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Detection of stable QTLs for grain 
protein content in rice (Oryza sativa 
L.) employing high throughput 
phenotyping and genotyping 
platforms
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Lack of appropriate donors, non-utilization of high throughput phenotyping and genotyping 

platforms with high genotype × environment interaction restrained identification of robust QTLs 
for grain protein content (GPC) in rice. In the present investigation a  BC3F4 mapping population 

was developed using grain protein donor, ARC10075 and high-yielding cultivar Naveen and 190 lines 
were genotyped using 40 K Affimetrix custom SNP array with the objective to identify stable QTLs 
for protein content. Three of the identified QTLs, one for GPC (qGPC1.1) and the other two for single 

grain protein content (qSGPC2.1, qSGPC7.1) were stable over the environments explaining  13%, 14% 
and 7.8% of the phenotypic variances, respectively. Stability and repeatability of these additive QTLs 
were supported by the synergistic additive effects of multi-environmental-QTLs. One epistatic-QTL, 
independent of  the  main effect QTL was detected over the environment for SGPC. A few functional 
genes governing seed storage protein were hypothesised inside these identified QTLs. The qGPC1.1 was 

validated by NIR Spectroscopy-based high throughput phenotyping in BC3F5 population. Higher glutelin 

content was estimated in high-protein lines with the introgression of qGPC1.1 in telomeric region of 

short arm of chromosome 1. This was supported by the postulation of probable candidate gene inside 
this QTL region encoding glutelin family proteins.

Malnutrition is responsible for about 24,000 deaths per day worldwide1. Rice is staple food for more than half of 
the world population. It has a signi�cant contribution in daily calorie-intake as millions of poor families depend 
mainly of rice for their nutrition. Rice supplies abundant carbohydrate as its kernel constitutes mainly of starch 
(>80%) but protein (7–8%) is the source of concern. However, the protein quality measured by protein digestibil-
ity index and amino acid composition is the best among cereals2, which makes it preferable for the food and feed 
industries. E�orts were made during past three decades by rice breeders to improve the protein content in rice 
grain, but signi�cant and stable improvement could not be achieved due to the involvement of many small e�ect 
genes/quantitative trait loci (QTLs) substantially a�ected by environment. �e QTLs for grain protein content 
(GPC) in rice have been identi�ed in almost all chromosomes, though majority of them are present on chromo-
somes 1, 2, 6, 7, 10 and 113–13. But multi-environmental stable and robust QTL for this trait was rare. �is was 
due to the lack of high throughput genotyping platform leading to low density linkage map, low population size, 
lack of high throughput phenotyping procedure and lack of validation in di�erent cropping season and environ-
ments. Moreover, this trait is not only governed by additive gene e�ect but also signi�cantly in�uenced by the 
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complex gene interaction including dominance, epistatic and genotype × environment interaction (G EI) com-
ponent e�ects as realized by many researchers12,14,15. But, in spite of quite high probability of getting epistasis and 
GEI-QTLs, no notable epistatic or multi-environment trial QTL (MET-QTL) was detected in rice for this trait. 
With the recent advancements in rice genomics research, more robust and reproducible markers such as single 
nucleotide polymorphic (SNPs) markers have been utilized to make SNP chips of various magnitude, i.e. on 
medium density Illumina’s rice platform16–18, high density 50 K Illumina In�nium array platform (RiceSNP50)19 
and A�ymetrix custom array such as 44 K and 50 K SNP chips platform in rice20,21. In addition, Near Infrared 
(NIR) spectroscopy has been used by researchers to screen large number of germplasm for protein content in 
several cereals22–24 and in high throughput phenotyping of breeding lines25.

In bi-parental mapping, population for detection of robust QTL for a particular trait required signi�cant 
di�erences of two parents for that trait. For detecting QTLs for GPC, rarely very high protein genotype and low 
protein counterpart had been used which restricted trait variability and availability of robust QTL. Several rice 
germplasm with high GPC have been identi�ed over the environments26. �ey however were low yielder and had 
many undesirable features. Backcross breeding could be an e�ective approach for minimizing the undesirable 
e�ects coming from un-adapted donor parents4,27. Backcross population is not only useful for detecting robust 
QTLs but also to generate introgression lines for use as pre-breeding lines or as high yielding elite cultivars. �e 
advanced backcross QTL (AB-QTL) analysis has been successfully employed in detecting and transferring QTLs 
from un-adapted germplasm into advanced breeding lines in many plant species28–32. In rice, AB-QTL analysis 
has helped to detect many QTLs for several grain quality traits33. But the use of two diverse parents (with regard 
to origin, nature, type and adaptability) o�en poses many problems such as lack of proper chromosomal pairing, 
pollen sterility in backcross lines leading to segregation distortion (SD) etc., Zhan and Xu34 suggested that being 
the potential evolutionary force, the SD loci should be e�ectively utilized in mapping genes using appropriate 
packages. Among the statistical packages utilized for mapping QTLs, a SAS-based programme Proc QTL, QTL 
IciMapping V4 and DistortedMap handle SD markers safely and e�ectively to identify regions in�uencing trait 
expression35–38. Inside the putative or multi-environment QTLs region, functional genes which ultimately gov-
erned the phenotype were found using bioinformatics tool in previous studies on rice39. In the present study high 
genetic variability governed by high protein donor followed by high throughput SNP-array based genotyping 
were exercised with the aim of detection of robust QTLs for grain protein content with plausible in�uence of 
epistasis and genotype × environment interaction. �is investigation also explored the scope of high throughput 
phenotyping using NIR spectroscopy to validate stable QTLs in advanced near isogenic line (NIL) population. 
Finally it focused on the delineation of QTLs loci to �nd functional genes inside QTLs and tried to associate them 
with higher protein and protein fraction content in the selected stable high protein introgressed (NILs) over the 
environments.

Results and Discussion
Phenotypic analysis. ANOVA for plant height (cm) (PH), maturity duration (MD), number of panicles/
plant (PN), panicle length (cm) (PL), grains/panicle (GRAIN), 100 grain weight (g) (GWT), plant yield (g) (PY), 
grain protein content (%) (GPC), single grain protein content (mg/g) (SGPC) in both kharif 2013 (Env.1) and rabi 
season 2014 (Env.2) individually and over the seasons (Env.1 + Env.2) revealed the signi�cant variation in popu-
lation for all the traits (Supplementary Table 1). High heritability (h2 = 0.75–0.78) of GPC in individual environ-
ment was observed. But this was moderate to low (h2 = 0.45) across environments calculated from pooled data. In 
contrary, SGPC revealed relatively higher heritability (h2 = 0.55) over the environments (Supplementary Table 1). 
Moreover, higher phenotypic variance of SGPC also indicated its suitability for QTL analysis. �ese facts indi-
cated that SGPC was environmentally more stable than the percent protein content and therefore, transfer of this 
trait could be more feasible. Except PY and GWT all other traits followed normal distribution and both absolute 
values of skewness and kurtosis were less than 1.0, indicating suitability of data for QTL analysis (Supplementary 
Table 2). Transgressive segregation was observed for all traits, suggesting possible existence of multiple QTLs and 
QTL × QTL interaction or epistatic interaction. Transgressive segregation was observed in both directions of 
normal distribution for GPC and SGPC (Fig. 1). �is indicated that both the parents may contribute to the QTL 
analysis of these traits. GPC and SGPC were not signi�cantly (p < 0.01) correlated with PY in two seasons and 
over the seasons (Supplementary Table 3). But both these traits were signi�cantly (p < 0.01) negatively associated 
with GRAIN which was positively associated with PY in both the seasons and over the environments. Path coe�-
cient analysis (Supplementary Table 4) also revealed most signi�cant direct e�ect of PN and GRAIN on PY, while 
no signi�cant e�ect of GPC and SGPC was observed on PY.

Analysis of variance revealed signi�cant di�erences (p < 0.001) of genotypes, environment and genotype × 
environment interaction for grain protein content (GPC) with nearly similar trend for single grain protein con-
tent (SGPC) in genotype (G) and environment (E) (p < 0.001) as well as G x E (p < 0.01). �e signi�cantly higher 
(p < 0.001) mean GPC of mapping population was observed in rabi season 2014 (Env.2) as compared to both the 
kharif seasons (Env.1 and Env.3). Comparative lower (p < 0.001) average SGPC was also found in Env.1 than in 
the Env. 2. Better water and nutrient management and higher light intensity in rabi season might have contributed 
to better grain �lling and protein content in rice. ARC10075 had higher GPC and SGPC values than the control. 
Hence, ARC10075 and environment Env.2 were considered as reference combinations for identifying the best 
genotype in any speci�c environment. Lines, PLN-32, PLN-64, PLN-58 and PLN-56 in Env.2 were found superior 
in GPC while PLN-64 was also found superior in SGPC in Env. 2. Interaction plots and ANOVA suggested that 
the genotype × environment interaction e�ects were signi�cant (p < 0.01) for both GPC and SGPC. �e trend 
lines (Fig. 2) also showed that for both GPC and SGPC, all three environments were not parallel. �erefore, the 
presence of genotype × environment interaction e�ect was obvious.
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Distribution of SNPs in chip, genotyping and linkage analysis. Among the four types of genes used 
for the 40,894 SNP chip designing, majority (96.6%) were single copy (SC) genes. �e rest were from agronom-
ically important cloned rice genes (AGCR) (2.27%) and multi-copy rice (MCR) (1.14%) genes. Further, 21100 
(51.6%) single copy genes were unique to rice (SCR) and 18397 (45%) conserved single-copy genes were common 
to wheat and rice (CSCWR) (Fig. 3a). �is SNP chip had 38% SNPs from exons, 42% from introns and 20% from 
5′ and 3′UTR regions (Fig. 3b). �e SNPs from exon regions could be further classi�ed into non-synonymous 
(20% of total SNPs) and synonymous (18% of total SNPs) types. �e non-synonymous SNPs are important for 
detection of probable functional genes for the trait concerned. �e presence of large number of these SNPs, makes 
this chip more e�ective for associating genotypes with the desired phenotype, i.e. high protein content. Overall, 
the SNPs were distributed among all 12 rice chromosomes with an average of one SNP per 9.54 kb (Fig. 3c). �e 
number of SNPs varied from 983 (chromosome 10) to 8428 (chromosome 1) with an average of 3407.83 per 
chromosome.

