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Detection of symmetry in tachistoscopically
presented dot patterns: Effects of

multiple axes and skewing

JOHAN WAGEMANS, LUC VAN GOOL, and GERY n'YDEWALLE
University of Leuven, Leuven, Belgium

We examined the effects of multiple axes and skewing on the detectability of symmetry in
tachistoscopically presented (lOO-msec) dot patterns to test the role of normal grouping processes
based on higher order regularities in element positions. In addition to the first-order regularities
of orientational uniformity and midpoint collinearity (Jenkins, 1983), bilateral symmetry (BS)
gives rise to second-order relations between two pairs of symmetric elements (represented by corre
lation quadrangles). We suggest that they allow the regularity (i.e., BS) to emerge simply as a
result of the position-based grouping that takes place normally, so that no special symmetry
detection mechanism has to be postulated. In combination with previously investigated variables
number and orientation of axes-we introduced skewing (resulting from orthographic projection
of BS) to manipulate the kind and number of higher order regularities. In agreement with our
predictions, the data show that the effect of skewing angle (varied at three 15 0 steps, clockwise
and counterclockwise) on the preattentive detectability of symmetry (measured with d') increases
as the number of axes decreases. On the basis of some more specific findings, we suggest that
it is not as much the number of correlation quadrangles that determines the saliency of a regularity
as it is the degree to which they facilitate or "bootstrap" each other.

During the time since Mach's (1886/1959) observations

on the special status of bilateral or mirror symmetry for

the human perceptual system, numerous experiments have

been done on its detection and use. With respect to the

latter, abundant data indicate the influence of symmetry

on several perceptual and cognitive processes, such as

scanning, encoding, short-term memory, recognition,

representation, imagination, the establishment of a refer

ence frame, and judgments of numerosity, complexity and

goodness, or aesthetic value (see, e.g., Chipman & Men

delsohn, 1979; Fox, 1975; Howe & lung, 1987; Locher

& Nodine, 1973, 1989; Palmer, 1985; Pashler, 1990;

Szilagyi & Baird, 1977; Yodogawa, 1982). All this

research suggests that symmetry is a very salient visual

property that the human visual system must detect effi

ciently and rapidly.
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Although the use of signal-detection measures (e.g., d')
and tachistoscopic presentation (e.g., 25 or 100 msec) has

shown that human perceivers are indeed capable of de

tecting bilateral symmetry (BS; see, e.g., Barlow &

Reeves, 1979; Carmody, Nodine, & Locher, 1977),

several decades of experimentation and modeling have not

succeeded in clarifying how we do it exactly. To be sure,

the effects of several different variables on the efficiency

and speed of symmetry detection have been studied ex

tensively. Naturally, this kind of research has yielded im

portant information about the general principles of the

mechanism and the constraints within which it operates.

In addition, the implications of these findings have been

accounted for in some preliminary accounts of symmetry

detection. Nevertheless, several essential questions remain

unanswered. We will address them by discussing exam

ples from experimental and theoretical work. Our own

research fits into the same tradition, in that we are trying

to find out the effects of particular variables (here, mul

tiple axes and skewing) on symmetry detection, but we

are attempting to go further, in that our research is more

explicitly focused on testing a particular proposal about

a mechanism of symmetry detection.

EFFECTS ON SYMMETRY DETECTION:
PRELIMINARY ACCOUNTS

Axis Orientation

The variable most often studied in research on detec

tion of symmetry is the orientation of the axis of sym

metry. Whereas most studies (e.g., Fisher & Bornstein,

Copyright 1991 Psychonomic Society, Inc.
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1982; Jenkins, 1985) have shown that symmetry about

a vertical (V) axis is most salient, and hence easier to de

tect, as measured by accuracy and response times (RTs),

there is some controversy about the relative detectability

of horizontal (H) and oblique (0) symmetry. Palmer and

Hemenway (1978) have explained the difference between

their results regarding orientational effects, indicating an

oblique effect (RTv < RTH < RTo), and Corballis and

Roldan's (1975), indicating a mental rotation effect

(RTv < RTo < RTH), by the absence or presence,

respectively, of an explicitly drawn axis of symmetry. In

addition, this has been interpreted as evidence for a stage

in which a potential axis is selected prior to the evalua

tion of symmetry about it and for the bias of this stage

toward V. Recently, Pashler (1990) has come to a simi

lar conclusion on the basis of data from two experimen

tal paradigms: response times with extended exposure du

ration and accuracy with tachistoscopic presentation (i.e.,

100 msec).

Palmer and Hemenway (1978, Experiment 1) found

considerably higher detectability of double and quadru

ple symmetry (i.e., resulting from a reflection of a pat

tern about two and four axes, respectively). This finding

led them to suggest that the first stage of axis selection

follows a variable order. On the average, a symmetry axis

will be selected sooner when there are multiple axes from

which to choose. In their Experiment 2, Palmer and

Hemenway instructed the subjects to detect V symmetry

only, in order to eliminate the selection process. This

manipulation resulted in a considerable reduction in RTs

for all symmetries, yet the advantage of the multiple sym

metry remained. This result is somewhat surprising, if

the variable selection is indeed the only explanation for

the multiple symmetry advantage. It has been interpreted,

therefore, as a facilitation of the evaluation stage on the

basis of the good gestalt of the pattern halves that have

to be compared.

In summary, then, Palmer and Hemenway (1978,

p. 7(0) have suggested the following dual process model

with which to interpret their results.

First, the observer selects a potential axis by a crude, but

rapid, analysis of symmetry in all orientations simulta
neously .... This selection process is biased toward V and,

to a lesser extent, H axes rather than 0 ones. The actual

order of selection is assumed to be variable rather than
fixed. If a given axis meets the selection criterion, a per

ceptual reference frame is established in the appropriate

orientation-perhaps through rotation. . .. The observer
then performs a detailed evaluation of symmetry about the

selected axis by explicitly comparing the two halves for

mirror-identity.

How the first global, crude, and rapid stage operates is

not specified. Nevertheless, this seems to be the essen

tial part of the symmetry-detection mechanism, because

the second component process is in fact only consciously

controlling what has been signaled preattentively. (For

a clear distinction between effortless, immediate, preat

tentive perception, on the one hand, and attentive search

and scrutiny, on the other, see Julesz, 1981.)

Different Zones and Central Presentation
A second set of factors that have frequently been in

vestigated consists of the contribution of different zones

in a pattern to the global impression of symmetry in it,

as well as the relative importance of central presentation

to it. Most studies have shown that a restricted area around

the axis of symmetry is the most important (e.g., Jenkins,

1982) and that central presentation (with the axis of sym

metry being located at the point of fixation) is most help

ful (e.g., Saarinen, 1988). Nevertheless, several findings

urge that this general statement should be qualified.

