for feature

extraction. The data (96 kHz audio samples) was collected

with a professional head mounted omnidirectional condenser
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TABLE 1. Comparison of related work findings for speech impairment detection.

microphone that was placed by 10 cm from the mouth of

PD patient. The classification results were validated with

bootstrap aggregation approach from log-likelihood on each

frame (83% best accuracy).

Refer to Table 1 for comparison of related work to track

speech impairments in PD and HD.

To sum up, speech impairments are very intensively anal-

ysed by the other computer scientists. The majority of related

works involve the PD patients. However, very different

approaches are adapted for the collection of voice recordings,

i.e., most solutions require custom hardware (special micro-

phones, amplification devices or headsets) and audio signal

processing software (Matlab, Praat, Audacity, SPSS) for test

supervision.

In addition, the evaluation metrics (features) that are

used for detecting speech impairments cover a wide range

of choices, i.e., from acoustic features (jitter, number of

pulses, voice breaks etc.), Gaussian Mixture Model (GMM),

Mel-Frequency Cepstral Coefficients (MFCC), spectrum

(kurtosis, spread, entropy etc.), wavelet transforms (WT) to

strategies for combining these features.

Statistically, the proposed related work models for speech

impairment detection were evaluated by using regression

analysis (Spearman correlation coefficient = 0.0156) and
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FIGURE 1. Algorithmic implementation of task T14: Voice Recorder.

classification methods (97.6% achieved with the Random

Forest algorithm).

III. MATERIALS AND METHODS

A. TASK: VOICE RECORDER

The task is a part of Neural Impairment Test Suite (NITS) [49]

system (mobile app) proposed by authors of this paper. NITS

is a framework for collecting various features of data from

tremor, cognitive, speech and energy expenditure tasks e.g.

finger motion tracking, duration, distance evaluation of geo-

metrical shapes, graph similarity evaluation, image collec-

tion from clock drawing (CDT) task, voice recordings, daily

calorie balances, etc.) It is developed for Android OS with

core supported software development kit (SDK), and includes

third party libraries and custom algorithms for required

functionality.

NITS supports different screen sizes and was tested with

Lenovo YOGA YT3-X50L tablet (10.1’’ screen, with a reso-

lution of 1280 x 800 px), SAMSUNG S7 smartphone (5.1’’,

2560 x 1440 px) and OnePlus 5 (5.5’’, 1920 x 1080 px).

Voice recorder task is named T14 in the NITS framework.

Patient is instructed to read a short text of predefined poems

into the mobile device microphone (Figure 1).

Predefined transcripts can be provided in English and

Lithuanian languages if needed. The process is repeated

two times, i.e., first, a poem is selected randomly; then, the

remaining one is displayed. The recording begins when a

patient is ready and presses the button ‘Start Recording’.

Single poem recording finishes by pressing ‘Stop Record-

ing’ button (a patient can make a pause if needed before

the second recording). The T14 is executed two times as a

precaution measure for more reliable test execution. In case

a test subject (a CNSD patient) did not understand or fol-

low the T14 task properly for the first time, a chance for

repeating the procedure was given. Such approach allows

collecting more voice recordings from each patient (damaged

audio recordings were excluded), thus resulting in a larger

dataset. After T14 is completed, two audio files (compressed

.mpeg4 format, 44.1 kHz sample rate and AAC audio codec),

together with the associated transcripts, are stored in the

external storage of a mobile device. Defined parameters for

audio files were chosen based on compatibility recommen-

dations with the latest Android devices [50]. Audio codec

MPEG-4 supports standard sampling rates from 8 to 48 kHz

(mono or stereo channels). In addition, there is no significant

effect in the quality of collected audio files for the analysis

as all the recordings were collected with direct supervision

of T14 execution by author of this paper. In such setup,

isolating surrounding environment for audio data acquisition

without external interference was ensured and distance from

mobile device microphone to speaker’s mouth was adjusted

accordingly.

B. TEST SUBJECTS, PROCEDURE, DATASET

A total number of 15 test subjects were involved in the audio

file collection process. 7 patients with neurological disorders

(3 Huntington (one of them juvenile of 18 years), 1 Parkinson,

1 cerebral palsy, 1 post stroke, 1 early dementia), other 8

were healthy subjects. Health state of neurological patients

were in their early stage, e.g., the HD patients had the early

(I or II) clinical form of HD according to the Shoulson-Fahn

functional capacity rating scale [51]. All participants were

asked to perform T14 task.