All the genotypes passed the development quality check (DQC) with a high cut-o� value of > 0.82, and the 
maximum DQC value was 0.99. Except for one sample, all others possessed high genotyping call rates of > 95%, 
with an average of 99.9%. Out of the 40894 markers in SNP chips, 5492 SNPs accounting 13.43% were found 
to be homo-polymorphic between ARC10075 and Naveen. �ese markers were highly informative as many 
of them were located inside genes. �e remaining 82.96% (33925) and 1.66% (680) were non-polymorphic 
and hetero-polymorphic, respectively. Only 506 SNPs accounting 1.24% were not detected in this assay 
(GAP) (Supplementary Table 5). GTC So�ware e�ciently separated homozygous and heterozygous cluster 
(Supplementary Fig. 1). �e proportion of genome of Naveen in backcross derived lines varied from 46.88 to 
95.62% with an average of 81.8% based on homo-polymorphic SNP markers. �e proportion of genome of the 
donor ARC10075 varied from 2.97 to 40.37% (average 13.06%). �e rest genome with an average of 5.12% was 
heterozygote among backcross derived lines. Out of the homo-polymorphic markers between the parents, 87% 

Figure 1. Distribution of backcross derived mapping population (BC3F4) from ARC10075/Naveen for grain 
protein content (GPC) and single grain protein content (SGPC) in individual environments (Env.1 and Env.2) 
and distribution for GPC, SGPC, panicle length, panicle number/plant and plant yield over the environments 
(Env.1 + Env.2) (Note: P1: Naveen, P2: ARC10075, E1: Env.1 (Kharif season 2013), E2: Env.2 (Rabi season 2014)).
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showed segregation distortion (SD) through χ2 test (p > 0.01) and were distributed on all the 12 chromosomes. 
Segregation distorted markers occurred due to unwanted selection pressure imparted by pollen sterility, incom-
patability, epistatic and environmental interaction, etc. We employed one accession (ARC10075) as donor for 
high GPC which was collected from North-eastern part of India, which is considered as the secondary centre of 
origin for rice. Assam rice collection (ARC) represents diversity of this region. Some of the germplasm belonging 
to the part of the country adjoining Mayanmar, China, and Indonesia have many traits intermediate to those of 
indica and japonica. �erefore, chances of having sterility were high as observed frequently in inter sub-speci�c 
crosses, especially in backcross progenies which led to segregation distortion (SD). In general, distorted markers 
did not have much e�ect on the position and e�ect estimations of QTL; moreover, their e�ects can be ignored 
in large-size mapping populations40,41. In the previous studies4,41 large number of markers (40–55%) showing 
SD were successfully utilized to map grain quality traits. In traditional linkage mapping, there is all likelihood 
of losing all these informative markers in QTL analysis. In the present study, we handled SD markers along with 
non-SD markers using ‘SDL mapping’ in the QTL IciMapping V4 so�ware which helped in restoration of order 
and position of the distorted markers to safely use in QTL detection. By employing these options of mapping, we 
could use all available markers, whether Mendelian or otherwise and could save valuable resources. A high den-
sity linkage map with 12 linkage groups on 12 rice chromosomes was generated. �e average genetic to physical 
distance of 1 cM = 0.2 Mb. �e total map distance was 2480 cM with an average 0.46 cM marker-interval. �rough 
DistortedMap v.1 so�ware, it was found that all markers were quali�ed for SD mapping analysis. Although little 
higher average (0.67 cM) marker distance was noticed which could be the e�ect of epistatic SD locus.

Single environment QTLs. A total of 14 main e�ect additive single environment QTLs for GPC and SGPC 
were detected by inclusive composite interval mapping (ICIM). �ree of them were found in more than one 
environment (Table 1). Compared to GPC, more number of additive QTLs were detected for SGPC in single and 
multi-environment. Previously also researcher42 did not �nd any consistent environmentally stable QTLs for 
GPC, but detected stable QTLs for protein index (PI) which was almost identical with SGPC, used in the present 
study. In kharif season 2013 (Env.1), one QTL (qGPC1.1) at 11 cM position was identi�ed for GPC on chromo-
some 1 with a logarithm of odds ratio (LOD) value of 3.83 which explained 13.86% phenotypic variance. In this 
environment, four other QTLs for SGPC were identi�ed. One of the pleotropic QTL (qSGPC1.1) shared the same 
position with qGPC1.1 explaining 10.37% phenotypic variance with a LOD value of 2.9. �e other three QTLs 
for SGPC (qSGPC2.1, qSGPC7.1, qSGPC11.1) had LOD values of 3.32, 3.31 and 2.88 with 6.7%, 7.68% and 6.42% 
phenotypic variance explained (PVE), respectively. In rabi season 2014 (Env.2), still higher number of QTLs for 

Figure 2. Scatterplot and trendline of mapping population for GPC and SGPC in three environments (Env.: E1: 
kharif 2013, E2: rabi 2014, E3: kharif 2014), viz (a) Scatterplot of genotype vs. GPC, (b) Trendline genotype vs. 
GPC, (c) Scatterplot of genotype vs SGPC, (d). Trendline genotype vs. SGPC.
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both GPC and SGPC were detected. Of the two QTLs for GPC, one (qGPC1.1) was common with the previous 
environment (Env.1) explaining 13.85% phenotypic variance with LOD value of 4.02. �e new putative QTL 
(qGPC 2.1) was detected at 170 cM position on chromosome 2 which had 17.35% PVE with LOD value of 3.19. 
Eleven QTLs for SGPC were found in Env.2 on chromosomes 1, 2, 3, 7, 8, and 12. Two of them were common with 
previous environment (Env.1). �ey were qSGPC2.1 and qSGPC7.1 with LOD values of 3.53 and 3.33, respectively 
which explained 14.64% and 7.81% phenotypic variance (Fig. 4).

Apart from GPC and SGPC, QTLs were detected for other traits such as panicle length (PL), panicle number/
plant (PN), grains/panicle (GRAIN) which were normally distributed. In Env.1, 15 putative QTLs (PL-1, PN-13, 
GRAIN-1) distributed among chromosomes, 1, 2, 4, 5, 8, 9, 10, 11 and 12 explaining 6% to 32.5% phenotypic 
variance (PVE) (Supplementary Table 6) and in Env.2, 5 putative QTLs (PL-3, GRAIN-2) distributed in chro-
mosomes, 1, 2, 6 and 7 with 6.1% to 24.67% PVE (Supplementary Table 7) were detected. But none of them was 
detected over the environments. Simple interval mapping which is based on maximum likelihood may not be as 
e�cient as ICIM, but it can provide information on small e�ect QTLs independent from variance of other QTLs. 
IM was used to identify QTLs for GPC and SGPC in the present investigation. Multi-environmental consistent 
QTLs such as qGPC1.1 and qSGPC2.1 which were identi�ed by ICIM, were also found in interval mapping. 
Position of another consistent QTL, qSGPC7.1 was little shi�ed in this analysis. Apart from them single environ-
ment putative QTLs, qSGPC1.1, qSGPC11.1, qSGPC1.2, qSGPC1.3, qSGPC3.1, qSGPC7.2, qSGPC8.1, qSGPC8.2, 

Figure 3. (a) Distribution of SNPs on di�erent type of genes in SNP Chip, (b) Di�erent types of SNPs in 
chip, and (c). Distribution of SNPs in 12 rice chromosomes (Note: SCR: single copy genes were unique to rice, 
CSCWR: conserved single-copy genes were common to wheat and rice, MCR: multi-copy rice gene, AGCR: 
agronomically important cloned rice genes; Ch-1–12: chromosome 1 to chromosome 12).
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qSGPC12.1 which were detected by ICIM, were also found through IM. In addition 14 other putative QTLs on 
chromosome 1, 3, 4, 8 and 11 were found by this analysis (Supplementary Table 8).

Epistatic QTLs and MET- QTLs for GPC and SGPC. �e epistatic interaction can not be ignored because 
such attempt may lead to underestimation of total genetic e�ects of a trait. �e proper detection of the direction 
of epistatic interaction, i.e. synergistic or non-synergistic e�ect on other QTLs can guide the breeder to intro-
gress multi-QTLs for one or many traits. Epistatic interaction for grain protein content was reported in other 
cereals43,44. Except rare instances45 no signi�cant epistatic QTL was detected so far in rice for this trait. In the 
present study although no digenic epistatic interaction QTLs (ep-QTLs) were identi�ed for GPC, 11 in Env.1 
(Supplementary Table 9) and 62 in Env.2 (Supplementary Table 10) such QTLs (ep-QTLs) were detected in SGPC. 
Except one ep-QTL pair no other was repeatable over the environments. �is epistatic QTLs pair on chromosome 
11 in 6 cM region showed epistatic interaction with one pair of ep-QTL on chromosome 1(Fig. 5a). �e peak SNP 
markers, SCR100_Os01g40720_34486 and SCR100_Os11g08270_33249 for this ep-QTL were non-synonymous, 
resided inside genes. Similar sign indicated that this epistatic e�ect contributed positively towards the additive 
value and could increase the phenotypic value independently from main e�ect QTLs of SGPC.