With respect to the issue of central presentation, Julesz

(1971) has noted that the detection of symmetry in sim

ple patterns (e.g., amorphic shapes) does not require that

the center of symmetry coincide with the fixation point

of the eyes, in contrast with the same detection in com

plex patterns (e.g., dot textures). Julesz has therefore con

cluded that symmetry detection operates at two levels: for

patterns with low spatial frequencies, the symmetric re

lations are extracted globally; in contrast, for patterns with

high spatial frequencies, the symmetric relations are ex

tracted by a point-by-point comparison process. A simi

lar distinction (without the spatial ftltering notions) has

been incorporated in most subsequent models and theories

(see, e.g., Bruce & Morgan, 1975; Palmer & Hemen

way, 1978).

With respect to the contribution of different zones,

Barlow and Reeves (1979) have provided some evidence

for the importance of outer areas also (possibly because

of an imaginary contour), and they have stressed the ver

satility of the symmetry-detection mechanism by show

ing a remarkable tolerance to smearing (i.e., nonexact cor

respondences between symmetrically positioned elements)

and noncentral presentation. These findings led them to

suggest that "symmetry detection requires nothing more

than the comparison of dot densities measured over quite

large areas symmetrically placed about the putative axis

of symmetry" (Barlow & Reeves, 1979, p. 791).

However, they are forced to admit that "each different

position of the axis requires a different set of compari

sons, and [that] the means by which these sets of com

parisons are brought about is not easy to imagine' ,

(p. 792). Again, it seems that this first, preattentive global

stage is the real mystery.

Orientational Uniformity and
Midpoint CoUinearity

Jenkins's (1983) study of component processes in sym

metry detection is a third example of experimental

research on the effects of different variables on the de

tection of symmetry resulting in some basic principles to

be taken into account by symmetry-detection models. In

fact, he comes closest to the essentials of the first stage

of rapid and crude symmetry detection by explicitly

manipulating the information that is present in a bilater

ally symmetric pattern. Jenkins started from the defini

tion of a bilaterally symmetrical dot pattern "as a two

dimensional distribution of uniformly oriented point-pair

elements, of nonuniform size, which fall across the same



axis evenly such that the uniformly oriented pairs have

collinear midpoints" (p. 433). In a nice set of experi

ments, he has shown the visual system's sensitivity to

orientational uniformity (i.e., the fact that all virtual lines I

connecting the symmetrically positioned dots are parallel)

and midpoint collinearity (i.e., the fact that all midpoints

of these virtual lines are situated on one straight line, viz.,

the axis of symmetry). It is tempting to conclude from

these findings that symmetry detection is based on these

regularities, and Jenkins's own model more or less sug

gests this.

However, it remains unclear exactly how orientational

uniformity and midpoint coUinearityare detected. It seems

that the detection of both factors must occur cooperatively;

in order to detect the orientational uniformity, one has

to know how the dots belong together, but to measure the

symmetric positions requires information about the orien

tation of the axis and hence the detection of the midpoint

collinearity. Furthermore, experiments with skewed sym

metry indicate that orientational uniformity and midpoint

coUinearity are insufficient to explain symmetry detection.

Skewing

Skewed symmetry (SS) is the result of a general ortho

graphic projection of BS. In fact, the only situations in

which a planar BS in the world is projected to BS on the

retina are the accidental cases of an orthogonal viewing

position or a plane slanted about an axis perpendicular

to the axis of symmetry. In all other cases, BS yields SS

in the image plane. In computer vision, the presence of

SS in the image is therefore used as a cue to infer BS in

the world (see, e.g., Kanade & Kender, 1983; Stevens,

1979), and algorithms have been proposed to derive con

straints on the orientation (slant and tilt) of a nonor

thogonal plane from the direction and angle of the skew

ing (see, e.g., Friedberg, 1986; Hakalahti, 1983).

Recently, we have extended this work considerably by

allowing interactions between multiple regularities (Van

Gool, Wagemans, Vandeneede, & Oosterlinck, 1990).

As far as we know, the human sensitivity to SS has

never been tested formally and systematically (some in

formal observations were made by Attneave, 1982, and

Stevens, 1979). Nevertheless, detecting symmetry in

nonorthogonal planes seems to be a prerequisite if a bio

logical visual system is to be able to use this kind of nonac

cidental property in object recognition (as proposed re

cently by Biederman, 1987, and Lowe, 1987). Some

preliminary data indicate that, analogously to the afore

mentioned computer vision algorithms, the human visual

system has a perceptual bias toward symmetry that is used

in the recovery of a constant three-dimensional (3-0)

shape from changing two-dimensional (2-0) images

(King, Meyer, Tangney, & Biederman, 1976).

In a study published elsewhere (Wagemans, Van Gool,

& d'Ydewalle, 1990), we have investigated the percep

tion of SS with a paradigm in which the subjects had to

detect and locate an additional dot that disturbed the sym

metry (BS or SS) in a dot pattern. As a result of the

orthographic projection of BS, the angles between the
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virtual lines connecting the symmetrically positioned ele

ments and the axis of symmetry generally differ from 90 0
,

but orientational uniformity and midpoint collinearity are

preserved by the affine transformation. The results of that

study indicate that it is much harder to detect a violation

of SS than it is to detect a violation of BS (higher error

rates, longer RTs). In the following section, we will

present the principles of a new account of symmetry de

tection that integrates all the findings reviewed above.

A NEW ACCOUNT AND ITS PREDICTIONS

Consider the dot pattern presented in Figure 1 (left).

Suppose that the human visual system, when confronted

with such a pattern, starts processing it by grouping dots

together, so that they are eventually represented by vir

tuallines (see Note 1). Initially, connections will be es

tablished in all possible directions, but gradually the lo

cal parallelism between the virtual lines spanning the

symmetry axis will be noticed. When more and more of

these pairwise connections between symmetrically posi

tioned elements are formed, their midpoint collinearity

and, in fact, the global symmetry giving rise to it, would

be detected (see Figure 1, middle).

Second-order Relations
The same pairwise correspondences are possible in SS,

yet they are much harder to detect (see Figure 2). The

critical difference between both types of patterns occurs

in terms of second-order relations holding between pairs

of first-order virtual lines." As can be seen in the right

item in Figure 1, two pairs of symmetrically positioned

Figure 1. Example of a dot pattern with perfect single symmetry
about a vertka1 uIs (left) and Its ftrst-order (middle) and 8eCood

order (right) regularities. In the rightmost Item, only some 01 the

bootstrappIJII a-I 00 the correlation quaelraJllles (I.e., symmetric
trapezoids) Is sbowo.