Dataset was collected during 5 rounds i.e. face-to-face

patient visitations. All tests were supervised by author of this

paper to explain working principle of T14. Moreover, such

approach was chosen to ensure the fair execution of the test,

i.e., without any cheating or faking the results. In some cases

test subject were asked to perform T14 task multiple times,

because CNSD patients tended to lose focus, thus resulting

in interrupted audio recording process. In total, 339 samples

(audio files) (including healthy and impaired test subjects)

were collected in the dataset. The collected data was labelled

using a healthy vs. impaired (0 or 1) objective assessment

criteria for the health status of each subject, where 0 indicates

that the subject is healthy, whereas 1 means that a subject
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has a neurological disorder (e.g. Huntington Disease). In

the process of data collection, the class label is specified

in the mobile application before starting the actual testing

procedure.

C. AUDIO SIGNAL FEATURE EXTRACTION METHODS

Stored .mpeg4 files (Figure 1, audio1 and audio2) are used as

inputs for further audio signal processing. The authors con-

siders the following methods for speech feature extraction.

The pitch for the calculation of the fundamental fre-

quency (Hz) of an audio signal with sampling rate fs can

be 44.1 kHz. The pitch function estimates the fundamen-

tal frequency as determined by WindowLength (default

size is round (0.052 · fs)) and OverlapLength (default size

is round (0.042 · fs)) name-value pairs, WindowLength

< OverlapLength. Pitch contours (WindowLength and

OverlapLength ranges) can be estimated by 5 methods:

Normalized Correlation Function (NCF) [52], Pitch Estima-

tion Filter (PEF) [53], Cepstrum Pitch Determination (CEP)

[54], Log-Harmonic Summation (LHS) [55], Summation of

Residual Harmonics (SRH) [56].

The PEF method models signal Y at time t in the spectral

domain with frequency f as defined in formula (1):

Yt (f ) =
∑K

k=1
ak,tδ(fs−kf ) + Nt (f ) (1)

here K is the number of peaks in the audio signal, Nt (f )

is the power spectral density of unwanted noise, ak,t is the

power of the k-th harmonic at time t .

In the LHS method, the signal is modelled by (2):

H (s) =
∑N

n=1
hnP(s+ log2 nc) (2)

here nc– compression factor, s = log2 f ,hnc – 0.84nc−1

is a decreasing sequence implying that higher harmonics

contribute less to the pitch than lower harmonics to the

noise, P (s) = W (s)·A(s), W (s)- spectral window function,

A (s)- logarithmic frequency abscissa, N = 15(the number of

harmonics considered).

The SRH method tracks the pitch by using calculations in

(3) formula. Please consider the provided references for extra

information of NCF and CEP methods.

SRH (f ) = E (f )+
∑N

k=2

[

E (k · f )−E(

(

(k −
1

2
)

)

· f )

]

(3)

hereE (f ) - amplitude spectrum signal (f – frequency in the

range of [Fmin,Fmax], computed for each Hanning-windowed

frame, covering several cycles of the resulting residual signal)

of the k-th harmonic, N - number of harmonics that are taken

into account.

The additional considered method is Mel-frequency cep-

stral coefficients (MFCC) [29]. MFCC returns the coeffi-

cients sampled at a frequency of fs as well as the change in

coefficients (delta) and the change in delta values deltaDelta).

WindowLength and OverlapLength default configuration

setup is the same as in the Pitch method.

MFCC computes a frequency analysis based on a filter

bank. A short-time Fourier analysis results in a discrete

Fourier transform (DFT) for signal Xt [k] in time t . DFT

values are grouped together in critical bands and weighted

by a triangular function. The (4), (5) and (6) formulas are

used for MFCC calculations (R = 22, m-th signal sample,

the number of MFCC coefficients is usually 13):

MF t [r] =
1

Ar

∑Ur

k=Lr
|Vr [k]·X t [k]|

2) (4)

here MF t [r] - Mel-frequency spectrum at analysis time t

for r= 1, 2, . . .R. Vr [k] is the triangular weighting function

for the r-th filter, ranging from DFT index Lr to Ur .