�e GPC was found to be highly in�uenced by environment. �erefore, selection of breeding lines based on 
only the phenotypic e�ect (which is signi�cantly contributed by environment) can be misleading. �erefore, the 
objective of our experiment was to identify main e�ect additive QTLs for GPC and SGPC in more than one envi-
ronment. In the present investigation we detected three such QTLs, one for GPC (qGPC1.1) and two for SGPC 
(qSGPC2.1 and qSGPC7.1). Earlier qPC-1 was detected in all the three studied environments, qPC-10 in two 
environments, and the rest 8 QTLs in only one environment12. �erefore, in spite of high phenotypic variation, 
stably inherited QTLs such as qPC-1 and qGPC1.1 are present in rice. �e stable genomic region inside these 
QTLs can guide the selection for these traits more e�ciently. In addition, genotype × environmental interaction 
QTLs are also important as they signi�cantly in�uence the total phenotypic variance and additive e�ect of the 
main e�ect QTL located inside or near to them. Although there are some reports in other cereals like wheat43,46, 
no multi-environment trial QTL (MET-QTL) was reported earlier for rice GPC. We found signi�cant G × E 
interaction e�ects both for GPC and SGPC. Five MET-QTLs for GPC (Fig. 6) and six MET-QTLs for SGPC 
were detected (Table 2). Among them one MET-QTL for GPC was located inside the main e�ect additive QTLs 
(qGPC1.1) and another was adjacent to the main-e�ect putative QTL (qGPC2.1). Two MET-QTLs (Eq-GPC1.1 
and Eq-SGPC1.1) were pleotropic for these two traits. �ey were located inside the main e�ect QTLs (qGPC1.1, 
qSGPC1.1). Among other MET-QTLs, three were located on the main e�ect QTLs. �ey were Eq-SGPC2.1, 
Eq-SGPC7.1 and Eq-SGPC11.1. �e additive values of these MET-QTLs were showed similar sign with the main 
e�ect QTLs. �erefore, they had positive e�ect on the total additive value of this trait. Hence, although these loci 

Trait/QTL Environment Chromosome
Le� 
marker

Right 
marker

Start 
(Mb)

End 
(Mb) Peak marker LOD PVE (%) Add

Position 
(Mb) Type of SNP Gene function

qGPC1.1 Env.1 1
A�x-
93237905

A�x-
93229368

0.61104 1.11104
CSCWR_
Os01g02590__61041

3.832 13.855 −0.426 0.86104
non-synonymous 
SNP, resides in gene

Receptor-like kinase, 
putative, expressed

qSGPC1.1 Env.1 1
A�x-
93237905

A�x-
93229368

0.61104 1.11104
CSCWR_
Os01g02590__61041

2.897 10.37 −0.083 0.86104
non-synonymous 
SNP, resides in gene

Receptor-like kinase, 
putative, expressed

qSGPC2.1 Env.1 2
A�x-
93260438

A�x-
93236905

5.16506 6.16506
CSCWR_
Os02g10740_65058

3.316 6.703 0.059 5.66506
resides in gene, 
synonymous SNP

Calcium-binding 
mitochondrial carrier 
CBG00135, putative, 
expressed

qSGPC7.1 Env.1 7
A�x-
93225742

A�x-
93256949

22.1975 22.2975
SCR100_
Os07g37440_17971

3.51 7.678 0.067 22.2475
resides in gene, 
resides in intron

Hypothetical protein

qSGPC11.1 Env.1 11
A�x-
93232878

A�x-
93212320

3.73772 3.83772
SCR200_
Os11g07480_87716

2.873 6.424 0.076 3.78772
non-synonymous 
SNP, resides in gene

WD domain, G-beta 
repeat domain containing 
protein, expressed

qGPC1.1 Env.2 1
A�x-
93237905

A�x-
93229368

0.81104 0.91104
CSCWR_
Os01g02590__61041

4.017 13.851 −0.581 0.86104
non-synonymous 
SNP, resides in gene

Receptor-like kinase, 
putative, expressed

qGPC2.1 Env.2 2
A�x-
93221488

A�x-
93245529

9.47632 10.4763
SCR200_
Os02g17350_76316

3.186 17.353 0.923 9.97632
resides in gene, 
synonymous SNP

VHS and GAT domain 
containing protein, 
expressed

qSGPC1.2 Env.2 1
A�x-
93230672

A�x-
93212941

39.0164 39.1164
SCR100_
Os01g66690_66361

3.309 18.463 0.492 39.0664
resides in gene, 
synonymous SNP

Gene encoding ZIP4/
SPO22

qSGPC1.3 Env.2 1
A�x-
93228332

A�x-
93233227

8.30788 8.40788
CSCWR_
Os01g14920__57875

4.07 16.401 0.481 8.35788
resides in 5′ UTR, 
resides in gene

Zinc knuckle family 
protein, putative, 
expressed

qSGPC2.1 Env.2 2
A�x-
93256429

A�x-
93260438

5.61506 5.71506
CSCWR_
Os02g10740_65058

3.528 14.636 0.54 5.66506
resides in gene, 
synonymous SNP

Calcium-binding 
mitochondrial carrier 
CBG00135, putative, 
expressed

qSGPC3.1 Env.2 3
A�x-
93253793

A�x-
93260929

35.3227 37.3227
CSCWR_
Os03g64360_22659

4.115 14.653 0.542 36.3227
resides in gene, 
resides in intron

Putative expressed gene

qSGPC7.1 Env.2 7
A�x-
93225742

A�x-
93256949

22.1975 22.2975
SCR100_
Os07g37440_17971

3.328 7.813 0.091 22.2475
resides in gene, 
resides in intron

Hypothetical protein

qSGPC8.1 Env.2 8
A�x-
93259293

A�x-
93258892

0.90055 1.00055
SCR200_
Os08g02400_50552

4.548 23.547 0.336 0.95055
resides in gene, 
resides in intron

40 S ribosomal protein 
S13, putative, expressed

qSGPC12.1 Env.2 12
A�x-
93257146

A�x-
93240174

2.27059 2.37059
CSCWR_
Os12g05230_20586

2.966 14.486 0.531 2.32059
resides in 3′ UTR, 
resides in gene

ATP-dependent RNA 
helicase, putative, 
expressed

Table 1. Main e�ect additive QTLs for GPC and SGPC in rice in two environments (Env.1 and Env.2).
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have GEI e�ect, they can be safely used in the molecular breeding programme. On the other hand, it also indi-
cated that all these MET-QTLs had signi�cant positive e�ect on positive allele which improved the phenotypic 
expression leading to higher GPC and SGPC in rice in favourable environments. Finally the epistasis × environ-
ment interaction e�ect (aae) was an important component of QTL × environment (QE) interaction e�ects. In 
MET analysis 6 pair (Supplementary Table 9) and 48 pair (Supplementary Table 12) of QTLs associated with GPC 
(Fig. 5b) and SGPC, respectively, were found with epistatic e�ects (aa) and epistasis × environment (aae) e�ects. 
But none of them was found associated with the main e�ect QTLs. One main epistatic QTL was adjacent to the 

Figure 4. QTLs detected for SGPC in rabi season (Env.2) showing common QTLs qSGPC2.1 and qSGPC7.1 
found in also in kharif season (Env.1).

Figure 5. (a) Cyclic diagram of epistatic QTLs (ep-QTL) for single grain protein content (SGPC) in rabi season 
2014 (Env.2) and (b) epistatic × environmental (aae) interaction QTLs for grain protein content (GPC). �e 
dotted lines indicate the interacting SNP marker pairs situated on the same or di�erent chromosomes with 
corresponding LOD scores owing to their epistatic e�ects. Marker position (cM) is mentioned inside the oval 
located on chromosome. One common ep-QTL in kharif season 2013 (Env.1) is located between 6 cM position 
on chromosome 11 and 255 cM position on chromosome 1 (a).
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main e�ect QTL (qSGPC11.1) and MET QTL, Eq-SGPC11.1 on chromosome 11. In the similar position, the gene 
OsAsp1 coding for aspartic acid was located. �e synergistic e�ect of epistatic QTL on the MET-QTL and the 
probable functional gene OsASP1 may signi�cantly contribute positively to protein content in rice grain.

Validation of main effect QTL for GPC using high throughput phenotyping. �e need of destructive 
sampling and tedious analysis procedure is a major bottleneck for mapping QTLs and selecting superior geno-
types in segregating generations for grain protein. We attempted QTL mapping for GPC using near infrared (NIR) 
spectroscopy-based high throughput non-destructive protein estimation method in kharif 2014 (Env.3). Calibrated 
NIR spectroscopy for GPC24 was used to determine the apparent grain protein content in NILs (BC3F5) derived 
from Naveen/ARC10075. NIL population showed the normal distribution with positive skewness for apparent GPC 
(Supplementary Fig. 2). �e GPC varied from 6.56% to 12.89% with mean value of 9.33%. We detected the same 
QTL (qGPC1.1) as was found through phenotyping by conventional micro-Kjeldahl method. It also explained almost 
similar phenotypic variance (12.18%) as observed in Env.1 and Env.2 (13.85%). �is observation validated QTL for 
GPC and also established the NIR spectroscopy as the valid high throughput phenotyping tool for detection of stable 
QTL for GPC in rice.