FIpre 2. Example 01a dot pattern with skewed single symmetry

about a vertka1 uIs (left) and Its ftrst-orcler regularities (right).
The skewing Is J00 rounten:lockwl8e. In contrast with orIentatIonaI

uniformity and midpoint colHnearlty (Jenkins, 1983), the blgber

order relations cUsappear. As a consequence, there are DO correla

tion quadrangles, and bence, DO bootstrappllll.
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elements constitute a virtual quadrangle with certain spe

cial characteristics such as correlated angles. The virtual

quadrangles of this basic correlational type are called

correlation quadrangles.3
In principle, two kinds of such

correlation quadrangles are possible: symmetric trape

zoids, with two pairs of equal adjacent angles, and

parallelograms, with two pairs of equal opposite angles.

Our suggestion is that the normal grouping processes

that occur as one of the first stages in all perceptual

processing automatically lead to the detection of sym

metry, because the possible relations confirm one another,

given the Euclidean invariant line lengths (i.e., distances)

and angles (i.e., orientations). More specifically, in BS

the elements are positioned in such a way that not only

the individual elements are in symmetric positions about

an axis. The virtual lines formed between two elements

not belonging together because of the symmetry, but be

cause of their proximity (i.e., the nonhorizontallines in

Figure 1), have the same lengths and relative orientations

as those of their corresponding virtual lines at the other

side of the symmetry axis (see Note 3).

In SS this additional support from connections between

nonsymmetrically positioned elements is absent, because

all lengths and angles of virtual lines representing them

are different as a result of the affine skewing transforma

tion. Although all first-order relations (defined in terms

of the "correct" correspondences) are the same for BS

and SS, the second-order relations (dependent on the "in

correct" correspondences as well) are regular only for

BS. So, given that the visual system does not "know"

initially which pairwise connections indicate symmetric

correspondences, many spurious ones are made. These

are helpful in BS, but not in SS.

These geometric relations holding in patterns with BS

might facilitate the detection of it in the following way.

Let us assume that from the moment at which some

parallelism is detected (i.e., first-order regularity), a lo

cal reference frame is established for it (one axis of the

frame parallel to it, the other orthogonal to it), with respect

to which all other angles are expressed (i.e., second-order

regularity). Note that this does not require that the axis

of symmetry be detected for the second-order regulari

ties to be registered. If the quadrangle formed in this man

ner is of a nonaccidental nature (i.e., the genuine result

of the regularity in the pattern), it can serve as a starting

point for building additional quadrangles. The propaga

tion of this local reference frame, called bootstrapping,

is quite easy for symmetric trapezoids, because one of

the two axes of the frame indicates the direction in which

to proceed.

Without becoming too engaged with the specific details

of processing, we can say that all previous findings regard

ing effects of multiple axes, different zones in a pattern,

and central presentation can be accounted for if we as

sume that the normal grouping processes start in parallel,

but operate faster in the center (probably because of higher

foveal accuracy, although additional reasons might ex

ist; cf. Saarinen, 1988). Similarly, the orientational aniso-

tropy found in symmetry detection can be incorporated

as a weighted parameter expressing the ease of the spread

ing of the grouping in different directions. In addition to

this post hoc explanatory power, our account leads to quite

specific predictions that have not been tested so far. In

the experiment reported here, we investigated the impor

tance of the higher order relations by disturbing them and

measuring the detectability of the symmetry in the result

ing patterns. The way to do this is to use symmetric pat

terns with multiple axes and skewing.

Multiple Symmetry

In single symmetry, a pattern is reflected about a sin

gle axis. In the present study, in which all patterns have

24 dots, the original input pattern is a pseudorandom col

lection of 12 dots, and the axis is oriented vertically,

horizontally, or diagonally to the left (L) or to the right

(R). When the reflection occurs orthogonally to the axis,

the resulting symmetry is a perfect BS. When the reflec

tion is performed in a nonorthogonal coordinate system,

the resulting symmetry is skewed single symmetry (for

a more mathematical treatment of skewing, see Friedberg,

1986). In multiple symmetry, a pattern is reflected about

more than one axis. For example, in our double sym

metry, represented in Figure 3, a pseudorandom collec

tion of six dots is reflected about a V-H system of axes

or an L-R system of axes. In our quadruple symmetry,

shown in Figure 5, a pseudorandom collection of only

three dots is reflected about each of the four possible axes

(V, H, L, and R). Ofcourse, the skewing transformation

can be applied equally well to these multiple symmetries.

The results are called skewed double symmetry (Figure 4)

and skewed quadruple symmetry (Figure 6), respectively.

Predictions
It is interesting to see what happens with the higher

order relations in all these different kinds of symmetry

with single or multiple axes and with skewing. The num

ber of virtual quadrangles along each axis present in a

pattern is constant. This number is [N(N-I»)/2; with N
being 12 (i.e., the number of dot pairs), this yields 66

virtual quadrangles." The different kinds of symmetries

differ in the number of axes along which there are 66

quadrangles and in the regularity of the quadrangles. In

Table 1, the available quadrangles are specified for all

of the kinds of symmetries studied in the experiment

reported here.

In perfect double symmetry, two axes exist, each with

66 virtual quadrangles, all of which are of the basic cor

relational type. As can be seen in Figure 3, there are 66

correlation quadrangles, 60 symmetric trapezoids, and 6

even higher order ones (viz., rectangles with four cor

related angles; see Notes 2 and 3), all 2 x 2 identical. S

In skewed double symmetry, however, only 6 parallelo

grams (viz., skewed rectangles) and 60 nonsymmetric

trapezoids are present along each of the two axes (see

Figure 4). So the number of quadrangles of the correla

tional type is significantly decreased by skewing. The
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Figure 3. Example of a dot pattern witb perfect double symmetry about left and ript axes. In the sec
ond column, tbe nrst-order regularities are sbown for botb axes separately. In the tbird column, tbe boot

strapping based on the second-order regularities is shown for the same two axes. 'ThetDfHiIbt item represents
the correlation quadrangles that result from combining the two ftrst-order regularities (l.e., rectangles) .

..

Figure 4. Example of a dot pattern witb skewed double symmetry about vertical and

ript axes, as a result of a 45° counterclockwise skewing of a double vertical-horizontal

symmetry about the vertical axis. In the second column, the ftrst-order regularities are
sbown for botb axes separately. Their superposition gives the paraUelograms shown in the

riptmost item, but tbere is no bootstrapping between them.

prediction, then, is that there will be a significant differ
ence in detectability between the perfect and the skewed

double symmetries.

