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Purpose: Early diagnosis or detection of Alzheimer’s disease (AD) from the normal elder

control (NC) is very important. However, the computer-aided diagnosis (CAD) was not

widely used, and the classification performance did not reach the standard of practical

use. We proposed a novel CAD system for MR brain images based on eigenbrains and

machine learning with two goals: accurate detection of both AD subjects and AD-related

brain regions.

Method: First, we used maximum inter-class variance (ICV) to select key slices from

3D volumetric data. Second, we generated an eigenbrain set for each subject. Third,

the most important eigenbrain (MIE) was obtained by Welch’s t-test (WTT). Finally,

kernel support-vector-machines with different kernels that were trained by particle swarm

optimization, were used to make an accurate prediction of AD subjects. Coefficients of

MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant

regions that distinguish AD from NC.

Results: The experiments showed that the proposed method can predict AD subjects

with a competitive performance with existing methods, especially the accuracy of the

polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and

the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based

CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus,

Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule,

Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle

Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule,

Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus,

Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal

Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal

Gyrus, and Uncus). The results were coherent with existing literatures.
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Conclusion: The eigenbrain method was effective in AD subject prediction and

discriminant brain-region detection in MRI scanning.

Keywords: Alzheimer’s disease, Welch’s t-test, magnetic resonance imaging, machine learning, machine vision,

eigenbrain, support vector machine, particle swarm optimization

Introduction

Alzheimer’s disease (AD) is not a normal part of aging. It is a
type of dementia that causes problems with memory, thinking,
and behavior. Symptoms usually develop slowly and worsen over
time. Symptoms may become severe enough to interfere with
daily life, and lead to death (Hahn et al., 2013). There is no cure
for this disease. In 2006, 26.6 million people worldwide suffered
from this disease. AD is predicted to affect 1 in 85 people globally
by 2050, and at least 43% of prevalent cases need high level of care
(Brookmeyer et al., 2007). As the world is evolving into an aging
society, the burdens and impacts caused by AD on families and
the society has also increased significantly. In the US, healthcare
on people with AD currently costs roughly $100 billion per year
and is predicted to cost $1 trillion per year by 2050 (Miller et al.,
2012).

Early and accurate detection of AD is beneficial for the
management of the disease (Han et al., 2011). Presently, a
multitude of neurologists and medical researchers have been
dedicating considerable time and energy toward this goal, and
promising results have been continually springing up (Xinyun
et al., 2011). Magnetic resonance imaging (MRI) is an imaging
technique that produces high quality images of the anatomical
structures of the human body, especially in the brain, and
provides rich information for clinical diagnosis and biomedical
research (Shamonin et al., 2014). The diagnostic values of MRI
are greatly enhanced by the automated and accurate classification
of the MR images (Goh et al., 2014; Zhang et al., 2015a,b). It
already plays an important role in detecting AD subjects from
normal elder controls (NC) (Angelini et al., 2012; Smal et al.,
2012; Nambakhsh et al., 2013; Hamy et al., 2014; Jeurissen et al.,
2014).

In earlier cases, most diagnosis work was done to measure
manually or semi-manually a priori region of interest (ROI)
of magnetic resonance (MR) images, based on the fact that
AD patients suffer more cerebral atrophy compared to NCs
(Kubota et al., 2006; Anagnostopoulos et al., 2013). Most of these
ROI-based analyses focused on the shrinkage of hippocampus
and cortex, and enlarged ventricles (Pennanen et al., 2004).
Somehow, the ROI-based methods suffer from some limitations.
First, the methods focus on the ROIs need prior knowledge.
Second, the accuracy of early detection depends heavily on the
experiences of the examiners. Third, the mutual information
among the voxels is difficult to operate (Xinyun et al., 2011;
Lee et al., 2013). Finally, there is no evidence that other regions
(except hippocampus and entorhinal cortex) did not provide any
information related to AD. Also, the auto-segmentation of ROI is
not feasible in practice, and examiners tend to segment the brain
manually.

On the other hand, multivariate approaches that consider
all the voxels in a scan as one observation offer an alternative
method to ROI-based methods. The advantages of multivariate
approaches are that they are data driven, which means that the
analyses are fully based on the data without any prior knowledge
and that the interactions among voxels and error effects are
assessed statistically. However, multivariate approaches suffer
from either the curse of dimension problem or the small sample
size problems or the lack of the capability, to make statistical
inferences about regionally specific changes (Álvarez et al.,
2009b).

The Eigenbrain was an excellent multivariate approach that
solves both the curse of dimensionality and the problems in
small sample size. It was proposed by Alvarez et al. (2009a) and
Lopez et al. (2009), and was applied on Single Photon Emission
Computed Tomography (SPECT) images. In their research, the
eigenbrain approach was shown to efficiently reduce the feature
space from ∼5 × 105 to only ∼102, and therefore, was able to
achieve excellent classification accuracy. In this study, we make
a tentative test of applying eigenbrains in MRI scans for AD
detection.