Ar =
∑Ur

k=Lr
|Vr [k]|

2 (5)

Ar - is a normalizing factor for the r-th Mel-filter.

mfcct [m]=
1

R

∑R

r=1
log(MF t [r]) · cos[

2π

R

(

r+
1

2

)

m])

(6)

Having calculatedMFCC as defined in (6), it uses the least-

squares approximation of the local slope over a region around

the current time sample method to determine delta (passing

MFCC) and deltaDelta (passing delta). The same rule applies

for GTCC.

Similarly, as MFCC, Gammatone cepstral coefficients

(GTCC), including delta and deltaDelta, can be used for audio

signal feature extraction. GTCC is a bio-inspired adaptation

of the MFCC that employs Gammatone (GT) filters [30]. The

GT filter with its properties is defined in formula (7):

g (t) = Kt (n−1)e−2πBt cos (2π fct + ϕ) , t > 0 (7)

here n is the filter order, K is the amplitude factor, B is

impulse response, fc is the central frequency, ϕ is phase shift.

In GTCC extraction, the audio signal is first sliced into

short frames, usually about 10–50 ms (same as in MFCC).

This allows signal to remain stationary, thus allowing for

the signal analysis. Afterwards, GT filter bank is applied to

the signal’s FFT, highlighting the perceptually meaningful

voice frequencies. Lastly, DCT is applied to model the human

perception of sound and to decorrelate the filter outputs,

therefore achieving better energy compaction:

gtcct [m]=

√

2

R

∑R

r=1
log (Xt [r]) · cos

[

πr

R

(

m−
1

2

)

m

]

)

(8)

here R is the number of GT filters, Xt [r] is the energy of

the signal in the r-th spectral band, 1 ≤ m ≤ M (5) is the

number of outputs.

Another considered method for speech feature extraction

is called wavelet scattering transform (WST). It defines a

representation which is resistant to time-warping deforma-

tions. WST extends MFCC by calculating modulation spec-

trum coefficients through wavelet convolutions and modulus

operators [57]. In addition, WST overcomes MFCC in audio
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representations for the classification problems at time scales

more than 25 ms.

Scattering transform restores the information lost by a

Mel-frequency averaging by employing a cascade of wavelet

decompositions and modulus operators. The constant-Q filter

banks calculate a wavelet transform. A wavelet ϕ (t) is band-

pass filter with ϕ̌(0)= 0 and is written in the centre frequency

ω form as defined in formula (9):

ϕω(t) = ω · ϕ(ωt), ϕ̌w (s) = ϕ̌(
s

ω
) (9)

Here the centre frequency of ϕ̌ is normalized to 1.

ω = 2k/Q, Q are the wavelets per octave, k ∈ Z . ϕ̌ is of

the order of Q −1.

Finally, 10 methods for feature extraction in audio signals

and auditory spectrograms are defined. These are spectral-

Slope, spectralSkewness, spectralSpread, spectralCentroid,

spectralDecrease, spectralKurtosis [58], spectralFlux & spec-

tralRolloff [59], spectralFlatness [60], spectralEntropy [39].

Term ‘bin’, referred in (10) – (19) equations is a segment,

e.g., [fl, fh] of the frequency axis that collect the amplitude,

magnitude or energy from a small range of frequencies.

SpectralSlope evaluates the spectral shape slope by using

a linear approximation of the magnitude spectrum. A linear

function is modelled from the magnitude spectrum as defined

in (10) equation.

slope=

(

∑b2

k=b1
(fk−µf )(sk−µs)

)

/

(

∑b2

k=b1
(fk−µf )

2

)

(10)

here fk - is the frequency in Hz corresponding to bin k ,µf is

the mean frequency, sk is the spectral value at bin k , µs is the

mean spectral value, b1 and b2 are the band edges, in bins,

over which to calculate the spectral method (e.g,. slope),

µf is the spectral centroid, Spectral skewness evaluates the

symmetry of the spectral magnitude distribution around their

arithmetic mean (11).

skewness =

(

∑b2

k=b1
(fk − µ1)

3sk

)

/(µ2)
3

(

∑b2

k=b1
sk

)

(11)

here µ2 is the spectral spread.