In perfect quadruple symmetry, four axes are present,

each with 66 virtual quadrangles, all of which are again

of the basic correlational type. As one can see in Figure 5,
there are 60 symmetric trapezoids and 6 rectangles along

each axis, all 2 X 2 identical. In skewed quadruple sym

metry, there are also four axes with 66 virtual quadran

gles, but not all of them are correlation quadrangles (see

Figure 6). Along two of the four axes, there are 60 sym-

metric trapezoids and 6 rectangles, all 2 x 2 identical.

Along the other two axes (i.e., the ones around which

the skewing is applied), there are 60 nonsymmetric trape

zoids and 6 parallelograms, again pairwise identical. In
fact, skewing a quadruple symmetry results in a perfect

double symmetry (the orientation of the orthogonal sym

metry axes depends on skewing angle and axis) and a

skewed double symmetry. All in all, the number of corre
lation quadrangles is very high, so that the detection of

this kind of symmetry must be very easy, at least if the

account presented above has some validity.
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Figure S. Example of a dot pattern with perfect quadnJple symmetry (l.e., about vertical, horizontal,

left, and right axes). In the second and third columns, the first-order regularities and the bootstrapping
based on the second-order regularities are shown, respectively, for all four axes. The fourth column
represents the rectangles resulting from combining two orthogonal first-order regularities.

To recapitulate what is hinted at above, in perfect sin

gle symmetry 66 correlation quadrangles are present along
the axis; but they are not pairwise identical, and there are

no rectangles, only symmetric trapezoids (see Figure 1).

In skewed single symmetry, the second-order relations

are destroyed, and hence, no correlation quadrangles are

present whatsoever (see Figure 2). In summary, the skew

ing should have little or no effect on the detection of sym
metry in dot patterns with four axes, a small but maybe

significant influence on the detectability of double sym

metry, and a large disruptive effect when only a single

axis is present.

Our previous study (Wagemans et al., 1990) showed

that skewed single symmetry is very hard to detect. In
fact, preattentive detection of regularity was completely

destroyed by skewing (these dot patterns look random at

first sight). Subsequently, we have used SS as a means
of investigating orientational effects and component

processes in symmetry detection without the confound

ing of two orientations (axis and virtual lines) and the

cooperation of two stages (global axis selection and local

point-by-point evaluation) that are clearly present in as
(Wagemans, Van Gool, & d'Ydewalle, in press).

However, a fundamental weakness of those studies

with respect to the normal process of preattentive sym
metry detection was that the experimental paradigm

forced the subjects to search for a particular regularity
(or a dot disturbing it) consciously, yielding very long

search times (even up to 20 or 30 sec). To investigate

the role of these higher order relations more quantita

tively in a paradigm measuring fast symmetry detection

was our principal aim in the experiment reported here.
Following Julesz's (1981) operational definition, the re

quirement of the level of the process being measured
(preattentive vs. attentive) has been met by presenting
the dot patterns tachistoscopically (100 msec) in a dis

crimination task (random vs. symmetric). The require

ment of quantitative detail has been met by using differ
ent kinds of symmetries. As indicated above, it appears

that the identity and number of higher order regularities
can be varied sufficiently by skewing single, double, and

quadruple symmetries.
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Figure 6. Example of a dot pattern with quadruple symmetry after 45° clockwise skewing about the left axis.
As a result, there is skewed symmetry about the left and horizontal axes and perfect double symmetry about
Intermediate axes. In the second column, the t I n t ~ r d e r regularities for the four axes are shown, whereas the
third column Indicates that there is only bootstrapping based on the s e c : o n d ~ r d e r regularities for the two axes
with perfect symmetry. In addition, superposition yields rectangles for the perfect double symmetry and paraUeIo
grams for the skewed double symmetry.

METHOD
Subjects

Four subjects participated in the experiment: the first author and

3 naive observers who were paid about $4 US per hour. All ob

servers had normal or corrected-to-normal vision. Because of the

very large number of trials and conditions (see the Procedure sec

tion), only a few well-motivated subjects (subjects who were will

ing to return several times) could be run. The expectation was that

the processes under investigation are so basic as to allow no cogni

tive biases or large interindividual differences. Previous research

has indicated that despite overall differences between trained and

untrained subjects, the same relative deteetabilities ofdifferent kinds

of symmetries are usually obtained (Locher & Wagemans, 1991;

Royer, 1981; Wagemans et al., in press).

Task
The subjects received a large number of random and symmetric

dot patterns, randomly intermixed, which had to be judged as regular

or not (the notion of "symmetry" was avoided in the instructions

to the subjects, because naive observers tend to equate this with

perfect bilateral symmetry only). The yes/noanswers had to be made

as accurately as possible. There was no time pressure, except that

the dot patterns were presented only for a fixed small amount of

time (i.e., 100 msec).

Stimuli
The random dots used to generate the symmetricdotpatternswere

only partly random. There were three basic constraints. First, the

random dots had to fall within a global circular area defined around

the center of the screen with a diameter of 10 em, and they had

to be located so that their symmetrically positioned partners also

fell within the same circular area. Second, the random dots had

to be located outside a circular area defined locally around the other

dots in the pattern (both the random and the symmetric ones) with

a diameter of I em. The third constraint on the locations of the ran

dom dots was that they had to be distributed equally within the to

tal area. This was realized through the location of an equal number

of dots (i.e., eight) within each of thethree annuli that resulted from

four concentric circles defined around the middle of thescreen. The

radii of two of the four circles were already fixed by the first two

constraints; the outermost circle had a radius of 5 em, and the in

nermost circle had a radius of 0.5 em. The remainder of the whole

circular area was divided into three annuli with almost equal areas

by two circles with radii of 2.75 and 4.25 em.
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Table 1
Enumeration of Avallable Virtual Quaclrangles In All Kinds

of Symmetry Generated by Combining Different Numbers and Orientation of Axes
with Different Skewing Angles

Symmetric Nonsymmetric
Trapezoids Rectangles Trapezoids Parallelograms

2 . 6

2'6

2 . 60

2 . 60
4'60 4'6
2'60 2'6
2'60 2'6

Perfect quadruple
Skewed quadruple
Perfect double
Skewed double
Perfect single 66

Skewed single 66

Note-Underlined numbersindicate thattheyare pairwise identical. As withall nth-order regularities
with n > 2, we do not know whether they are used by our visual system, but they are available
information.

Apart from the first constraint, which defined the visual angle

of the stimulus field, the constraints on the random selection of dot

locations were introduced to prevent special grouping effects.

Without the second constraint, some dot clusters might have arisen

that would have been processed as a single higher order feature.