Support vector machine (SVM) has been arguably regarded
as one of the most excellent classification methods in machine
learning (Zhang and Wu, 2012a). Original SVMs are linear
classifiers, and do not perform well on nonlinear data. Hence,
we introduced in the kernel SVMs (KSVMs), which extends
original linear SVMs to nonlinear SVM classifiers by applying
the kernel function to replace the dot product form in the
original SVMs (Gomes et al., 2012). Compared with the original
plain SVM, the KSVMs allows one to fit the maximum-margin
hyperplane in a transformed feature space (Garcia et al., 2010).
The transformation may be nonlinear and the transformed space
is high dimensional; thus although the classifier is a hyperplane
in the high-dimensional feature space, it may be nonlinear in the
original input space (Hable, 2012).

The aim of our study was to develop a novel classification
system based on eigenbrain and machine learning, in order
to grow a computer-aided diagnosis (CAD) system for the
early detection of AD subjects and AD-related brain regions.
Our goal was not to replace clinicians, but to provide an
assisting tool. The rest of the paper was organized as follows:
the next section reviewed relates literatures from two aspects:
the extracted features and the classification methods. Section
The Proposed Method describes the methodology of the
proposed CAD. Section Experiments and Results contains
the experiments and results. Section Discussion analyzes
the reason behind the experiment results. Finally, Section
Conclusion and Future Research is devoted to conclusion
and future research. For ease in reading, the acronyms and
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their meanings of this study are listed in Table 12 in the
appendix.

The contributions of the paper fell within the following five
aspects: (i) We generalized the Eigenbrain to MR images, and
proved its effectiveness; (ii) We proposed a hybrid eigenbrain-
based CAD system that can not only detect AD from NC, but
also detect brain regions that related to AD. (iii) We proved
the proposed method had classification accuracy comparable to
state-of-the-art methods, and the detected brain regions were in
line with 16 existing literatures. (iv) We used inter-class variance
(ICV) and Welch’s t-test (WTT) to reduce redundant data; (v)
We found POL kernel is better than linear and RBF kernel for
this study.

Literature Review

In common convention, the automatic classification consisted
of two stages: feature extraction and classifier construction. We
reviewed over ten literatures, and analyzed themthrough the two
stages.

Features of MR Images
Scholars have proposed numerous methods to extract various
features1. Chaplot et al. (2006) used the approximation
coefficients obtained by discrete wavelet transform (DWT).
Maitra and Chatterjee (2006) employed the Slantlet transform,
which is an improved version of DWT. Their feature vector of
each image was created by considering the magnitudes of Slantlet
transform outputs corresponding to six spatial positions that
were chosen according to a specific logic. El-Dahshan et al. (2010)
extracted the approximation and detail coefficients of 3-level
DWT. Plant et al. (2010) used brain region cluster (BRC). They
suggested to use information gain (IG) to rate the interestingness
of a voxel, and applied clustering algorithm to identify groups of
adjacent voxels with a high discriminatory power. Zhang et al.
(2011) exclusively used the approximation coefficients of 3-level
decomposition, and used PCA to reduce the features. Ramasamy
and Anandhakumar (2011) used fast Fourier transform (FFT) as
features. Saritha et al. (2013) proposed a novel feature of wavelet-
entropy, and employed spider-web plots to further reduce
features. Zhang et al. (2013) employed digital wavelet transform
to extract features then used principal component analysis (PCA)
to reduce the feature space. Savio and Grana (2013) proposed
to use deformation-based morphometry (DBM) techniques, and
proposed five features as Jacobian map, modulated GM (MGM),
trace of Jacobian matrix (TJM), magnitude of the displacement
field, and Geodesic Anisotropy (GEODAN). In addition, they
suggested the use of Pearson’s correlation (PEC), Bhattacharyya
distance (BD), andWTT tomeasure the significance of voxel site.
Das et al. (2013) suggested to use Ripplet transform, followed
by PCA to reduce features. Kalbkhani et al. (2013) modeled the
detail coefficients of 2-level DWT by generalizing autoregressive
conditional heteroscedasticity (GARCH) statistical model, and
the parameters of GARCHmodel were considered as the primary
feature vector. Zhang et al. (2014) used an undersampling (US)

1Some abbreviations are modified to avoid conflict within this paper.

technique on the volumetric image, followed by singular value
decomposition (SVD) to select features. El-Dahshan et al. (2014)
proposed to add a preprocessing technique that used pulse-
coupled neural network (PCNN) for image segmentation. Zhou
et al. (2015) used wavelet-entropy as the feature space. Zhang
et al. (2015a) used discrete wavelet packet transform (DWPT),
and harnessed Tsallis entropy to obtain features from DWPT
coefficients. Yang et al. (2015) selected wavelet-energy as the
features.

From the literature used, the DWT based features were proven
to be efficient. In this study, we suggested using a novel feature of
eigenbrain, which was used for SPECT images but was never been
used in MR images.