Delineation of QTL loci and identification of probable candidate genes. Normal distribution for 
GPC and SGPC indicated the involvement of many QTLs for grain protein in rice. However, some regulatory genes 
were reported to be involved in controlling GPC in seeds in many cereal crops such as barley, wheat and rice47–50. 
GWAS and candidate gene based association study identi�ed a gene HVNAM controlling GPC in barley51. In wheat 
also, a high grain protein gene, Gpc-B1 was introgressed to improve protein content without a�ecting grain yield47,52. 
In the present experiment, the functional genes presents inside and adjacent to the QTLs were identi�ed (Table 3). 
One main e�ect additive QTL qGPC1.1 was found stable over the environments. �e peak SNP marker inside this 
QTL (locus- 1:611041-1111041) in Env.1 was CSCWR_Os01g02590__61041 which is located inside a conserved 
single-copy gene common to wheat and rice. �is QTL interval region corresponded to a span of 186 O. sativa 
Japonica genes starting from Os01G0111600 to Os01g0119500. �is QTL interval was narrow (locus- 1:811041-
911041) in Env.2 corresponding only 34 coding and non-coding genes staring from Os01g0115100 to Os01g0116000 
with same peak locus as was detected in Env.1. Multi environmental (MET) QTLs, Eq-GPC1.1 and Eq-SGPC1.1 were 
pleotropic (locus- 1:811041-911041) inside the main e�ect robust QTL, qGPC1.1. Among genes located inside these 
QTLs one gene Os01g0111900 (locus- 1:625986–627009) encoded glutelin family protein. �is gene was located 
just 0.93 cM apart from the QTL peak. Inside one putative single environment QTL, qSGPC1.3 (locus- 1:8307875–
8407875) a gene Sar1c (Os01g0254000) encoding seed storage protein (pro-glutelin content in seed, floury 
endosperm) was located just 0.23 cM apart from the QTL peak (Q-TARO annotation). Adjacent to one putative 
QTL, qSGPC1.2 (locus- 1:39016361–39116361), around 0.83 Mb upstream region, OsAAP6 gene was present which 
was amino acid transporter enhancing GPC. On chromosome 2, one putative QTL, qGPC2.1 (locus- 2:9476316–
10476316) and in the MET-QTL Eq-GPC2.1 with relatively narrow interval (locus- 2:9926316–10026316) contained 
two genes Os02g0268100 and Os02g0268300 which were 1.5 cM apart from the QTL peak. �ey also encoded glu-
telin protein. A gene cluster encoding glutelin fragment proteins and prolamin box binding factors is also found 
near to it. On chromosome 3, inside one putative QTL qSGPC3.1 (locus- 3:35322659–37322659) and MET-QTL, 
Eq-GPC3 (locus- 3:35228948–35328948) one gene Os03g0826500 encoded anthranilate synthase alpha 1 related to 
higher grain protein content (Q-TARO annotation). �is was located 3.01 cM and 1.1 cM apart from the peak of 
main QTL and MET-QTL, respectively. On chromosome 11, one putative QTL, qSGPC11.1 and two MET-QTLs, 
Eq-qSGPC11.1 and Eq-GPC11.1 (locus- 11:3737716–3837716) had the peak marker SCR200_Os11g07480_87716. 
One gene OsAsp1 in�uencing seed protein synthesis was located 0.62 Mb downstream of this QTL peak.

Analogy with previous findings on QTLs for grain protein in rice. A few QTLs identi�ed in present 
study were located near or inside the QTLs and genes for GPC reported earlier. �e main e�ect additive QTL, 
qSGPC1.3 was located near to qPr1 at 12 Mb region on chromosome 19. On the same chromosome, another 

Figure 6. Multi-environment trial QTLs (MET-QTLs) detected for grain protein content (GPC) in rice in 
threshold LOD score 2.5.
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QTL, qSGPC1.2 was identi�ed at 39.07 Mb position which was very near to a reported QTL qPC15 and cloned 
gene (OsAAP6)48 inside this QTL at 38.13 Mb region. One epistatic QTL, ep-qSGPC-1 which was identi�ed over 
the season was also located adjacent to qPC-1 at 24.39 Mb region with 10.5% phenotypic variance explained 
(PVE)12. On chromosome 2, one MET-QTL, Eq-SGPC2.2 was located adjacent to a main e�ect QTL qPC2 for 
grain protein content4,46. On the same chromosome, one QTL qSGPC2.1 identi�ed in more than one environ-
ments and in MET analysis was detected near another major QTL qPro-2 explaining 41% PVE for grain protein 
at 4.3 Mb position10. On chromosome 3 only one main e�ect QTL, qSGPC3.1 detected in the present study was 
located near to a reported QTL, qPC-312. On chromosome 7, 1.35 Mb downstream of one stable QTL qSGPC7.1 
and MET-QTL Eq-SGPC7.1 (locus- 7:22197522–22297522) three gene cluster (Os07g0570100, Os07g0570300, 
Os07g0570500) encoding peptidase protein was located53. A few other QTLs (qCP7, qPr7, PC7) reported ear-
lier3,6,9 were also located near the present QTL qSGPC 7.1. Another putative QTL, qSGPC8.1 on chromosome 
8 was located just adjacent to a QTL for grain protein content qPro-8 at 1.2 Mb position11. We found another 
putative QTL qSGPC11.1 and MET-QTL on the same position which was located very near to a QTL, qGPC-11 
detected through association mapping at 4.3 Mb position with peak SNP located on gene OsAsp153.

High protein elite NILs: their significance in mapping and validation of robust QTL. Seven high 
yielding introgression lines (BC3F5) were selected for high GPC and phenotypic resemblance with Naveen. �ey 
had comparable maturity duration (121–127 days) and plant height (108–115 cm) with Naveen (124 days, 113 cm). 
All lines had signi�cantly higher GPC and SGPC in both rabi and kharif 2015 (Env.4 and Env.5). �e average pro-
tein yields of these lines were also higher than those of their high yielding parent (Supplementary Table 13). �ese 
selected lines along with another three high protein lines without phenotypic resemblance with Naveen were ana-
lysed for genomic composition. �ey had 81–87% genome from Naveen and 10.7–16.7% from ARC10075. GGT 
analysis revealed that except for two all the selected high protein lines had the genomic region with the stable QTL 
qGPC1.1 in telomeric region (~0.8 Mb) of short arm of chromosome 1 (Fig. 7). Gene (Os01g0111900) present in this 
region (locus- 1:625986–627009) synthesized glutelin protein. Signi�cantly, except two, all high protein lines had 
higher (p > 0.01) glutelin content than the recurrent parent, Naveen. Glutelin contains essential amino acids like 

MET-
QTL

Chromo- 
some

Position 
(Mb)

Le� 
Marker

Right 
Marker Peak locus

SNP 
information LOD PVE

PVE 
(A)

PVE 
(AbyE) Add AbyE_01 AbyE_02

Heritability 
(h2)

Eq-
SGPC1.1

1 0.861041
A�x-
93237905

A�x-
93229368

CSCWR_
Os01g02590__61041

Non-
synonymous 
SNP, resides 
in gene

4.604 6.553 6.475 0.077 −0.078 0.009 −0.009 0.988

Eq-
SGPC1.2

1 1.504321
A�x-
93256957

A�x-
93252910

SCR200_
Os01g03650_04321

Resides 
in gene, 
synonymous 
SNP

4.289 5.394 4.310 1.084 0.057 −0.028 0.028 0.799

Eq-
SGPC2.1

2 5.665058
A�x-
93260438

A�x-
93236905

CSCWR_
Os02g10740_65058

Resides 
in gene, 
synonymous 
SNP

4.416 3.811 3.762 0.049 0.052 0.006 −0.006 0.987

Eq-
SGPC2.2

2 26.38269
A�x-
93234385

A�x-
93236297

CSCWR_
Os02g43720_82691

Resides in 
gene, resides 
in intron

2.797 2.622 2.599 0.023 −0.097 0.009 −0.009 0.991

Eq-
SGPC7.1

7 22.24752
A�x-
93225742

A�x-
93256949

SCR100_
Os07g37440_17971

Resides in 
gene, resides 
in intron

6.836 7.510 7.320 0.190 0.078 −0.013 0.013 0.974

Eq-
SGPC11.1

11 3.787716
A�x-
93232878

A�x-
93212320

SCR200_
Os11g07480_87716

Non-
synonymous 
SNP, resides 
in gene

4.298 4.159 4.159 0.000 0.073 0.000 0.000 1.000

Eq-
GPC1.1

1 0.861041
A�x-
93237905

A�x-
93229368

CSCWR_
Os01g02590__61041

non-
synonymous 
SNP, resides 
in gene

6.923 8.988 8.885 0.103 −0.427 0.046 −0.046 0.988

Eq-
GPC2.1

2 9.976316
A�x-
93243043

A�x-
93221488

SCR200_
Os02g17350_76316

Resides 
in gene, 
synonymous 
SNP

3.371 4.055 3.551 0.505 0.261 −0.098 0.098 0.875

Eq-
GPC3.1

3 35.27895
A�x-
93211998

A�x-
93250371

SCR200_
Os03g62388_78948

Resides 
in gene, 
synonymous 
SNP

2.592 2.935 2.696 0.239 0.221 −0.066 0.066 0.918

Eq-
GPC5.1

5 1.237304
A�x-
93260300

A�x-
93258158

SCR200_
Os05g03150_37304

Resides in 3′ 
UTR, resides 
in gene

2.543 2.649 2.649 0.000 0.221 −0.001 0.001 1.000

Eq-
GPC11.1

11 3.787716
A�x-
93232878

A�x-
93212320

SCR200_
Os11g07480_87716

Non-
synonymous 
SNP, resides 
in gene

2.955 3.361 3.222 0.139 0.328 −0.068 0.068 0.958

Table 2. Additive × environment interaction QTLs (MET-QTLs) for grain protein content (GPC) and single 

grain protein content (SGPC).
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lysine and is the major constituent of protein body II, which is more digestible than protein body I, which contains 
mostly prolamins54. �erefore, higher accumulation of glutelin ensures better protein quality in most of these lines. 
It was reported earlier that improvement of grain protein content reduced the protein quality and resulted in harden-
ing of the cooked rice grains due to increase in prolamin fraction. �e ratio of prolamin to glutelin fractions ranged 
from 0.02 to 0.037 (Table 4). All high protein lines had similar or slightly lower values of prolamin/glutelin ratio than 
the high yielding variety Naveen which ensures retention of cooking quality of the introgression lines. Further, high 
head rice recovery (54–67%), intermediate amylose content (20–22%), alkali spreading value (3–5) and acceptable 
grain elongation ratio indicated good milling and cooking quality of these lines (Supplementary Table 14).