Although this feature clustering is in itself an interesting topic for

study (see, e.g., Jenkins, 1983; Locher & Wagemans, 1991; Wage

mans et al., 1990), it would have been a confounding factor in this

experiment. Without the third constraint, many patterns would have

been generated with an almost completely empty inner zone and

most dots constituting an imaginary outer contour; the restriction

on the interdot distances forces the dot-selection process to locate

the dots in the periphery of the circular area, because this max

imizesthe chance that a dot does not fall within the local area around

another dot. Again, this imaginary contour is in itself an interest

ing topic for study (see, e.g., Barlow & Reeves, 1979; Wagemans

et al., 1990), but it was not the focus of the present experiment.

In our experiment, the special grouping effects could have func

tioned as cues to distinguish symmetric from random dot patterns

and were, therefore, avoided.

In summary, the symmetric dot patterns were generated accord

ding to the following procedure. First, a random dot was selected

within the first annulus (defined as the region between the circle

with radius 0.5 cm and the circle with radius 2.75 em), This ran

dom dot was projected according to the kind of symmetry one wanted

to generate (e.g., reflected seven timesfor a quadruple symmetry).

Next, it was checked to see whether the projected dot(s) was (were)

not too close to the original dot (or the other projected dots). Then,

a second random dot was selected, this time in the second annulus

(defined as the region between the circle with radius 2.75 em and

the circle with radius 4.25 em). Again, the location of this dot was

checked to ensure that it was outside the local area around an al

ready selected dot. Then again, this random dot was projected ac

cording to the appropriate symmetry rule and checked. A new dot

was selected randomly, this time in the third annulus, and so on

until 24 dots were located pseudorandomly and symmetrically in

the three annuli in the circular area.

When an SS had to be generated, a second phase was added to

this first phase of random dot selection and symmetric projection.

In accordance with one of six possible skewing rules to be followed,

a clockwise (CW) or counterclockwise (CCW) skewing of a par

ticular angle (15°,30°, or 45°) was performed about a particular

axis (V, H, L, and R). After this skewing, a final check was made

on the minimal interdot distances.

The general procedure for stimulus generation of the random dot

patterns was as similar to the one for the symmetric patterns as

it could be. The constraints on the randomization of the dot loca

tions were the same. Now, 24 random dots were to be located in

the circular area with a diameter of 10 em (8 dots in each annu

lus). After every random generation of a possible dot location, a

check on the minimal interdot distances was made. The skewing

transformation was also applied to the random dot patterns, because

the circular area in which the dots were located (and to which the

subject's attention had to be divided) was transformed to an ellip

tic one in the case of SS. Its elongation measure and direction were

dependent on the angle and direction ofthe skewing and on the orien

tation of the axis about which the skewing was applied. Work by

Lansky, Yakimoff, and their colleagues has shown that human ob

servers are quite good at estimating the orientation of an elliptic

dot pattern (e.g., Lansky, Yakimoff, & Radii, 1987; Lansky,

Yakimoff, RadiI,& Mitrani, 1989). Therefore, in order for the form

of the stimulus zone not to be a potential cue for the decision on

the randomness or regularity of the pattern constituted by the dots

located in the zone, the random patterns hadthe samestimulus fields

as did their symmetric counterparts.

Apparatus

The dot patterns were generated by a C program on a SUN -3

Workstation with a Motorola MC 68881 floating-point board.

Stimulus presentation was automated by another C program on an

ffiM-AT-compatible with a Phoenix 80386 processor and a VISTA

card. The stimuli were presented on a raster display with high tem

poral and spatial resolution (BARCO, Type CDCT-6351B) used

in PAL mode with a 50-Hz temporal resolution and a 740 x 578

spatial resolution, noninterlaced, as black dots against a homogene

ous gray background. The experimental room was completely dar

kened, and screen borders were covered by black cardboard with

a circular aperture to reduce orientational cues. The subjects were

seated at a distance of 114 em with their eyes in front of the mid

dle of the screen. At that distance, the size of the individual dots

and the whole patterns subtended 5.7' and 5°, respectively.

Forehead- and chinrests were used to prevent head rotations.

Procedure
The experiment was designed as a signal-detection experiment.

The "signal" to be detected was symmetry or, as it was explained

to the subjects, regularity. Before starting the experiment, the sub

jects received a rather extensive introduction to what was meant

by "regularity. " Examples ofeach of the different symmetries were

shown (on paper), and time was given to explore the dot patterns

sufficiently to detect the presence of single or multiple axes. They

were then instructed that they would see many such patterns, mixed

with random dot patterns and presented only very briefly. The task

was described as a forced choice in response to the question, "Is

it a regular pattern or not?" -which hadto be answered to the best

of their abilities. Response fingers were chosen by the subjects.

A114 subjects answered "yes" (regular) with the right index finger

and "no" (random) with the left index finger.

A trial consisted of the following sequence of events. First, a

fixation pattern was presented for 500 msec. This was a black" + "



at the center of the imaginary circle on a homogeneous gray back

ground. It allowed the subject to fixate the center of the dot pattern

when it was presented immediately thereafter. Second, a dot pat

tern was presented for 100 msec. This was a collection of 24 ran

dom or symmetric black dots on a homogeneous gray background

falling within an imaginary circle or ellipse centered at the middle

of the screen (see Stimuli section above). Immediately following

this lOO-msec dot pattern, a masking pattern was presented for

1,500 rnsec. This was a similar black-on-gray collection of 36 ran

dom dots sufficiently large to cover the stimulus pattern completely.

A set of 10 masking patterns was used. After each stimulus pat

tern, one of these 10 masks was randomly selected. The reason why

the same mask was not used after all stimuli is that it would thereby

have lost its masking power. From the moment the mask was on,

the subject could respond by pressing one of the two buttons on

a response panel connected to the PC configuration used for the

stimulus presentation. Each answer was instantaneously evaluated

by the computer so that immediate feedback could be given. A cor

rect answer was followed by a 300-rnsec high-frequency tone

(750 Hz), a false response by a 500-msec low-frequency tone

(100 Hz). The only reason why this feedback was provided was

to keep the motivation and arousal of the subjects at an optimal level.

As a result of this feedback, some learning probably occurred, es

pecially for the naive observers. This potential secondary effect was

controlled for by randomizing trial and block orders across subjects.

Following the introductory session in which the concept of regular

ity was explained and demonstrated and in which the task was

described, subjects received a practice session of three series of

158 trials. A practice series contained one symmetric and one ran

dom dot pattern for each of the 79 kinds of symmetry. This odd

number is the result of combining three variables as orthogonally

as possible: (I) the number of axes (three levels, viz., one, two,

and four); (2) the orientation of the axis (four levels when there

was one axis, viz., V, H, L, and R; two levels when there were

two axes, viz., V-H and L-R; and only one level when there were

four axes); and (3) the skewing angle (seven levels, viz., 15°,30°,

and 45° , both CW and CCW, in addition to 0° skewing, i.e., yield

ing perfect symmetry).