Classification Model in MRI
There are numerous classification models, but only a few
of them are suitable for MR images. Chaplot et al. (2006)
employed the self-organizing map (SOM) neural network and
SVM. Maitra and Chatterjee (2006) used the common artificial
neural network (ANN). El-Dahshan et al. (2010) used ANN
and K-nearest neighbor (KNN) classifiers. Plant et al. (2010)
used SVM, Bayes statistics, and voting feature intervals (VFI)
to derive the quantitative index of pattern matching. Zhang
et al. (2011) suggested to use ANN. The weights of ANN
were trained by scaled-conjugate-gradient method. Ramasamy
and Anandhakumar (2011) proposed to use Expectation and
Maximization Gaussian Mixture Model algorithm (EM-GMM).
Saritha et al. (2013) used the probabilistic neural network
(PNN). Zhang et al. (2013) constructed a kernel SVM with RBF
kernel, using particle swarm optimization (PSO) to optimize the
parametersC and sigma. Savio and Grana (2013) chose SVM, and
used grid search for tuning parameters. Das et al. (2013) used
least-square SVM, and their 5× 5 CV showed high classification
accuracy. Kalbkhani et al. (2013) tested the KNN and SVM
models. Zhang et al. (2014) proposed to combine KSVM and
decision tree, and their method was dubbed KSVM-DT. El-
Dahshan et al. (2014) used feed forward back-propagation neural
network (FFBPNN). Zhou et al. (2015) used a Naive Bayes
classifier (NBC) as classification method. Zhang et al. (2015a)
used a generalized eigenvalue proximal SVM (GEPSVM) with
RBF kernel. Yang et al. (2015) used SVM as the classifier, and
employed biogeography-based optimization (BBO) to train the
classifier.

After reviewing the latest literatures that were related to
classifiers, we found that SVMs had significant advantages of
high accuracy, elegant mathematical tractability, and direct
geometric interpretation, compared with other classification
methods (Collins and Pape, 2011). In addition, it did not need a
large number of training samples to avoid overfitting (Li et al.,
2010). Kernel technique further enhanced the performance of
SVM. Therefore, KSVM was harnessed in this study.

The Proposed Method

Preprocessing on Volumetric Data
For each individual, all available 3 or 4 volumetric 3D MR
brain images were motion-corrected, and coregistered to form
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an averaged 3D image. Then, those 3D images were spatially
normalized to the Talairach coordinate space and brain-masked.
CDR was interpreted as the target (label). It is a numeric scale
quantifying the severity of symptoms of dementia (Williams
et al., 2013). The patient’s cognitive and functional performances
were assessed in six areas: memory, orientation, judgment and
problem solving, community affairs, home and hobbies, and
personal care. In this study, we chose two types of CDR, i.e., the
subjects with CDR of 0 were considered as NC and subjects with
CDR of 1 were considered as AD (Marcus et al., 2007).

Calculating eigenbrains on the entire brain was difficult.
Instead, we proposed a simplified method that selected several
key slices that capture structures indicative of AD from NC. The
procedure was as follows: we established the ICV v as

v
(

k
)

=
∥

∥µAD
(

Slice = k
)

− µNC
(

Slice = k
)∥

∥

2
(1)

where k was the index of key slice, µAD and µNC represented
the mean of gray-level values of the kth slice of AD subjects and
NC subjects, respectively, ||.||2 represented the l2-norm. Then, we
selected the key-slices of ICV larger than 50% of maximum ICV,
with 10× undersampling factor (i.e., every 10 slices).

In addition, the slice direction can be chosen as either axial,
sagittal, or coronal. Usually coronal direction will give a clearer
view than the other two directions. Figure 1 showed that the
coronal slice had an advantage over other directions in that it
can cover three of the most important tissues within one slice.
Those tissues were seen as indicative of AD. These tissues are the
cerebral cortex, the ventricle, and the hippocampus. If we used
axial or sagittal slice, then we may need to record two or even
more slices to cover those tissues. Therefore, we chose the coronal
direction for key slice selection, with the aim of recording only
one slice.

Eigenbrain
AD has different physical structures from NC. Revisit Figure 1
which indicated the AD subjects had severe atrophy of the
cerebral cortex (region i), severely enlarged ventricles (region ii),
and extreme shrinkage of hippocampus (region iii). Therefore,
eigenbrain tried to capture those different characteristic changes
of anatomical structures between AD and NC.

FIGURE 1 | Difference between (A) a healthy brain and (B) an AD brain.

The labeled three regions are (i) cerebral cortex (ii) ventricle, and (iii)

hippocampus.

Eigenbrain is carried out by PCA, which is a statistical
procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables into a set of values
of linearly uncorrelated variables called principal components
(PC). For 2D images the PCs are extended naturally to the 2D
eigenbrains.

Suppose X is a given data matrix with size of N × A, where
N represents the number of samples and A number of attributes
(For a 256 × 256 image, we need to vectorize it to a 1 × 65536
vector, henceA = 65536). First, we normalized the datasetmatrix
X, so that each sample in the normalized matrix Z was mean-
centered and unit-variance scaled, by subtracting its mean value
and dividing the difference by its standard deviation.

Z←
X − µ (X)

σ (X)
(2)

Next, we estimated the covariance matrix C with size of A× A by

C←
1

N − 1
ZTZ (3)

Here we usedN − 1 instead ofN in order to produce an unbiased
estimator of the variance (See Bessel’s correction (Russell and
Cohn, 2012) for details).

Third, we perform the eigendecomposition of C:

C = U ∧ U−1 (4)

where U is an A × (N − 1) matrix, whose columns are the
eigenvectors of covariance matrix C, matrix 3 is an (N − 1) ×
(N − 1) diagonal matrix whose diagonal elements are eigenvalues
of C, each corresponding to an eigenvector of A. It is common to
sort the eigenvalue matrix 3 and eigenvector matrix U in order
of decreasing eigenvalue u1 > u2 > . . .> uN . To view the ith
eigenbrain u(i), the ith column of U was reshaped to an image.
Suppose the ith column of U contains 65536 elements, then the
reshaped image was 256× 256.

u (i) = reshape (U (:, i)) (5)

Note that in our situation (N ∼ 102 and A ∼ 104, where ∼
denotes the same order of magnitude), the computation burdens
of eigendecomposition of equation (4) are enormous. It can be
accelerated by replacing C in equation (3) with C

′, since N<<A.