Expression profile of the functional gene located within QTL loci. Most of the probable func-
tional genes (Table 3) inside the QTLs showed up-regulation in seed as a whole, aleurone layer, panicle tissues and 
root (Supplementary Fig. 3) based on RNA-seq data in Rice expression database (RED). Using RiceXPro database 
(RXP_0012) an expression heat map was generated to compare the gene expression pro�le of the 11 probable func-
tional genes located inside QTLs in embryonic and endosperm-speci�c tissues at 7-, 10-, 14-, 21-, 28- and 42- days 
a�er �owering (DAF), respectively. �e heat map (Fig. 8) clearly demonstrated the up-regulation of majority of the 
genes, including genes for enhancing storage proteins viz. glutelin and prolamin, preferentially at endosperm in all the 
time-points considered under study. Preferential up-regulation of functional genes for high GPC during endosperm 
development suggests higher accumulation of total protein in the selected introgression lines listed in Table 4.

Conclusion
We found that had we discarded SD markers, the stable QTLs like qGPC1.1 or qSGPC2.1 and qSGPC7.1 and their 
MET-QTLs would have remained undetected. Such QTLs detected through high throughput genotyping were 
not reported earlier. One of the reason could be the employment of unique germplasm in the present study which 
consistently showed high GPC (12%) as compared to low yielding counterpart (8%) leading to high genetic var-
iation. �e most stable QTL detected in our investigation qGPC1.1 was validated in an additional environment 
(Env.3) employing high throughput phenotyping technique. Another putative QTL for SGPC (qSGPC1.1) was 
found pleiotropic to the former. Inside this QTL region, one gene (Os01g0111900) was found which encoded 

Trait/QTL Environment
Chromo- 
some Peak marker

Position 
(Mb)

Number 
of genes 
in QTL 
interval

Starting - 
ending gene at 
QTL interval

Nearest 
functional gene 
(RAP DB ID/Q-
TARO ID) Gene function

Gene 
Position 
(Mb)

Distance 
(gene-QTL) 
(Mb)

qGPC1.1
Env.1, Env.2, 
Env.3, MET 1

CSCWR_
Os01g02590__61041

0.861041 186
Os01G0111600-
Os01g0119500

Os01g0111900
Glutelin 
family protein. 
(Os01t0111900-01)

0.6264975 0.23454

qSGPC1.1 Env.1

qSGPC7.1
Env.1, Env.2, 
MET

7
SCR100_
Os07g37440_17971

22.24752 28
Os07g0556500 – 
Os07g0558500

Os07g0570100, 
Os07g0570300, 
Os07g0570500

Gene cluster of three 
peptidase proteins

23.614 1.35

qSGPC11.1 Env.1, MET 11
SCR200_
Os11g07480_87716

3.788 35
Os11g0175300 – 
Os11g0177200

Os11g0184800 
(OsAsp1)

OsAsp1 4.34 0.62

ep-qSGPC11.1
Epistatic in 
Env.1 and 
Env.2

11
SCR100_
Os11g08270_33249

4.333 — —
Os11g0184800 
(OsAsp1)

OsAsp1 4.34 0.01

qGPC2.1 Env.2 2
SCR200_
Os02g17350_76316

9.976316 251
Os02g0265700 – 
Os02g0281200

Os02g0268100
Similar to Glutelin 
(Fragment). 
(Os02t0268100-01)

9.5814845 0.394

Os02g0268300
Similar to Glutelin 
(Fragment). 
(Os02t0268300-00)

9.587016 0.389

Os02g0252400 
(RPBF)

Prolamin box 
binding factor

8.62 1.35

Eq-GPC2.1 MET 2
SCR200_
Os02g17350_76316

26
Os02g0272900- 
Os02g0274100

Os02g0268100
Similar to Glutelin 
(Fragment). 
(Os02t0268100-01)

9.5814845 0.394

qSGPC1.2 Env.2 1
SCR100_
Os01g66690_66361

39.06636 28
Os01g0897700- 
Os01g0899100

Os01g0878700 
(OsAAP6)

Amino acid 
transporter, 
transmembrane 
domain containing 
protein

39.89 0.83

qSGPC1.3 Env.2 1
CSCWR_
Os01g14920__57875

8.357875 36
Os01g0251400- 
Os01g0253800

Os01g0254000 
(Sar1c)

Seed storage protein.
Pro-gultelin content 
in seed. Floury 
endosperm.

8.41 0.06

qSGPC3.1 Env.2 3
CSCWR_
Os03g64360_22659

36.32266 383
Os03g0840200 – 
Os03g0862200

Os03g0826500
Anthranilate 
synthase alpha 1

35.57 0.75

Eq-GPC3.1 MET 3
SCR200_
Os03g62388_78948

35.28 32
Os03g0838400 – 
Os03g0826500

Os03g0826500
Anthranilate 
synthase alpha 1

35.57 0.29

Table 3. Predicted functional genes present inside and adjacent to the main, epistatic and MET- QTLs and their 

distances from the QTLs peak.
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glutelin family protein. Physical (0.6–1 Mb) and linkage map (7–10 cM) position was highly corresponding. 
RiceXPro database revealed upregulation of this gene in endosperm during seed development. �is was corre-
sponded with higher glutelin content in introgressed lines. Positive correlation was reported earlier between total 
protein and glutelin content in rice grain6. In our experiment, we also found similar trend in NILs with high GPC. 
Fine mapping of this region using mapping population derived from high-protein-NIL × Naveen is in progress 
to detect tightly linked marker for marker assisted selection. Another stable QTL, qSGPC7.1 was detected near to 
a cluster of genes encoding three peptidase proteins53. More than 15 genes are responsible for glutelin synthesis 
which accounts more than 80% of the total seed storage protein. We reported a few other probable functional 
genes which were located inside or adjacent to the identi�ed QTLs for GPC and SGPC in the present study.

Materials and Methods
Plant materials and development of mapping population. �rough evaluation of 248 germplasm 
we identi�ed a few (Supplementary Table 15) which consistently showed high protein content in both brown and 
polished rice. But they were mostly low yielders (<3000 kg/ha grain yield). �e ARC 10075 was one of them with 
an average 12–13% GPC in brown rice25. �is germplam was crossed with a high yielding (4500 kg/ha grain yield) 
popular variety, Naveen with an average 8% GPC. F1 plants were backcrossed with the recurrent parent, Naveen 

Figure 7. Graphical genotyping of selected high protein lines and QTL (qGPC1.1) position on telomeric region 
of short arm of chromosome 1 (Note: A: Naveen genome, B: ARC10075 genome, C: heterozygote, D: missing/
unknown).

SL 
no Genotype Albumin Globulin Prolamin Glutelin Total

Prolamin/
glutelin ratio

1 ARC 10075 0.434 1.415 0.443 12.864 15.156 0.034

2 Naveen 1.406 1.02 0.244 9.297 11.967 0.026

3 PLN-23 1.48 1.575 0.333 8.889 12.276 0.037

4 PLN-32 0.988 1.283 0.24 11.058 13.57 0.022

5 PLN-37 0.44 1.263 0.352 13.519 15.575 0.026

6 PLN-98 0.823 1.507 0.365 11.61 14.306 0.031

7 PLN-99 0.798 1.28 0.296 10.584 12.959 0.028

8 PLN-100 0.565 1.292 0.356 12.49 14.703 0.029

9 PLN-116 0.283 0.9 0.242 11 12.425 0.022

Mean 0.802 1.282 0.319 11.257 13.660 0.0283

CD (p < 0.05) 0.06 0.11 0.08 0.35 0.41 —

Table 4. Fraction of soluble protein (g per  100 g polished rice sample) in introgression lines for GPC in Naveen 
background and their parents.
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to get 25 BC1F1 lines. Finally, 200 lines of BC3F4 and BC3F5 were developed by three consecutive backcrossing 
followed by single seed descent method.

Field experiments and phenotypic evaluation. One hundred ninety lines from the backcross pop-
ulation (BC3F4) were planted in three rows, 15 plants in each row with 20 cm row to row and 15 cm plant to 
plant spacing in augmented randomized block design along with replicated checks (Naveen and ARC 10075) 
following standard package of agronomic practices in kharif season 2013 (Env.1), rabi season 2014 (Env.2) and 
kharif season 2014 (Env.3) at the experimental farm of ICAR-National Rice Research Institute, Cuttack, Odisha, 
India. Ten randomly selected plants were used to study agronomic traits, including plant height (PH), maturity 
duration (MD), number of panicles/plant (PN), panicle length (cm) (PL), number of grains/panicle (GRAIN), 
100 grain weight (GWT) and plant yield (PY). Seven selected introgression lines (BC3F5) with high GPC across 
the three environments and phenotypic resemblance with the recurrent high yielding parent, Naveen were again 
raised in replicated plots (25sq m) in kharif (Env.4) and rabi season 2015 (Env.5). Nitrogen, phosphorus, and 
potassium were supplied @ 80 kg, 60 kg, and 40 kg per hectare, respectively in Env.4 and @ 120 kg, 60 kg and 60 kg 
per hectare, respectively in Env.5. Phosphorus (as single super phosphate) was applied as a basal dose, and half of 
the total nitrogen (as urea) and potassium (as muriate of potash) were applied in basal and rest half were applied 
in two equal doses at 30 days a�er transplanting and at 50% �owering. �e grain yield from the 25 sq m plot was 
converted to kg/ha.