Although this nonorthogonal combination complicated the data

analysis somewhat, we considered this to be a smaller disadvan

tage than the alternative solution, which would have been to present

four blocks of perfect quadruple symmetry and two blocks of each

type of double symmetry. Because the prediction was that these

were the easier conditions, presenting them more than once would

have left room for a more mundane explanation for that finding,

in that these types of symmetry could have been learned better than

the other conditions.

The data for the practice stimuli were not analyzed. The only

reason for the practice session was to allow the subjects to get an

impression of the difficulty of the task (i.e., the short presentation

time) and to exercise the procedure (e.g., the sequence of events

that defined a trial, the feedback, etc.). The same patterns were

not used in the experimental sessions.

Trials were presented in blocks of 210: Ten practice trials (differ

ent from the experimental ones and not analyzed) preceded 100 ran

dom and 100 symmetric experimental ones. The kind of symmetry

was constant within and changing between blocks. The order of

trials within a block and the order of blocks were randomized for

each subject separately. Following each block of 200 trials, the sub

ject was informed about performance level (percent correct) for that

block, again to maintain motivation.

After each block, the subject could choose to continue or to quit.

They were aware of the large number of trials to be run (i.e., 17,064;

viz., 79 blocks of 200 experimental trials, together with the 3 x

158 trials from the practice sessions and the 79 x 10 practice trials

preceding the experimental blocks). This encouraged them to do

more than a few blocks each time they were in the lab. The sub-
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jects were advised to take short breaks between the blocks. On the

average, subjects did 5-10 sessions of 7-15 blocks, spread over

a period of 4-7 days. The duration of the whole experiment (i.e.,

the introductory session, practice session, and 79 experimental

blocks) was about 13 h for each subject.

RESULTS

For each observer and condition, a fourfold detection

table was constructed from the responses. On the basis

of these raw data, several signal-detection measures such

as d' were calculated. On the set of d' values for all con

ditions and for the 4 subjects, an ANOVA was performed

to assess the differences in detectability between the differ

ent kindsof symmetry. ANOVAs on other measures, such

as raw hit and false-alarm rates, yielded similar conclu

sions and will not be reported here.

The data points for the perfect multiple symmetries were

repeated for each axis orientation (i.e., perfect quadru

ple symmetry was repeated four times, and both perfect

double symmetries twice each), so that the data could be

analyzed for the different conditions as an orthogonal com

bination of three factors: number of axes (three levels:
four, two, and one), axis orientation (four levels: V, H,

L, and R), and skewing angle (seven levels: -45°, -30°,
-15°,0°, 15°, 30°, and 45°). This "trick" has conse

quences for the variability in the corresponding cells only
when the effects of axis orientation are analyzed. This

causes no serious problems, because orientation was of

secondary importance in this study. Moreover, several

alternative tests (e.g., in nested designs) with correct num

bers of observations at each level have been performed

and have yielded very similar results.

In addition to this overall analysis, a posteriori com

parisons (Tukey's HSD tests) were done to evaluate all
pairwise differences for the main effects and at all levels

of each factor interacting with other factors. The results

for these follow-up tests will be summarized only descrip

tively (all quantitative details can be provided on request).

Furthermore, a restricted number of a priori comparisons

(F and t tests) were performed to test the specific predic
tions of the model formulated above. Throughout, the

level of statistical significance was set at p < .05, un
less reported otherwise.

Overview

All main effects and interactions are (at least margin

ally) statistically significant. The average d' values for

the different kinds of symmetry and the results of the

ANOVA associated with them can be found in Tables 2

and 3, respectively. As can be seen, the detectability of

the symmetry decreases as the number of axes decreases,

as the orientation of the axis changes from V and H to

Land R, and as the skewing angle increases. However,

because of the significant interactions between these fac

tors, one must be careful about interpreting these effects.
It appears, for example, that axis orientation and skew

ing angle do not have an effect on the detectability of sym

metry when there are four axes of symmetry.
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Table 2
Mean Detectability (d') as a Function of Number of Axes,

Axis Orientation, and Skewing Angle

Skewing Angle

-450 -300 -150 0° 15° 30° 450 M

Number
4 4.57 4.55 4.65 5.09 4.76 4.52 4.54 4.67

2 2.30 3.20 3.90 4.60 3.99 3.19 2.36 3.36

1 0.51 1.06 2.48 3.40 2.64 0.99 0.82 1.70

Orientation

Vertical 2.52 3.42 3.85 4.81 4.09 2.85 2.70 3.46

Horizontal 2.63 3.00 3.61 4.51 3.83 3.23 2.67 3.35

Left 2.22 2.40 3.59 4.23 3.63 2.62 2.67 3.05

Right 2.47 2.92 3.65 3.91 3.65 2.91 2.24 3.11

M 2.46 2.93 3.67 4.37 3.80 2.90 2.57

Table 3
Results of Analysis of Variance on Detectability Scores (d')

Effect or Interaction df F p

Number of axes
Axis orientation
Skewing angle

Number of axes x axis orientation
Number of axes x skewing angle
Axis orientation x skewing angle
Number of axes x axis orientation x skewing angle

2,6 103.55
3,9 3.72

6,18 37.93

6,18 2.68
12,36 13.66
18,54 1.81

35,108 1.45

0.00017
0.054

ooסס0.0

0.049
ooסס0.0

0.048
0.073

To be able to judge what happens exactly with the higher

order interactions, the effects of skewing angle and axis
orientation on the detectability of the symmetry are shown
for each number of axes in Figure 7 (the top, middle, and
bottom rows represent the results for quadruple, double,
and single symmetry, respectively). In addition to the
results across all subjects (left column), the data for two
individuals (the first author and a naive subject) are shown

to give an idea of the interindividual variance (middle and
right columns, respectively). It appears that the basic
trends were very similar for the separate subjects.

Main Effects
Number of axes. Across all axis orientations and skew

ing angles, symmetry is easier to detect with an increas
ing number of axes. A posteriori comparisons showed all
pairwise differences to be significant: Quadruple sym
metry was easier than double symmetry, which was eas

ier than single symmetry.
Axis orientation. Although the main effect of axis

orientation was only marginally significant (p < .06), it
is interesting that the combined detectability for the two
main axes (V and H, d' = 3.41) was somewhat higher
than the one for the two diagonal axes [L and R, d' =

3.08; F(1,3) = 7.75, p < .07].
Skewing angle. Most pairwise differences for this fac

tor were significant, at least all those between two non
subsequent levels (e.g., between 0 0 and 30

0
, CW or

CCW). An alternative way to assess the effect of skew
ing angle is to use trend analysis. The quadratic trend was

the most reliable one, but there was a small quadratic com

ponent added to it [F(1,3) = 239.94 and 11.00, respec
tively]. In this case, this means that symmetry becomes
more difficult to detect, with increasing skewing angle,
both CW and CCW. The quadratic component was caused
by the fact that the decrease in detectability from 30 0 to
45 0 skewing angles was less than expected on the basis

of linearity (probably because of orientational effects of
the virtual lines resulting from combining axis orienta
tion with skewing angle; see Wagemans et al., in press).