C′ ←
1

N − 1
ZZT (6)

The size of C′ is N × N, which can significantly reduce the
computation burden. Using Matlab, the eigenbrain can be done
by a simple “PCA” command without considering these issues.
The flowchart of calculating eigenbrain is shown in Figure 2.

The eigenvalues represent the distribution of energy of the
source data among each of the eigenbrains, where the eigenbrains
form a basis for original data.

To further select an eigenbrain that is the most statistically
significant, we employ the two-sample location test. Saritha et al.
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FIGURE 2 | Flowchart of calculating eigenbrain.

(2013) selected the Student’s t-test which assumes both the means
and variances of the two data are equal. The assumption of
equal variances was not necessary and can be dropped; while
the assumption of equal means is essential to select significantly
important eigenbrains. Therefore, we used WTT that is an
adaption of the Student’s t-test and checks nothing except the two
populations that have equal means.

The null hypothesis is that the eigenvalues of AD and NC
have equal means, without assuming they have equal variances.
The alternative hypothesis is they have unequal means. WTT was
carried out at the 95% confidence interval. The eigenvalues of
the selected most important eigenbrain (MIE) were used as input
features for following classification.

Region Detection
We proposed a visual interpretation method of Eigenbrain to
detect regions that can distinguish AD and NC, which is not
reported in literatures of Alvarez et al. (2009a) and Lopez et al.
(2009). The interpretation in a four-stage process is listed in
Table 1.

Classifier
SVM was used as the classifier. In addition, sequential minimal
optimization (SMO) is chosen to train SVM due to simple
and fast speed (Zhang and Wu, 2012b). Traditional linear
SVMs cannot separate intricately distributed data. In order to
generalize SVMs to create nonlinear hyperplane, the kernel trick
is applied. The KSVMs allows us to fit the maximum-margin
hyperplane in a transformed feature space (Liu et al., 2014). The
transformation may be nonlinear and the transformed space is a
higher dimensional space. Though the classifier is a hyperplane
in the higher-dimensional feature space, it may be nonlinear in
the original input space.

TABLE 1 | Four-stage region detection method.

Region detection

Step 1 We selected the most important eigenbrain (MIE).

Step 2 We performed an absolution operation on MIE, since there are both

positive and negative elements in the MIE matrix.

Step 3 We highlighted those voxels with the values higher than 0.98 quantile, i.e.,

98th percentile.

Step 4 We outputted the anatomical label information of selected voxels using

Talairach Daemon software, the output of which contained five levels:

hemisphere, lobe, gyrus, tissue, and cell.

TABLE 2 | Assessment of classification performance.

Measure Definition

Accuracy (TP+ TN) / (TP+ TN+ FP+ FN)

Sensitivity (Recall) TP/ (TP+ FN)

Specificity TN/ (TN+ FP)

Precision TP/ (TP+ FP)

TABLE 3 | Pseudocode of proposed method.

Step 1 Input 3D MRI data and corresponding CDR labels.

Step 2 Select key slices by ICV larger than 50% of maximum, with 10×

undersampling factor.

Step 3 Generate eigenbrain set for each key slice.

Step 4 Select the MIE by WTT with 95% confidence interval.

Step 5 (Output 1): Submit eigenvalues of MIE to the classifier, and report its

performance based on 50× 10 CV.

Step 6 (Output 2): Report the discriminant regions by the absolute coefficient

values higher than 0.98 quantile.

The radial basis function (RBF) kernel is one of the most
widely used kernels with the form as Zhang and Wu (2012b).

κ (xm, xn) = exp

(

−
‖xm − xn‖

2σ 2

)

(7)

where κ is the kernel function, σ the scaling factor, and xm and
xn are vectors in the input space.

Another commonly used kernel is polynomial (POL) kernel
defined as

κ (xm, xn) =
(

xTmxn + c
)d

(8)

where d is the degree of polynomial, and c a soft margin constant
trading off the influence of higher-order vs. lower-order terms in
the polynomial.

Based on the two kernels, we tested RBF-KSVM and POL-
KSVM for our models. To obtain the best parameter of kernels
(the scaling factor σ of RBF, or the degree d and soft margin
constant c of POL), PSO was employed since it has been used
successfully to tune parameters of KSVM in various problems
(Aich and Banerjee, 2014; Khazaee and Zadeh, 2014; Xue et al.,
2014).
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TABLE 4 | Subject demographics status.

NC AD

Number of subjects 98 28

Male/Female 26/72 9/19

Age 75.91±8.98 77.75± 6.99

Education 3.26±1.31 2.57± 1.31

SES 2.51±1.09 2.87± 1.29

CDR 0 1

MMSE 28.95±1.20 21.67± 3.75

TABLE 5 | Preprocessing of a specified subject.