Estimation of grain protein content. �e GPC of all entries in Env.1 and Env.2 and also from the repli-
cated large plots of selected lines in Env.4 and Env.5 were determined by the standard micro-Kjeldahl method55 
by taking ten grains of brown rice (grains devoid of husk, but with the brown bran layer intact). �e grain protein 
content was calculated by multiplying percent nitrogen content by 5.95. Single grain protein content (SGPC) was 
estimated on weight basis (mg/g) from the average protein content of 10 grains. Samples of known values for GPC 
of these lines and other germplasm were used in calibration and validation of NIR spectrophotometry for GPC in 
brown rice in our laboratory24. �e apparent grain protein content of mapping population in kharif season 2014 
(Env.3) was estimated using 15 g dehusked grain in calibrated NIR spectroscopy.

Fractionation of grain protein and estimation of grain quality traits. Extraction of rice proteins 
was performed by standard protocol56. Rice �our (6–7 g) was defatted with n-hexane. Standard steps were fol-
lowed to separate protein fractions in the order of albumins, globulins, prolamins and glutelins. �e extracted 
proteins were freeze-dried and stored at −70 °C. �e protein content of each fraction was measured according to 
Lowry et al.57. �e amylose content was measured as par standard procedure58. Brie�y,100 mg sample was wetted 
with 1 ml ethanol followed by addition of 9 ml 1 N NaOH with shaking and placing the tube in a boiling water 
bath for 10 min. A�er adding 1 ml 1 N acetic acid and 2 ml Iodine reagent, the volume was made to 100 ml with 
water and the absorbance was measured at 620 nm. Gelatinization temperature was indirectly estimated in terms 
of the extent of alkali spreading value (ASV) measured using a seven-point scale ranging from score-1 (least 
spread) to score-7 (highest spread)59. �e analysis of cooked rice elongation, CRE % = (ACL − BCL)/BCL × 100) 
(ACL: a�er cooking length, BCL: before cooking length) and other cooking parameters were done as described 
by Wang et al.60.

Figure 8. �e Heat map depicting expression pro�les of selected 11 genes in embryonic and endosperm-
speci�c tissues at 7-, 10-, 14-, 21-, 28- and 42- days a�er �owering (DAF), respectively. (Note: �e X-axis 
represents source and collection-time the sample used to generate the expression data while the Y-axis 
represents hierarchical clustering pattern. Selected 11 genes to generate the heat map are mentioned as per their 
RAP-ID).
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Statistical analysis. �e phenotypic data were subjected to analysis of variance, genotypic and phenotypic 
coe�cient of variances, genetic advance and heritability by using statistical package WINDOSTAT version 8.6, 
Indostat Service, Hyderabad. Heritability (h2) in broad sense is calculated from σg/σp where σg is genotypic var-
iance and σp is phenotypic variance. Phenotypic data were statistically analysed and the normal distribution of 
phenotypic data was veri�ed by K-S test at level of α = 0.01 by using so�ware, SPSS version 15.0 (SPSS, Chicago, 
IL, USA). For genotype × environment interaction studies, ANOVA was performed considering independent 
variables viz. genotype, environment, blocks within environment and genotype × environment as �xed e�ects 
and GPC and SGPC as the response variables using PROC GLM following the standard procedures61,62. Graphs 
were plotted using PROC SGPLOT procedure of SAS 9.3 so�ware. �e t-test was employed for detection of sig-
ni�cant di�erences if any for mean GPC and SGPC in multi-environments.

SNP array design and validation. Seventy one mer 50,000 SNP sequences were downloaded from 
OryzaSNP@MSU databases (http://rice.plantbiology.msu.edu). �ese SNPs were found uniformly distributed 
throughout the 12 chromosomes having good representation from coding and UTR regions. �ey were taken 
mostly from single copy (SC) genes and multi-copy rice (MCR) genes and the rest from agronomically important 
cloned rice genes (AGCR)21. �e SNP sequences were shared with A�ymetrix Bioinformatics team at Santa Clara, 
California, US for in-silico selection of markers for chip design. In-silico validation of the assay involved prelimi-
nary screening of the designed array �le for each selected SNP. Both forward and reverse probes of each SNP were 
assigned with p-convert values, derived from a random forest model to predict the probability of SNP conversion 
on the array. �e model considers factors including the probe sequence, binding energy and expected degree of 
non-speci�c hybridization to multiple genomic regions. SNP probes with high p-convert values are expected 
to convert on the SNP array with a high probability. Potential probes were designed for each SNP in both the 
forward and reverse direction, each of which was designated as ‘recommended’, ‘neutral’, or ‘not recommended’ 
based on p-convert values through which the SNP data sets were easily �ltered. �us, SNP probes were designed 
by screening 50,000 SNP loci of which an extremely high proportion of 40, 894 loci (90.8%) showed high-quality 
scores with p-convert values of >0.40, and the vast majority of them having p-convert values of >0.6, which were 
successfully synthesized on the array chip. �e SNPs that were highly repetitive in the genome and contained 
ambiguities were removed. �e resulting SNPs, selected for uniform spacing across the genome not having any 
other SNP, indel, translocation within 10 bp were selected for high resolution mapping of genetic loci in complex 
traits.

Genomic DNA preparation, SNP genotyping, allele calling and data analysis. Genomic DNA 
was extracted from young leaf tissues of 10 seedlings of parental lines and each of the 190 lines using CTAB 
method63. �e quantity and quality of genomic DNA of each sample was determined using nano-drop spectro-
photometer and 1% agarose gel. �e samples with OD260/OD280 > 1.8 and OD260/OD230 > 1.5 and more than 10 
Kb intact genomic DNA were used for SNP genotyping. An aliquot of 20 µl (a total of 200 ng) of diluted gDNA of 
each sample was used for target probe preparation and genotyping using high-resolution A�ymetrix custom array 
of 40894 SNP chip. �e assays were performed on Gene Titan platform; the high throughput automated working 
station. Microarray tiled with probes speci�c to a genomic position of interest. Ampli�ed total genomic DNA was 
fragmented it and hybridized to the array. Hybridize solution probes (9 mer) was paired a speci�c “hapten” to a 
speci�c base. DNA ligation was used to covalently bind only the correct base followed by washing, staining, �xing 
and scanning. Hybridization to the Bead Chip and imaging of the arrays were performed by the Imperial Life 
Science (P) Ltd., Gurgaon, Haryana, India.�e A�ymetrix Gene Titan assay was based on 2 colors for genotyping; 
one probe for heterozygous locus detection while 2 probes for homozygous locus, by an allele-speci�c single 
base extension/ligation step. �e data �les generated a�er scans were CEL �les. �e analysis was performed on 
A�ymetrix Genotype Console (GTC) So�ware version: 4.1. �e samples below of DQC <0.82 and SNP call rate 
<95% were removed from the analysis and genotyping call was directly exported from the so�ware. For cluster-
ing of SNP, we also used GTC so�ware to call as separate homozygous and heterozygous cluster.

Linkage map construction and QTL analysis. All polymorphic markers including segregation distortion 
loci were mapped using SDL option (segregation distortion locus mapping) taking inclusive composite interval 
mapping (ICIM) and interval mapping (IM) implemented in QTL IciMapping V4 (http://www.isbreeding.net).  
SDL mapping using this so�ware helped in restoration of order and position of the distorted markers on linkage 
map. �is was additionally veri�ed by Distorted Map v.1 so�ware38. For identi�cation of main e�ect of additive 
and digenic epistatic QTL in each environment and for each trait, the ‘IM-ADD’, ‘ICIM-ADD’ and ‘ICIM-EPI’ 
functions, respectively, of the so�ware were utilized36,64. Logarithm of odds (LOD) score peaks ≥2.5 were used to 
declare the presence of a putative QTL in a given genomic region. A threshold LOD of 5.0 with probability values 
for entering variables (PIN) of 0.01 was used to declare signi�cant epistatic-QTLs. �e ‘Multi-Environment Trials’ 
(MET) function of the so�ware was also utilized to determine the consensus positions for the major QTL and 
identi�cation of additive × environment interaction e�ect QTLs (AE-QTL). MET- QTLs were considered if they 
accounted for >5% of the variance.

Bioinformatics tool to identify functional genes located inside or close to the identified QTLs.  
Genes directly related to the synthesis of storage proteins of rice grain, viz. glutelin, globulin, prolamin and 
albumin, were downloaded along with their physical position from Rice Annotation project Database65 and 
Oryzabase66. Functionally validated genes related to increase in grain protein content were also downloaded 
along with their physical positions from the gene information table available in QTL Annotation Rice Online 
Database67. �e gene located inside the QTL interval region or within 1.0 Mb or nearly 4 cM (considering average 
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genetic to physical distance of 1 cM = 220 kb in rice) either side of the peak marker position were considered to be 
associated with grain protein content and were probable causative genes for increased protein content in high pro-
tein introgression lines. Functions of the identi�ed Protein QTL-linked genes were further determined using Rice 
Genome Annotation Project Database68 and Rice Annotation project Database65. Rice expression database (RED) 
was searched from IC4R website (http://ic4r.org)69 for getting RNA-seq data of important functional genes inside 
QTLs responsible for enhanced grain protein content and ‘Box-plot’ view was generated to show the expression 
level at di�erent plant parts. An in silico expression pro�le of functional genes located within the detected QTL 
regions was performed using the embryo- and endosperm-speci�c gene expression data generated during seed rip-
ening stage of rice cv. Nipponbare available at RiceXPro database (RXP_0012) (http://ricexpro.dna.a�rc.go.jp/)70.  
�is experiment included expression data of 36 independent microarray experiments conducted during seed 
development stage (Supplementary Table 16). �e physical locations of SNP markers and robust QTLs in high 
protein introgression lines were represented using Graphical GenoTyping (GGT 2.0) so�ware71.