Interactions
Number of axes x axis orientation. This interaction

means that, averaged across perfect and skewed sym
metries, the orientation of the axis did not matter for quad
ruple symmetry [F(1,3) < 1], whereas a clear orienta
tional effect was found for double symmetry [F(1,3) =
69.99], with the main axes (d' = 3.64) yielding higher
detectability than the oblique axes (d' = 3.08). For sin

gle symmetry, the orientational rank ordering was simi
lar (single V and single H, d' = 1.95, vs. single L and
single R, d' = 1.45), but it does not approach statistical
significance [F(I,3) = 2.23, p > .20].

Number of axes x skewing angle. As can be inferred
from Table 2, this interaction means that, averaged across

axis orientations, the skewing angle did not matter for
quadruple symmetry (p > .15), whereas the effect of
skewing on the detectability of symmetry became increas
ingly more dramatic for the double and the single sym
metries [F(1,3) = 3.27, 19.66, and 61.48, respectively].
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When only one axis of symmetry was present in a pat

tern, skewing about it by a large angle (i.e., 30° or 45°)

reduced the detectability considerably (d' = 0.84).
Axis orientation x skewing angle. The pattern of

results for this interaction in Table 2 is complex, and its

nature is difficult to interpret on the basis of a posteriori

comparisons. It seems as if the differences between the

small skewing angles (0° ± 15°) are more pronounced

for the patterns with a V or an H axis than for the oblique

orientations, whereas the reverse is the case for the large

skewing angles (±30° and 45°).
Number of axes x axis orientation x skewing an

gie. Because this highest order interaction was only mar

ginally significant (p < .08), a posteriori comparisons

cannot be used to specify the nature of the effect.

Nevertheless, some a priori comparisons associated with

it are crucial for the main purpose of this experiment

namely, to test the predictions of the model of symmetry

detection described above. For example, the detectability

of perfect double symmetries was exactly the same as that

for skewed quadruple symmetries (d' = 4.60). Further
more, although perfect single symmetries (d' = 3.40)

were equally as detectable as skewed double ones [d' =

3.16; t(1l0) < 1, when averaged across axis orientations],

perfect single V symmetry (d' = 4.44) was easier than

skewed double V-H symmetry [d' = 3.43; t(50) = 2.94].

DISCUSSION

Summary and Model Predictions
In general, the effects of multiple axes and skewing in

teracted as expected. Skewing had an increasingly larger

effect on the detectability of symmetry for a decreasing

number of axes. In other words, quadruple symmetry was

not affected by skewing, whereas double and single sym

metry became much harder to detect. Similarly, the third
factor manipulated in this experiment (i.e., axis orienta

tion) had no effect for symmetry about four axes, whereas

the classically found orientational effects (V and H ad
vantage) were replicated for double and (to a lesser ex

tent) single symmetry.

This pattern of results corroborates the principles of our
account presented above quite well (orientational effects

could be incorporated). In single symmetry, only first

order relations between symmetric elements remain af

ter skewing (see Figure 2). Although the virtual lines con

necting the symmetric elements pairwise still have orien

tational uniformity and midpoint collinearity, as noticed
by Jenkins (1983), the detectability drops considerably.

Apparently, the virtual lines connecting nonsymmetric ele

ments are also important. In skewed single symmetry,

these are all different, because distances and angles are
not invariant under skewing (which is an affine transfor

mation), and the grouping based on them does not con

firm the symmetry. In double symmetry, some second

order relations between pairs of virtual lines (represented

by correlation quadrangles) remain after skewing (see
Figure 4). More specifically, although the virtual sym-

metric trapezoids disappear, some virtual parallelograms

are created by skewing the virtual rectangles. As a result

of this, the detectability of double symmetry is decreased

by skewing, but it remains quite high. In quadruple sym

metry, the number of higher order relations remaining

after skewing is so high (see Figure 6) that the regularity

automatically emerges out of the normal grouping

processes based on them. In other words, the symmetry
is very salient and easy to detect.

Toward an Invariants-Based

Bootstrapping Model

Although the general ideas behind this framework for

symmetry detection seem to be psychologically valid,

some specific results are not consonant with the model's

implications. As noted above, skewed quadruple sym

metry is not easier to detect than perfect double symmetry.

Nevertheless, the former has additional virtual parallelo

grams that are absent in the latter. We have suggested

that this is of no additional help, because the number of
second-order relations is already high enough. However,

alternative explanations are possible. For example, it

might also be the case that virtual parallelograms are less

strong correlation quadrangles than virtual symmetric

trapezoids are. At first sight, this suggestion seems to be

corroborated by the fact that skewed double symmetry

(with parallelograms) is harder to detect than perfect sin
gle symmetry (with symmetric trapezoids), at least about

a V axis, but the different numbers involved (i.e., 6 vs.

66) appear to offer a better ground for the latter finding.
The main difference between the two types of correla

tion quadrangles is the degree in which the grouping can

spread along the axis. Symmetric trapezoids facilitate each

other because the angles between the parallel sides and

the virtual lines connecting them with the next parallel

line along the axis are pairwise identical (i.e., the sym
metric pair of sides of the trapezoid). Parallelograms do

not have this property; the angles between the parallel

sides and the virtual lines connecting them with the next

parallel line along the axis are not pairwise identical (i.e.,

the virtual quadrangles connecting the virtual parallelo

grams are nonsymmetric trapezoids).
Therefore, our account can be focused somewhat more,

in that it is not as much the number of correlation quad

rangles that determines the saliency of a regularity as it

is the degree to which they facilitate or bootstrap each

other. This is so because each of the parallel virtual lines

plays a role in two subsequent quadrangles along the axis
of symmetry, whereas this is not the case in parallelo

grams (e.g., in skewed double symmetry; see Figure 4).

One approach to specifying this bootstrapping based on

invariant second-order relations is to develop a mathe

matical function expressing the perceptual cost of a par

ticular grouping. This function would incorporate two

terms, corresponding with first- and second-order rela
tions. In addition, a stochastic algorithm based on simu

lated annealing can then be formulated to search for a

global optimum minimizing this cost function. Several



parameters in the cost function and the simulated anneal

ing algorithm could take care that the algorithm converges

to a solution more rapidly if more higher order regulari

ties are present and more invariants-based bootstrapping

takes place (see the Appendix).
In addition, making use of a computer implementation,

one could try to simulate the basic perceptual findings.