K-fold CV was employed, and K was assigned with a value
of 10 considering the best compromise between computational
cost and reliable estimates, i.e., the dataset is randomly divided
into 10 mutually exclusively subsets of approximately equal size,
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FIGURE 3 | Key-Slice selection (The red lines correspond to

key-slices). (A) The curve of ICV against coronal slice index. (B) axial view of

key-slices. (C) sagittal view of key-slices.

in which 10 − 1 = 9 subsets were used as training set and the
last subset was used as the validation set. The procedure that
was mentioned above was repeated 10 times, so each subset was
used once for validation. The K results from the K folds were
combined together, to yield a single estimation of the whole
dataset.

The K-fold CV repeated 50 times, i.e., we carried out a 50 ×
10-fold CV. For each time, we used four measures: accuracy,
sensitivity, specificity, and precision (Table 2), to assess the
performance. Here TP, FP, TN, and FN represented the instance
number of true positive, false positive, true negative, and false
negative, respectively. We considered a correctly identified AD
case as a true positive, following the common convention.
Summarizing the 50 repetitions, we reported the final measures
of both the mean and standard deviation (SD) of the four
measures.

Implementation
The purpose of the proposed method is two-fold: (i) to find
discriminant voxels that distinguish AD from NC; and (ii)
to develop a CAD system and report its performance. The
pseudocode is listed in Table 3.

Experiments and Results

The programs were in-house developed using Matlab 2014a, and
ran on IBM laptop with 3GHz Intel i3 dual-processor and 8 GB
RAM. Readers could repeat our results on any machine where
Matlab is available.
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TABLE 6 | Difference between NC and AD on key-slices.

Data Source
We downloaded the dataset from Open Access Series of Imaging
Studies (OASIS) (Ardekani et al., 2013, 2014). We chose the
cross-sectional dataset corresponding toMRI scans of individuals
at a single time point (Bin Tufail et al., 2012). The OASIS dataset
consists of 416 subjects aged 18–96, who are all right-handed.
We excluded subjects under 60 years old and those with missing
records and then picked 126 subjects (98 NCs and 28 ADs)
from the rest of the subjects. The demographic statuses of the
included subjects were summarized in Table 4. Here SES, CDR,
and MMSE represent socioeconomic status, clinical dementia
rating, and mini-mental state examination, respectively.

Preprocessing
Table 5 shows an example of the combination of 3 individual
scans of a subject. The resolution is 1 × 1 × 1.25mm. The
preprocessing performed motion-correction on the 3D MR
images, registered them to form a combined image in the native
acquisition space, and resampled to 1 × 1 × 1mm. Afterwards,
the combined image was spatially normalized to the Talairach
coordinate space, and brain-extracted (Table 5).

Key-slice Selection by ICV
The curve of ICV against slice index was shown in Figure 3A. We
selected 10 coronal slices (60, 70, 80, 90, 100, 110, 120, 130, 140,
and 150). Their corresponding ICVs were all higher than 50% of
the maximum. Figures 3B,C showed the axial and sagittal view
of the 10 key-slices. Table 6 showed the comparison between NC
and AD in the selected 10 key-slices.

Eigenbrains
Table 7 showed the eigenbrain results obtained by running PCA
on the slices of all subjects. For each slice, we had a set of
125 eigenbrains in total. Due to the page limit, we selected and
listed the first 6 eigenbrains. The eigenbrains were sorted in the
order of decreasing eigenvalues. In general, the eigenbrains in the
previous columns were more important than in latter columns.

Most Important Eigenbrain
WTT was conducted to give quantified proof of why the first
eigenbrain was MIE. We performed WTT for the first six
eigenbrains of all key-slices between eigenvalues to characterize
those that were AD and those that were NC. The results were
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TABLE 7 | Eigenbrain results.

(Continued)
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TABLE 7 | Continued

shown in Table 8, and p-values less than 0.05 were marked
in bold. Only the first eigenvalues of all slices were less than
0.05; therefore, the first eigenbrain was indeed the MIE, and
we assigned the eigenvalues of MIE of all 10 key-slices (namely,
10× 1 = 10 features) of each subject to classification.

Classification Comparison
The two classes in order were AD and NC, following common
convention. Here we designed three tasks. The first did not
use the kernel technique, i.e., the basic linear SVM; the second
used RBF-KSVM; and the third used POL-KSVM. The kernel
parameters and error penalty were optimized by PSO method.
The classification results were listed in Table 9, in addition with
the results of state-of-the-art methods.

Region Detection
We carried out the region detection procedure from MIE as
Section Region Detection described. Table 10 showed the result,
in which the green points represented the discriminant voxels.

Here we reported the discriminative regions interpreted by
eigenbrain in Table 11, where BA represented Brodmann area.

Discussion

It is clearly observed in Table 6 that the selected coronal slices
are significant in detecting AD from NC. In particular, the
AD subjects show the cerebrospinal fluid (CSF) in the areas
occupied by brain matter in the NC subjects. We conclude that
10× is reasonable because of following three reasons: (1) The
10× key-slice undersampling (i.e., select only one slice from 10
consecutive slices) yields a coarser brain while still capturing
most tissues in the brain (Compare Table 6 with Figure 1). (2)
It is very hard to define a fitness (optimization) function to find
the optimal undersampling factor. (3) The classification system
has a good accuracy in distinguishing AD from NC, and it
detects correct AD-related brain regions (See Tables 9, 11). As
there are spatial redundancy for neighboring coronal slices, the

undersampling could reduce this redundancy to a rather small
degree.