Spectral spread measures the concentration of the power

spectrum around the spectral centroid (Eq. 12).

spread =

√

((

∑b2

k=b1
(fk − µ1)

2sk

)

/

(

∑b2

k=b1
sk

))

(12)

Spectral centroid represents the centre of gravity (COG)

of spectral energy. It is defined as the frequency-weighted

sum of the power spectrum normalized by its unweighted

sum (13).

centroid =

(

∑b2

k=b1
(fksk )

)

/

(

∑b2

k=b1
sk

)

(13)

Spectral decrease assesses the steepness of the decrease of

the spectral envelope. The result of the spectral decrease is

a value less than 1. The spectral decrease is not defined for

audio blocks with no spectral energy (silence) (Eq. 14).

decrease =

(

∑b2

k=b1+1

sk − sb1

k − 1

)

/

(

∑b2

k=b1+1
sk

)

(14)

Spectral kurtosis evaluates the shape of the spectral mag-

nitude value distribution as compared to the Gaussian distri-

bution (Eq. 15).

kurtosis =

(

∑b2

k=b1+1

sk − sb1

k − 1

)

/

(

∑b2

k=b1+1
sk

)

(15)

Spectral flux is the change of the spectral shape calcu-

lated as the mean difference between neighboring Short Time

Fourier Transform (STFT) frames (Eq. 16).

flux (t) =

(

∑b2

k=b1
|sk (t) − sk (t − 1)|P

)
1
P

(16)

Spectral rolloff is a measure of the bandwidth of the ana-

lyzed block n of audio samples and is specified as the bin

of frequency below which the cumulative magnitudes of the

STFT reach a certain percentage K of the overall sum of

magnitudes (Eq. 17).

rolloff (i) =
∑i

k=b1
sk = K

∑b2

k=b1
sk (17)

Spectral flatness is the ratio of geometric and arithmetic

means of the magnitude spectrum (Eq. 18).

flatness =

(

∏b2

k=b1
sk

)
1

b2−b1

/

(

1

b2 − b1

(

∑b2

k=b1
sk

))

(18)

Entropy evaluates the ‘‘peakiness’’ of a probability mass

function (PMF) as follows: (Eq. 19).

entropy =

(

−
∑b2

k=b1
sk log(sk )

)

/log(b2 − b1) (19)

IV. EXPERIMENTAL RESULTS

Two supervised learning approaches (wavelets with SVM

and deep learning neural networks) are considered in exper-

imental research for classifying test subjects into health and

impaired instances (2 target classes): 1) Wavelet scattering

transform (WST) with SVM; and 2) Bidirectional recur-

rent neural network (RNN) with Long short-term memory

(BiLSTM). Both methods apply percentage split resampling

technique for the original data i.e. 70% training set and 30%

testing set. For the collected dataset of voice recordings, this

corresponds to 207 samples for training and 88 for testing,

including 29 samples (healthy test subjects) and 15 samples

(impaired test subjects) for predictions on new and unseen

data.
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FIGURE 2. Filter bank for scattering transform in WST (invariance is
0.5 seconds).

A. SPEECH IMPAIRMENT DETECTION WITH

WST AND SVM

Experiment is based based on voice recordings, collected

from T14 task. WST method applies Gabor (analytic Morlet)

wavelet. Such wavelets use low pass scaling function to

produce low-variance representations of voice.

Wavelet is designed as follows. The signal length is a

natural logarithm value of 219. For WST configuration, only

3 parameters are provided: the duration of the time invari-

ance, the number of wavelet filter banks (band-pass filters

that separate voice data into multiple components, each one

carrying a sub-band of the original data) and the number of

wavelets per octave. Two wavelet filter banks are used: first

(fb1) and second (fb2). The first filter bank has 8 wavelets

per octave, and the second filter bank has 1 wavelet per

octave. The time invariance scale is set to 0.5 seconds. For

such setup, invariance scale parameter that is plotted on the

coarsest scale [61] (Figure 2) does not exceed the invariant

scale of thewavelet scattering decomposition, i.e., is indicator

of low variance.