References
 1. Potrykus, I. Nutritionally enhanced rice to combat malnutrition disorders of the poor. Nutrition Rev. 61(suppl_6), S101–S104 

(2003).
 2. Fitzgerald, M. A., McCouch, S. R. & Hall, R. D. Not just a grain of rice: the quest for quality. Trends in Plant Sci. 14, 133–139 (2009).
 3. Tan, Y. F. et al. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant 

inbred line population derived from an elite rice hybrid. �eor. Appl. Genet. 103, 1037–1045 (2001).
 4. Aluko, G. et al. QTL mapping of grain quality traits from the interspeci�c cross Oryza sativa × O. glaberrima. �eor. Appl. Genet. 

109, 630–639 (2004).
 5. Wang, L. Q. et al. �e QTL controlling amino acid content in grains of rice (Oryza sativa) are co-localized with the regions involved 

in the amino acid metabolism pathway. Mol. Breed. 21, 127–137 (2008).
 6. Zhang, W. et al. QTL mapping for crude protein and protein fraction contents in rice (Oryza sativa L.). J. Cereal Sci. 48, 539–547 

(2008).
 7. Qin, Y., Kim, S. M. & Sohn, J. K. QTL analysis of protein content in double-haploid lines of rice. Korean J. Crop Sci. 54(2), 165–171 

(2009).
 8. Yu, Y. H. et al. Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of 

rice. J. Cereal Sci. 50(1), 121–125 (2009).
 9. Zhong, M. et al. Identi�cation of QTL a�ecting protein and amino acid contents in rice. Rice Sci. 18(3), 187–195 (2011).
 10. Lee, G. H., Yun, B. W. & Kim, K. M. Analysis of QTLs associated with the rice quality related gene by double haploid populations. 

Int. J. Genomics. Article ID 781832 (2014).
 11. Yun, B. W., Kim, M. G., Handoyo, T. & Kim, K. M. Analysis of rice grain quality associated quantitative trait loci by using genetic 

mapping. Am. J. Plant Sci. 5, 1125–1132 (2014).
 12. Yang, Y. et al. Identification of quantitative trait loci responsible for rice grain protein content using chromosome segment 

substitution lines and �ne mapping of qPC-1 in rice (Oryza sativa L.). Mol. Breed. 35, https://doi.org/10.1007/s11032-015-0328-z 
(2015)

 13. Wang, X. et al. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. 
Sci. Rep. 7, https://doi.org/10.1038/s41598-017-17347-5 (2017).

 14. Shi, C. H., Ge, G. K., Wu, J. G., Ye, J. & Wu, P. �e dynamic gene expression from di�erent genetic systems for protein and lysine 
contents of indica rice. Genetica 128, 297–306, https://doi.org/10.1007/s10709-006-6276-0 (2006).

 15. Mahmoud, A. A., Sukumar, S. & Krishnan, H. B. Interspeci�c rice hybrid of Oryza sativa × Oryza nivara reveals a signi�cant 
increase in seed protein content. J. Agri. Food Chem. 52, 476–482 (2008).

 16. �omson, M. J. et al. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the 
BeadXpress platform. Mol. Breed. 29, 875–886 (2012).

 17. Yu, H., Xie, W., Li, J., Zhou., F. & Zhang, Q. A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol. J. 
12(1), 28–37 (2013).

 18. �omson, J. et al. Large-scale deployment of a rice 6 K SNP array for genetics and breeding applications. Rice 10, 40, https://doi.
org/10.1186/s12284-017-0181-2 (2017).

 19. Chen, H. et al. A high density SNP genotyping array for rice biology and molecular breeding. Mol. Plant. 7, 541–553 (2014).
 20. McCouch, S. R. et al. Development of genome-wide SNP assays for rice. Breed. Sci. 60, 524–535 (2010).
 21. Singh, N. et al. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci. Rep. 5, https://doi.

org/10.1038/srep11600 (2015).
 22. Shao, Y. et al. Infrared spectroscopy and chemometrics for the starch and protein prediction in irradiated rice. Food Chem. 126, 

https://doi.org/10.1016/j.foodchem.2010.11.166 (2011).
 23. Xie, L. H. et al. Optimisation of near-infrared re�ectance model in measuring protein and amylose content of rice �our. Food Chem. 

142, 92–100 (2014).
 24. Bagchi, T. B. et al. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions 

rice bran. Food Chem. 191, https://doi.org/10.1016/j.foodchem.2015.05.038 (2015).
 25. Chattopadhyay, K., et al. Development of recombinant high yielding lines with improved protein content in rice (Oryza sativa L.). J. 

Agric. Sci., Cambridge, https://doi.org/10.1017/S0021859618000230 (2018).
 26. Chattopadhyay, K., Das, A. & Das, S. P. Grain protein content and genetic diversity of rice in north eastern India. Oryza 48, 73–75 

(2011).
 27. Septiningsih, E. M., Trijatmiko, K. R., Moeljopawiro, S. & McCook, S. R. Identi�cation of quantitative trait loci for grain quality in 

an advanced backcross population derived from the Oryza sativa variety IR 64 and the wild relative O. ru�pogon. �eor. Appl. Genet. 
107, 1433–1441 (2003).

 28. Tanksley, S. D. & Nelson, J. C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable 
QTLs from unadapted germplasm into elite breeding lines. �eor. Appl. Genet. 92, 191–203 (1996).

 29. Bernacchi, D., Beck-Bunn, T., Eshed, Y. & Eshed, S. D. Advanced backcross QTL analysis in tomato. I. Identi�cation of QTLs for 
traits of agronomic importance from. Lycopersicon hirsutum. �eor. Appl. Genet. 97(3), 381–397 (1998).

 30. Lu, H. et al. QTL-seq identi�es an early �owering QTL located near FloweringLocus T in cucumber. TheorAppl Genet. 217(7), 
https://doi.org/10.1007/s00122-014-2313-z (2014).

 31. Chai, L et al. Advanced backcross QTL analysis for the whole plant growth duration salt tolerance in rice (Oryza sativa L.). J. 
Integrative Agric. 13(8), https://doi.org/10.1016/S2095-3119(13)60575-4 (2014).

 32. Swamy, B. P. M., Kaladhar, K., Reddy, G. A., Viraktamath, B. C. & Sarala, N. Mapping and introgression of QTL for yield and related 
traits in two backcross populations derived from Oryza sativa cv. Swarna and two accessions of O. nivara. J. Genet. 93(3), 643–654 
(2014).

https://doi.org/10.1038/s41598-019-39863-2
http://ic4r.org
http://ricexpro.dna.affrc.go.jp/
https://doi.org/10.1007/s11032-015-0328-z
https://doi.org/10.1038/s41598-017-17347-5
https://doi.org/10.1007/s10709-006-6276-0
https://doi.org/10.1186/s12284-017-0181-2
https://doi.org/10.1186/s12284-017-0181-2
https://doi.org/10.1038/srep11600
https://doi.org/10.1038/srep11600
https://doi.org/10.1016/j.foodchem.2010.11.166
https://doi.org/10.1016/j.foodchem.2015.05.038
https://doi.org/10.1017/S0021859618000230
https://doi.org/10.1007/s00122-014-2313-z
https://doi.org/10.1016/S2095-3119(13)60575-4


1 5SCIENTIFIC REPORTS |          (2019) 9:3196  | https://doi.org/10.1038/s41598-019-39863-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 33. Nagata, K. et al. Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica 
cross. Breed. Sci. 65, https://doi.org/10.1270/jsbbs.65.308 (2015).

 34. Zhan, H. & Xu, S. Generalized linear mixed model for segregation distortion analysis. BMC Genet. 12, https://doi.org/10.1186/1471-
2156-12-97 (2011).

 35. Xu, S. & Hu, Z. Mapping quantitative trait loci using distorted markers. Int. J. Plant Genomics (2009).
 36. Zhang, L., Li, H. & Wang, J. �e statistical power of Inclusive Composite Interval Mapping in detecting digenic epistasis showing 

common F2 segregation ratios. J. Integr. Plant Biol. 54(4), 270–9 (2012).
 37. Meng, L., Li, H., Zhang, L. & Wang, J. QTL Ici Mapping: Integrated so�ware for genetic linkage map construction and quantitative 

trait locus mapping in biparental populations. �e Crop J. 3, 269–283 (2015).
 38. Xie, S. Q., Feng, J. Y. & Zhang, Y. M. Linkage group correction using epistatic distorted markers in F2 and backcross populations. 

Heredity 112, 479–488 (2014).
 39. Swamy, M. et al. Association Mapping of Yield and Yield related Traits under Reproductive Stage Drought Stress in Rice (Oryza 

sativa L.). Rice. 10, 21, https://doi.org/10.1186/s12284-017-0161-6 (2017).
 40. Zhang, L. et al. E�ects of missing marker and segregation distortion on QTL mapping in F2 populations. �eor. Appl. Genet. 121, 

1071–1082 (2010).
 41. Shanmugavadivel, S. V. et al. Mapping quantitative trait loci (QTL) for grain size in rice using a RIL population from Basmati 3 

indica cross showing high segregation distortion. Euphytica, https://doi.org/10.1007/s10681-013-0964-5 (2013).
 42. Zheng, L. et al. Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred 

population of rice. J. Cereal Sci. 56(2), 153–160 (2012).
 43. Li, W. et al. QTL Mapping for Wheat Flour Color with Additive, Epistatic, and QTL × Environmental Interaction E�ects. Agric. Sci. 