Overall, the eigenbrains in Table 7 capture both similarities
and differences of structural features between AD and NC.
The first eigenbrain capture the significant feature of AD from
NC, and the second and following eigenbrains capture general
brain structure. Revisiting the hippocampus part in the first
eigenbrain of all key-slices, it is easily perceived that the body
lateral ventricles area of AD are highlighted, which is indeed a
distinct attribute between AD and NC. Our experiment extends
the eigenbrain on SPECT images by Alvarez et al. (2009a) and
Lopez et al. (2009) and shows that eigenbrain is also suitable for
MRI scans.

The p-values in Table 8 show that the first eigenvalue λ1
are all less than 0.05 for all key-slices. It indicates that mean
values of λ1 of AD and NC are significantly different. Hence,
the most dominating eigenvalue characterizing AD and NC is the
one corresponding to the first eigenbrain. For other eigenvalues,
merely 1 of 10 p-values is less than 0.05, which indicates that those
eigenbrains are not dominating features indicative of AD from
NC. Therefore, the first eigenvalue is MIE and was selected.

Classification results in Table 9 compare the proposed three
classifiers with state-of-the-art methods, in which Zhang’s results
(Table 7 in Zhang et al., 2014) are calculated through a single
K-fold CV experiment. Plant’s results (Task 1 in Table 3 Plant
et al., 2010) offer the means together with 95% confidence
intervals. Savio’s results (Table 5 Savio and Grana, 2013) give
the means with SD. For the proposed methods, it is unexpected
that the POL-KSVM produces better classification accuracy of
92.36 ± 0.94 than linear SVM of 91.47 ± 1.02 and RBF-KSVM
of 86.71 ± 1.93, because RBF was reported as the most widely
used kernel. Our results are better than or comparable to other
approaches to AD prediction from MR brain images of NC, e.g.,
US+ SVD-PCA+ SVM-DT of 90% (Zhang et al., 2014), BRC+
IG + SVM of 90% (Plant et al., 2010), BRC + IG + Bayes of
92% (Plant et al., 2010), MGM + PEC + SVM of 92.07% (Savio
and Grana, 2013), GEODAN+ BD+ SVM of 92.09% (Savio and
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TABLE 8 | WTT of the first six eigenvalues of 10 key-slices.

λ1 λ2 λ3

Slice NC AD p NC AD p NC AD p

60 −3.36± 20.01 11.75±27.91 0.01 2.82± 18.77 −9.87±27.93 0.03 0.11± 18.95 −0.39± 21.44 0.91

70 −6.84± 25.60 23.92±28.33 0.00 0.43± 21.20 −1.50±36.97 0.79 1.84± 19.88 −6.44± 22.86 0.09

80 −7.48± 29.05 26.18±27.04 0.00 −0.65± 22.00 2.26±33.36 0.67 −0.25± 21.84 0.87± 25.08 0.83

90 6.79± 32.04 −23.75±24.86 0.00 0.42± 21.94 −1.46±32.98 0.78 −1.88± 20.16 6.57± 21.48 0.07

100 −6.93± 34.25 24.27±30.89 0.00 2.51± 23.05 −8.79±31.63 0.09 0.63± 20.16 −2.22± 23.74 0.57

110 −6.95± 31.89 24.31±24.10 0.00 0.48± 25.03 −1.67±32.93 0.75 1.95± 18.17 −6.81± 29.05 0.14

120 −5.93± 31.60 20.74±23.14 0.00 −0.33± 24.02 1.14±31.84 0.82 −1.07± 16.73 3.74± 25.61 0.35

130 5.02± 28.13 −17.56±28.09 0.00 −1.40± 21.70 4.90±27.75 0.27 −0.59± 17.75 2.06± 19.20 0.52

140 4.27± 25.02 −14.94±22.06 0.00 −1.34± 18.13 4.70±27.10 0.27 3.12± 17.91 −10.93± 14.69 0.00

150 5.51± 18.50 −19.30±30.21 0.00 −2.22± 18.08 7.78±24.66 0.05 1.42± 16.56 −4.97± 13.98 0.05

λ4 λ5 λ6

Slice NC AD p NC AD p NC AD p

60 −1.27± 15.47 4.43±25.32 0.27 1.51± 14.13 −5.29±23.59 0.16 −1.29± 13.10 4.50± 23.71 0.22

70 1.99± 17.76 −6.95±22.50 0.06 −0.03± 16.69 0.09±23.25 0.98 −0.96± 16.08 3.35± 20.79 0.32

80 1.46± 21.14 −5.12±18.85 0.12 −0.72± 17.80 2.52±24.31 0.51 −1.34± 17.47 4.68± 21.78 0.19

90 0.31± 19.66 −1.09±23.73 0.78 −0.54± 18.05 1.89±24.49 0.63 −1.80± 16.79 6.29± 23.33 0.10

100 −1.56± 18.77 5.47±21.18 0.12 0.84± 16.32 −2.95±25.35 0.46 −0.53± 15.58 1.85± 24.87 0.63

110 −0.31± 19.32 1.07±17.30 0.72 0.54± 16.78 −1.87±22.19 0.60 −1.09± 16.07 3.83± 20.43 0.25

120 −0.32± 16.83 1.13±21.16 0.74 −2.21± 18.00 7.74±10.70 0.00 −1.31± 14.81 4.57± 21.45 0.18

130 1.61± 17.00 −5.62±18.51 0.07 1.39± 14.21 −4.86±23.47 0.19 2.01± 15.42 −7.04± 17.25 0.02

140 2.11± 16.81 −7.39±16.29 0.01 0.44± 15.37 −1.56±17.70 0.59 1.21± 14.37 −4.24± 17.85 0.15

150 1.17± 13.52 −4.11±18.51 0.17 0.27± 14.35 −0.94±13.89 0.69 0.17± 13.52 −0.58± 15.14 0.82

P-values less than 0.05 are in bold.