The plot of fb1 and fb2 filter banks using Littlewood-Paley

of sums [62] representation is provided in Figure 3.

The audio materials are transferred to a single object in

memory ads. Train (Ttrain) and test (Ttest) data are con-

verted to tall arrays. Then, scattering train features (scat-

teringTrain) and scattering test features (scatteringTest) are

created by applying log transformation of each audio file

and subsamples, the number of scattering windows by 8. The

scattering features are combined together to a matrix by using

MATLAB Parallel Pool (Number of Workers = 4) on a

single GPU, resulting in the training features and the testing

features (each row of the matrix is 1 time window across the

N = 341 paths in the scattering transform of each audio

signal).

The training features and the testing features are used to

fit the data for support vector machine (SVM) model with

FIGURE 3. Littlewood-Paley sums of 1-st and 2-nd filter banks of wavelet.

FIGURE 4. WST accuracy of health vs impaired classification.

polynomial kernel (order = 3). SVM tuning was applied

by using the Majority Vote method, which achieved 96.3%

accuracy of the supplied test data, as shown in confusion

matrix (Figure 4). The model build time is 369.83 seconds.

B. SPEECH IMPAIRMENT DETECTION WITH BiLSTM

Similarly, as in the WST approach, this deep learning exper-

iment also analyses voice recordings collected from the

T14 task. First stage is the pre-processing of the original

audio signal i.e. removing silence segments. To eliminate

not useful information that is pertaining to the health status

indicator of the speaker, the isolation of the speech seg-

ment method is applied. This method uses the thresholding

approach. First, 2 features (signalEnergy, centroid) over non-

overlapping frames of the audio data are calculated. Next,

the energy and spectral centroid for each frame is evaluated;
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FIGURE 5. Detection of active voice regions in speech segment.

centroid threshold (T_C = 5000 Hz) and energy threshold

(T_E) are calculated afterwards. The speech regions where

the feature values fall below or above their respective thresh-

olds are disregarded (Figure 5). On the contrast, the speech

region is active in cases as shown in (20) equation:

isSpeechReg=signalEnergy ≥ T_E, centroid≤T_C (20)

In the implementation, isSpeechRegion is further char-

acterized by regionStartPos (indices of frames where a

speech-to-silence or silence-to-speech transition occurs),

regionLengths (length of all-silence or all-speech regions),

start and end indices (SI, EI) for each speech region. Once

the active speech regions are detected, the intersecting speech

segments are merged and fed for the feature extraction mech-

anism (segments).

The speech signal changes over time, but is station-

ary on short time scales; thus, their processing is often

done in windows of 20–40 ms. For each speech segment,

a periodic hamming window [63] with 80% overlap is used

and then concatenated into sequences (each vector contains

92 features, each sequence 40 feature vectors). The fea-

tures used are GTCC, MFCC, pitch, slope, skewness, spread,

flux, rolloff, decrease, flatness, kurtosis and entropy. These

12 features are concatenated together and can be combined

in numerous ways. A feature can be removed from the

sequence or swapped with other if necessary.

With this configuration setup, the next step is feature trans-

ferring to tall array T (this provides a way to work with

data backed by an audio data store (audioDataStore) that

can have millions or billions of rows) on the GPU. These

feature sequences are re-evaluated (featureSequences) and

normalized (mean and standard deviation for each coefficient

is computed). Such normalized GPU features are ready to be

supplied for training Bidirectional Long Short-TermMemory

(BiLSTM) deep learning neural network. LSTM can learn

long-term dependencies between time steps of sequence data

(forward and backward directions). In the training process,

FIGURE 6. BiLSTM accuracy on test set is 94.50%.

MATLAB parallel pool is invoked (Number of Workers used

is 4) for processing features in tall array faster. BiLSTM train-

ing adapts epoch – based approach. Configuration setup for

BiLSTM training: algorithm is RMSProp (root mean square

propagation) optimizer, MaxExpochs = 10, MiniBatchSize

= 128, shuffle on every epoch, learning rate drop factor =

0.1, learning rate schedule ‘piecewise’. A convergence of

BiLSTM network was observed in 320-th iteration (10-th

epoch) with 100% of mini-batch accuracy with 0.0035 loss

and 0.0001 base learning rate. BiLSTM model build time is

191.68 seconds.