China 10(5), 651–660, https://doi.org/10.1016/S1671-2927(11)60047-3 (2011).
 44. Conti, V. et al. Mapping of main and epistatic e�ect QTLs associated to grain protein and gluten strength using a RIL population of 

durum wheat. J. Appl. Genet. 52(3), 287–98, https://doi.org/10.1007/s13353-011-0045-1 (2011).
 45. Guo, Y., Mu, P., Liu, J., Lu, Y. & Li, Z. QTL mapping and Q x E interaction of grain cooking and nutrient qualities in rice under 

upland and lowland environments. J. Genet Genomics 34(5), 420–428 (2007).
 46. Zhang, W. et al. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. �eor. Appl. Genet. 

117(8), 1361–77, https://doi.org/10.1007/s00122-008-0869-1 (2008).
 47. Kumar, J. et al. Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crop Res. 

123, 226–233 (2011).
 48. Cai, S. et al. Grain protein content variation and its association analysis in barley. BMC Plant Biol. 13, 35, https://doi.

org/10.1186/1471-2229-13-35 (2013).
 49. Peng, B. et al. Comparative mapping of chalkiness components in rice using �ve populations across two environments. BMC Genet. 

15, 49 (2014).
 50. Wang, Y. et al. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content. Front. Plant Sci. 6, 803, 

https://doi.org/10.3389/fpls.2015.00803 (2015).
 51. Fan, C. et al. Identi�cation of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley 

(Hordeum vulgare L.). BMC Plant Bio. 17, https://doi.org/10.1186/s12870-017-1067-6 (2017).
 52. Vishwakarmaa, M. K. et al. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains 

through marker assisted backcross breeding. Cur. Plant Bio. 1, 60–67 (2014).
 53. Huang, X. et al. Genome-wide association study of �owering time and grain yield traits in a worldwide collection of rice germplasm. 

Nat. Genet. 44(1), https://doi.org/10.1038/ng.1018 (2012).
 54. Ogawa, M. et al. Puri�cation of protein body-I of rice seed and its polypeptide composition. Plant Cell Physiol. 28, 1517–1527 (1987).
 55. Yoshida, S. Forno, D. A., Cock, J. H. & Gomez, K. A. Laboratory manual for physiological studies of rice. 3rd ed., IRRI, Manila, 1−83 (1976).
 56. Ju, Z., Hettiarachchy, N. & Rath, N. Extraction, denaturation and hydrophobic properties of rice �our proteins. J. Food Sci. 66, 

229–232 (2001).
 57. Lowry, O. H., Rosebrough, N. J., Lewis, Farr., A. & Randall, R. J. Protein measurement with the Folin Phenol reagent. J. Biol. Chem. 

193, 265 (1951).
 58. Juliano, B. O. A simpli�ed assay for milled rice amylose. Cereal Sci. Today. 16(334-338), 340–360 (1971).
 59. Juliano, B. O. Criteria and tests for rice grain qualities. Rice chemistry and technology (Ed. Juliano, B. O.), American Association of 

Cereal Chemists, Inc, MN2, 43–524 (1985).
 60. Wang, L. Q. et al. Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice. �eor. 

Appl. Genet. 115, https://doi.org/10.1007/s00122-007-0580-7 (2007).
 61. Federer, W. T. & Wol�nger, R. D. Gauss and SAS for recovering inter block and inter variety information. Technical Report Series of 

the Biometrics Unit, 14853 (1996).
 62. Wol�nger, R. D., Federer, W. T. & Cordero-Brana, O. Recovering Information in Augmented Designs, Using SAS PROC GLM and 

PROC MIXED. Agron. J. 89, 856–859 (1997).
 63. Murray, M. G. & �ompson, W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325, https://doi.

org/10.1093/nar/8.19.4321 (1980).
 64. Li, H., Ribaut, J. M., Li., Z. & Wang, J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in 

biparental populations. �eor. Appl. Genet. 116(2), 243–60 (2008).
 65. Sakai, H. et al. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell 

Physiol. 54(2), e6–e6 (2013).
 66. Kurata, N. & Yamazaki, Y. Oryza base: An integrated biological and genome information database for rice. Plant physiol. 140(1), 

12–17 (2006).
 67. Yamamoto, E., Yonemaru, J. I., Yamamoto, T. & Yano, M. OGRO: �e Overview of functionally characterized Genes in Rice online 

database. Rice 5(1), 26 (2012).
 68. Kawahara, Y. et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map 

data. Rice 6(1), 4 (2013).
 69. Xia, L. et al. Rice Expression Database (RED): an integrated RNA-Seq-derived gene expression database for rice. J Genet Genomics 

44(5), 235–241 (2017).
 70. Sato, Y. et al. RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural �eld conditions. Nucleic 

acids res. 39(suppl_1), D1141–D1148 (2010).
 71. Van Berloo, R. GGT 2.0: versatile so�ware for visualization and analysis of genetic data. J. Hered. 99, 232–236 (2008).

Acknowledgements
�e authors are thankful to Director, ICAR-NRRI and the project ‘CRP in Bioforti�cation of selected crops 
(ICAR)’ for the �nancial assistance and also thankful to Dr. T. Mohapatra, Director General, ICAR, New Delhi, 
India for research guidance. Authors also acknowledge the service related to SNP genotyping provided by the 
Imperial Life Science (P) Ltd., Gurgaon, Haryana, India.

https://doi.org/10.1038/s41598-019-39863-2
https://doi.org/10.1270/jsbbs.65.308
https://doi.org/10.1186/1471-2156-12-97
https://doi.org/10.1186/1471-2156-12-97
https://doi.org/10.1186/s12284-017-0161-6
https://doi.org/10.1007/s10681-013-0964-5
https://doi.org/10.1016/S1671-2927(11)60047-3
https://doi.org/10.1007/s13353-011-0045-1
https://doi.org/10.1007/s00122-008-0869-1
https://doi.org/10.1186/1471-2229-13-35
https://doi.org/10.1186/1471-2229-13-35
https://doi.org/10.3389/fpls.2015.00803
https://doi.org/10.1186/s12870-017-1067-6
https://doi.org/10.1038/ng.1018
https://doi.org/10.1007/s00122-007-0580-7
https://doi.org/10.1093/nar/8.19.4321
https://doi.org/10.1093/nar/8.19.4321


1 6SCIENTIFIC REPORTS |          (2019) 9:3196  | https://doi.org/10.1038/s41598-019-39863-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Author Contributions
K.C. developed mapping population; K.C., B.C.M., L.K.B. and A.S. conducted �eld experiments and statistical 
analysis; L.B. and N.U. selected and �ltered SNPs for designing array; K.C., L.B., N.U., S.R., M.C. and N.R.P. 
analyzed genotyping data and conducted genetic analysis; A.D., T.B.B., S.S., S.G.S., S.S.S. and N.M. analysed 
biochemical parameters, K.C., L.B., K.O.C., M.C., S.R., N.U. and S.G.S. interpreted the results and wrote the 
manuscript; K.C., L.B. and S.G.S. conceived, designed and supervised the study.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-39863-2.

Competing Interests: �e authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© �e Author(s) 2019

https://doi.org/10.1038/s41598-019-39863-2
https://doi.org/10.1038/s41598-019-39863-2
http://creativecommons.org/licenses/by/4.0/

	Detection of stable QTLs for grain protein content in rice (Oryza sativa L.) employing high throughput phenotyping and geno ...
	Results and Discussion
	Phenotypic analysis. 
	Distribution of SNPs in chip, genotyping and linkage analysis. 
	Single environment QTLs. 
	Epistatic QTLs and MET- QTLs for GPC and SGPC. 
	Validation of main effect QTL for GPC using high throughput phenotyping. 
	Delineation of QTL loci and identification of probable candidate genes. 
	Analogy with previous findings on QTLs for grain protein in rice. 
	High protein elite NILs: their significance in mapping and validation of robust QTL. 
	Expression profile of the functional gene located within QTL loci. 

	Conclusion
	Materials and Methods
	Plant materials and development of mapping population. 
	Field experiments and phenotypic evaluation. 
	Estimation of grain protein content. 
	Fractionation of grain protein and estimation of grain quality traits. 
	Statistical analysis. 
	SNP array design and validation. 
	Genomic DNA preparation, SNP genotyping, allele calling and data analysis. 
	Linkage map construction and QTL analysis. 
	Bioinformatics tool to identify functional genes located inside or close to the identified QTLs. 

	Acknowledgements
	Figure 1 Distribution of backcross derived mapping population (BC3F4) from ARC10075/Naveen for grain protein content (GPC) and single grain protein content (SGPC) in individual environments (Env.
	Figure 2 Scatterplot and trendline of mapping population for GPC and SGPC in three environments (Env.
	Figure 3 (a) Distribution of SNPs on different type of genes in SNP Chip, (b) Different types of SNPs in chip, and (c).
	Figure 4 QTLs detected for SGPC in rabi season (Env.
	Figure 5 (a) Cyclic diagram of epistatic QTLs (ep-QTL) for single grain protein content (SGPC) in rabi season 2014 (Env.
	Figure 6 Multi-environment trial QTLs (MET-QTLs) detected for grain protein content (GPC) in rice in threshold LOD score 2.
	Figure 7 Graphical genotyping of selected high protein lines and QTL (qGPC1.
	Figure 8 The Heat map depicting expression profiles of selected 11 genes in embryonic and endosperm-specific tissues at 7-, 10-, 14-, 21-, 28- and 42- days after flowering (DAF), respectively.
	Table 1 Main effect additive QTLs for GPC and SGPC in rice in two environments (Env.
	Table 2 Additive × environment interaction QTLs (MET-QTLs) for grain protein content (GPC) and single grain protein content (SGPC).
	Table 3 Predicted functional genes present inside and adjacent to the main, epistatic and MET- QTLs and their distances from the QTLs peak.
	Table 4 Fraction of soluble protein (g per  100 g polished rice sample) in introgression lines for GPC in Naveen background and their parents.