TABLE 9 | Comparison of classification results.

Accuracy Sensitivity Specificity Precision

EXISTING METHODS

US + SVD-PCA + SVM-DT (Zhang et al., 2014) 90 94 71 N/A

BRC + IG + SVM (Plant et al., 2010) 90.00 [77.41, 96.26] 96.88 [82.01, 99.84] 77.78 [51.92, 92.63] N/A

BRC + IG + Bayes (Plant et al., 2010) 92.00 [79.89, 97.41] 93.75 [77.78, 98.27] 88.89 [63.93, 98.05] N/A

BRC + IG + VFI (Plant et al., 2010) 78.00 [63.67, 88.01] 65.63 [46.78, 80.83] 100.00 [78.12, 100] N/A

MGM + PEC + SVM (Savio and Grana, 2013) 92.07 ± 1.12 86.67 ± 4.71 N/A 95.83 ± 5.89

GEODAN + BD + SVM (Savio and Grana, 2013) 92.09 ± 2.60 80.00 ± 4.00 N/A 88.09 ± 5.33

TJM + WTT + SVM (Savio and Grana, 2013) 92.83 ± 0.91 86.33 ± 3.73 N/A 85.62 ± 0.85

PROPOSED METHODS

ICV + Eigenbrain + WTT + SVM 91.47 ± 1.02 90.17 ± 1.66 91.84 ± 1.09 93.21 ± 2.43

ICV + Eigenbrain + WTT + RBF-KSVM 86.71 ± 1.93 85.71 ± 1.91 86.99 ± 2.30 66.12 ± 4.16

ICV + Eigenbrain + WTT + POL-KSVM 92.36 ± 0.94 83.48 ± 3.27 94.90 ± 1.09 82.28 ± 2.78

Grana, 2013), and TJM + WTT + SVM of 92.83% (Savio and
Grana, 2013). There were many other methods (Gray et al., 2012;
Arbizu et al., 2013; Chaves et al., 2013; Dukart et al., 2013; Cohen
and Klunk, 2014) proposed for detecting AD from NC, however,
they treated images from other modalities (such as SPECT and
PET). Therefore, it is not appropriate to compare the proposed
methods with them.Wewill test ourmethods on SPECT and PET
images in the future.

Table 11 shows that eigenbrains interpret the discriminant
voxels involving the following regions reported in existing
literatures: Anterior Cingulate (BA-24, BA-32) (Schultz et al.,
2014), Caudate Nucleus (Head, body, and tail) (Möller et al.,
2015), Cerebellum (Colloby et al., 2014), Cingulate Gyrus (BA-
23, BA-24, BA-31) (Yu et al., 2014), Claustrum (De Reuck et al.,
2014), Inferior Frontal Gyrus (BA-47) (Eliasova et al., 2014),
Inferior Parietal Lobule (BA-40) (Wang et al., 2015), Insula
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TABLE 10 | Discriminant voxels.
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TABLE 11 | Regions found by Eigenbrain.

Regions # of voxels Reported by

Anterior cingulate (BA-24, BA-32) 35 Schultz et al., 2014

Caudate nucleus (Head, body, and

tail)

407 Möller et al., 2015

Cerebellum 65 Colloby et al., 2014

Cingulate gyrus (BA-23, BA-24,

BA-31)

343 Yu et al., 2014

Claustrum 14 De Reuck et al., 2014

Inferior frontal gyrus (BA-47) 71 Eliasova et al., 2014

Inferior parietal lobule (BA-40) 29 Wang et al., 2015

Insula (BA-13) 23 He et al., 2015

Lateral ventricle 410 Voevodskaya et al., 2014

Lentiform nucleus 569 Möller et al., 2015

Lingual gyrus 71 Lehmann et al., 2013

Medial frontal gyrus (BA-10, BA-11,

BA-25, BA-6)

416 Kang et al., 2013

Middle frontal gyrus (BA-11) 52 Schultz et al., 2014

Middle occipital gyrus 22 Lehmann et al., 2013

Middle temporal gyrus 50 Aubry et al., 2015

Paracentral lobule (BA-3, BA-4, BA-5,

BA-6, BA-7)

210 Kang et al., 2013

Parahippocampal gyrus (Amygdala,

BA-28, BA-35, Hippocampus)

276 Eskildsen et al., 2015

Postcentral gyrus (BA-5) 10 Kang et al., 2013

Posterior cingulate 27 Shinohara et al., 2014

Precentral gyrus (BA-4) 11 Kang et al., 2013

Precuneus (BA-7, BA-31) 557 Kang et al., 2013

Subcallosal gyrus (BA-25, BA-34,

BA-47)

82 Paakki et al., 2010

Sub-Gyral (BA-40, Corpus Callosum,

Hippocampus)