The architecture of proposed BiLSTM neural network has

2 fully connected layers of 100 neurons, followed by a soft-

max layer and a classification (output) layer.

Figure 6 illustrates healthy vs. impaired classification

results on the provided dataset by applying Major Vote

method (rule) for tuning classifier performance i.e. overall

model accuracy of 94.50%.

C. SUMMARY OF EXPERIMENTS

Both experiments are implemented using MATLAB Audio

Toolbox R2019a (Mathworks Inc., USA) software. Audio

materials are transferred to MATLAB audioDatastore object.

For the WST-SVM experiment, initial preparation steps

include the creation of a root folder and two sub folders

naming ‘healthy’ and ‘impaired’ correspondingly. The names

of the subfolders should match the names of the output target

classes. The audio filesmust be provided as 1411 kbps sample

rate .wav audio files at 22050 Hz sample rate.

For the BiLSTM experiment, the procedure starts by creat-

ing a root folder and two subfolders, naming ‘train’ and ‘test’

correspondingly. Initial audio materials must be provided

as 64 kbps sample rate files (.mp3 format). Two .csv files

(one for training set, another for testing set) are prepared for

storing the summarized information about the collected files

by using this format: linkage to the stored audio file in disk
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TABLE 2. Requirements summary for experimental setup.

and sick or impaired indicator (as text string). In addition, .csv

file structure can be expanded with transcript of read poem,

recording duration.

Table 2 shows the data format, software and hardware

requirements for the proposed WST and BiLSTM based PD

classification methods.

V. DISCUSSION AND CONCLUSIONS

In this paper, we presented an investigation for detect-

ing speech impairments occurring to the CNDS patients.

A dataset of audio files (including early stage CNDS patients

and healthy subjects) was collected during a pilot study car-

ried out in Lithuania with the usage of a smart noninvasive

interface, i.e. Neural Impairment Test Suite mobile app. For

proper task execution, test subject should be acquainted

with Lithuanian or English languages (speech dialect is not

important).

Three domains of feature extraction methods (ant their

combinations) from audio signals were considered in this

research: cepstrum domain (pitch contours, MFCC, GTCC),

auditory spectrograms (slope, skewness, spread, centroid,

decrease, kurtosis, flux, rolloff, entropy, flatness) and WST

(wavelet time scattering, analytic Gabor). BiLSTM and sup-

port vector machine (SVM) with polynomial kernel meth-

ods were adapted for classifying target test subjects into

healthy and impaired groups. WST-SVM achieved 96.3%

accuracy and BiLSTM 94.50% accuracy on test set, thus

showing strong expectations for decision support in speech

impairment detection in targeting related diseases (e.g.,

Alzheimer’s) in various progression stage. WST-SVM excels

over BiLSTM considering the related research findings that

collected voice recording from CNSD patients were signifi-

cantly long, i.e., up to 47 sec (observed from the juvenile HD

patient).

The proposed speech detection models can be com-

pared with works of other researchers in competitive study.

Tsanas et al. targeted identification of PD based on

vocal performance (SVM classifier, 90% accuracy) [64].

Caesarendra et al. analysed pattern recognition with voice

features in PD stage classification (SVM, 79.17% accu-

racy) [65]. Hauptman et. al. adopted SVM (77.20 %)

for identification of distinctive acoustic and spectral fea-

tures in PD [35]. Moreover, Extreme learning machine

(ELM, 91.11% accuracy) approach for the classification

of PD severity was introduced by Oung et al. [44], and

Jeancolas et al. [48] adapted Bootstrap aggregation classifier

(83% accuracy) for sound classification of Parkinsonism.

Speech disorders in HD and PD tend to progress over

time, so proposed classification methods could function as a

decision support system for monitoring the health state of the

CNSD patients and provide insight about disease status. The

designedWST-SVM and BiLSTMmodels are integrated into

the NITSmobile app for triggering screening alert to a CNSD

patient about his deterioration of speech impairment before

such symptoms become much worse. The developed models

also can be used as a service in the context of Internet of

Health Things (IoHT) [66] ecosystem of services and devices.
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