589 Streitburger et al., 2012

Superior frontal gyrus 70 Chen et al., 2014

Superior parietal lobule 269 Quiroz et al., 2013

Superior temporal gyrus (BA-38) 12 Paakki et al., 2010

Supramarginal gyrus 14 Quiroz et al., 2013

Thalamus (Medial Geniculum Body,

Pulvinar, Ventral Lateral Nucleus)

35 He et al., 2015

Transverse Temporal Gyrus (BA-41) 26 Kim et al., 2012

Uncus (BA-28) 25 Bangen et al., 2014

(BA-13) (He et al., 2015), Lateral Ventricle (Voevodskaya et al.,
2014), Lentiform Nucleus (Möller et al., 2015), Lingual gyrus
(Lehmann et al., 2013), Medial Frontal Gyrus (BA-10, BA-11,
BA-25, BA-6) (Kang et al., 2013), Middle Frontal Gyrus (BA-
11) (Schultz et al., 2014), Middle Occipital Gyrus (Lehmann
et al., 2013), Middle Temporal Gyrus (Aubry et al., 2015),
Paracentral Lobule (BA-3, BA-4, BA-5, BA-6, BA-7) (Kang
et al., 2013), Parahippocampal Gyrus (Amygdala, BA-28, BA-35,
Hippocampus) (Eskildsen et al., 2015), Postcentral Gyrus (BA-5)
(Kang et al., 2013), Posterior Cingulate (Shinohara et al., 2014),
Precentral Gyrus (BA-4) (Kang et al., 2013), Precuneus (BA-7,
BA-31) (Kang et al., 2013), Subcallosal Gyrus (BA-25, BA-34, BA-
47) (Paakki et al., 2010), Sub-Gyral (BA-40, Corpus Callosum,

Hippocampus) (Streitburger et al., 2012), Superior Frontal Gyrus
(Chen et al., 2014), Superior Parietal Lobule (Quiroz et al.,
2013), Superior Temporal Gyrus (BA-38) (Paakki et al., 2010),
Supramarginal Gyrus (Quiroz et al., 2013), Thalamus (Medial
Geniculum Body, Pulvinar, Ventral Lateral Nucleus) (He et al.,
2015), Transverse Temporal Gyrus (BA-41) (Kim et al., 2012),
and Uncus (BA-28) (Bangen et al., 2014).

Nevertheless, some regions reported to be associated with AD
are not interpreted by Eigenbrain, such as subthalamic nucleus
(De Reuck et al., 2014). The reason may lie in three aspects. First,
the quantile of our method is assigned with a value of 0.98, which
is considered high. Reducing the quantile valuemay includemore
regions. Second, some literature used other advanced imaging
modalities, such asMRSI and fMRI for metabolism detection and
function analysis. Third, the key-slice selection procedure may
miss important regions.

From another point of view, Table 11 demonstrates the power
of the eigenbrain. Our study uses only one feature (eigenbrain) on
10 key-slices of a simple 3D structural MR image, nevertheless,
our findings cover 30 related regions reported by over twenty
literatures, which used various feature extraction methods and
advanced imaging technologies.

The contributions of the paper fall within the following five
aspects: (i) We generalize the Eigenbrain to MR images, and
prove its effectiveness; (ii) We propose a hybrid eigenbrain-based
CAD system that can not only detect AD fromNC, but also detect
brain regions that related to AD. (iii) We prove the proposed
method has a classification accuracy comparable to state-of-the-
art methods, and the detected brain regions are in line with
16 existing literatures. (iv) We use ICV and WTT to reduce
redundant data; (v) we find POL kernel is better than linear and
RBF kernel for this study.

In conclusion, the advantages of eigenbrain are three-fold: (i)
it reaches very high classification accuracy, which was better than
or competitive with state-of-the-art methods (Plant et al., 2010;
Savio and Grana, 2013; Zhang et al., 2014); (ii) it can directly
find discriminant voxels/regions within the whole brain; (iii) it
can be combined with other features, in order to increase the
classification performance. On the other hand, the disadvantages
of eigenbrain also exist: (i) it is essentially two-dimensional,
which does not reduce the redundancy along the slice direction;
(ii) it needs preprocessing of spatial registration, which costs large
amount of computation resources.

To the policy-makers, this study suggests the eigenbrain
technique can achieve comparable results to traditional methods.
It may offer a ray of hope for AD diagnosis with unconventional
means with the combination of eigenbrain andmachine learning.
This preclinical study suggests that hospitals and medical
laboratories enroll more computer scientists and engineers, with
the aim of developing efficient AD diagnosis and region detection
systems.

Conclusion and Future Research

We presented an automated and accurate classification method
that was based on eigenbrains and machine learning, in order to
detect AD subjects and AD-related brain regions using 3D MR

Frontiers in Computational Neuroscience | www.frontiersin.org 12 June 2015 | Volume 9 | Article 66

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Zhang et al. Detection of AD using 3D MRI based on eigenbrain and ML

images. The results showed the proposed POL-KSVM method
achieved 92.36% accuracy, which was competitive with state-of-
the-art methods.

In the future, we will focus our research in the following
aspects: (i) We shall generalize the eigenbrain to three
dimensional, so the procedure of key-slice selection can be
removed; (ii) We shall test other kernels for SVM, and try to
replace KSVM with other advanced pattern recognition tools.
(iii) Eigenbrain can be used in combination with DWT-based
features and others, and an increase in classification accuracy is
expected.
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