This work would allow us to propose a real model of a
general mechanism for symmetry detection, whereas the

study presented here only suggests some of the princi
ples to be incorporated (for an interesting view on the re

lation between models and mechanisms, see Uttal, 1990).

The results of such an analysis will be reported elsewhere

(Wagemans, Van Horebeek, Van Gool, & Swinnen,

1991). In that study, we will also show that similar boot

strapping effects based on invariant second-order relations

seem to underly other phenomena of perceptual group
ing and regularity detection. For example, processes such

as detecting global structure in vector patterns (see, e.g.,

Caelli & Dodwell, 1982, 1984; Moraglia, 1989) and solv

ing correspondence problems in stereo (see Akerstrom
& Todd, 1988) and apparent motion (see Werkhoven,

Snippe, & Koenderink, 1990) seem to rely on the same

mechanisms.
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Figure AI. Flrst-«der (A) and second-order (B) relations in tenns
of virtual lines and quadrangles, respectively.

a set of elements representing a pattern of dots {i .j.k, ... }.
With every interpretation x-that is, a set of couples of elements

in A-an energy value !(x) is associated. Although several al

temative functions are currently under investigation, all take the

relative positioning of point pairs (represented by virtual lines)

into account. Previously, models working with relative orien

tations of such line elements have been proposed in the litera

ture (e.g., Smits & Vos, 1986; Stevens, 1978). We have referred

to such relationships as first-order. Here, we introduce energy

functions carrying second-order terms.

Assuming two virtual lines, say (i ,j) and (k,t), lying in

each other's neighborhood (see Figure AI, panel A), the first

order information corresponds to relations between orienta

tions of individual virtual lines-for example, orientation vari

ance or, in our current implementation, orientation differences

11/I(iJ) - 1/I(k,I) I. In the different versions of the energy functions,

terms of the form E(el,y(,.) - ,y(k.I) !- I) are used, expressing good

continuation or parallelism, depending on the stimulus type (e.g. ,

Glass patterns, symmetric patterns, curvilinearity, etc.). The sit

uation for the second-order term is depicted in Figure A I,

panel B. The angles <I> cannot be defined unless a virtual line

pair has been selected (hence, second-order). They are defined

relative to the angles 1/1 and always correspond to the smallest

angle enclosed between the virtual lines. The second-order term

in our current version takes the form Eel</>(i.kl- </><i./)!+!</>(k.' )- </>(' .)ll.

For both first- and second-order terms, only restricted neighbor

hoods ofvirtual lines are taken into account. In addition to increas

ing the algorithm's efficiency, this has a clearcut psychological

underpinning (see, e.g., Barlow & Reeves, 1979; Jenkins, 1982).
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APPENDIX

I. The concept of virtual lines sterns from computational models try

ing to represent perceptual groupings between elements in a display.

For example, Stevens (1978) has introduced the notion to represent a

perceived local pairing in Glass patterns. Smits and Vos (1986) have

used virtual lines as primitives to detect contours and curves in dot pat

terns. The interesting property of these representational primitives is

based on the fact that they explicitly possess attributes (i.e., length and

orientation) that are only implicitly present in the input. However, one

does not have to commit oneself to this computational/representational

approach to believe in the psychological relevance of physical charac

teristics in the display (e.g., distances between dots). In this article, we

are using thenotion of virtual lines as a shorthand to refer to thepairwise

relative positions of dots in a dot pattern (i.e., distance and orientation).

2. Our use of first -, second-, and higher order regularity is different

from Julesz's classical use of first-, second-, and higher order statistics

in texture discrimination (for a clear review, see, e.g., Julesz, 1981).

What we mean by first-order is all properties of line segments (i.e.,

two connected dots), and by second-order all properties of quadrangles

(i.e., two connected pairsof line segments). For example, orientational

uniformity (Jenkins, 1983) is referred to as a first-order regularity,

whereas regularity of relations between two pairs of dots is called

second-order.

3. The virtual lines between two parallel virtual lines do not have the

same absolute orientation; they only have the same orientation relative

to the axis of symmetry. This fact is indicated by pairwise identical an

gles in the virtual quadrangle representing the two pairs of virtual lines .

To denote the relative nature of this equality, the notion of correlation

is used.

4. Of course, the total number of possible virtual quadrangles formed

between four elements is much larger still. Here, only the "correct"

ones (i.e., those between two symmetric dot pairs) are counted. When

our visual system starts to process a dot pattern, it is totally unaware

of the "correct" groupings. However, we suppose that, out of the ini
tial stage in which all virtual-line orientations are equally likely, some

structure gradually emerges that facilitates the correct connections and!or

inhibits all spurious ones . We think our research has something to say

about this mechanism, but we postpone our speculations on this point

to the Discussion section. All in all, despite the fact that our system

might not use all of these 66 virtual quadrangles, they are at least avail

able to be detected or picked up.

5. Again, we do not know whether this additional regularity is used

by our mechanism, but it is potential information (see Note 4).

In this Appendix, we will briefly mention some of the aspects

of our mathematical cost or energy function expressing the lack

of regularity or "goodness" in a dot pattern. This function is

then minimized with a simulated annealing technique. Let A be



The optimization procedure then works as follows. Given a

pattern of virtual lines Xt at time t, (I) generate a new candidate

pattern y for Xt+ I by adding or removing a virtual line; (2) if

the energy value is lower, accept Xt+ 1 =y; otherwise accept the

candidate with a probability e[f(.t,)-!(y)]IT" with T, a decreas

ing row converging to O.

It is useful to compare the process with the evolution in time

of a spinglasssystem. This is a model used in statistical physics

to study the global magnetization characteristics of some

materials in terms of the local interaction between the outer elec

trons of each atom, represented by a vector, called spin (see,

e.g., Kirkpatrick, Gelatt, & Vecchi, 1983). With each couple

of points that can be connected, a spin can be associated with

two possible states (signs): Active (+I) means that the connec

tion is made; passive (-I) denotes that it is not made. It is es

sential that the spins can have a range of values between + I

and - I so that the probability that a spin may change its sign

is proportional to its value. For the active spins representing

the connections made, this value is proportional to the resistance

of the neighborhood on the connection (cf. the first term in the

energy function), whereas for the passive spins, this value
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denotes the potential support of the neighborhood for this con

nection if it would be made (cf. the second term in the energy

function).

At this moment, this idea is implemented in a sequential al

gorithm. To compute x.; I, it is attempted as much as possible

to make the most interesting changes first in the generation

process. The latter then works as follows: (I) With probability

p, select two points randomly (in fact, one completely random

point, and a second one as the closest neighbor in a region de

fined by two random comers, one between 0 and 211", and the

other between 11"/8 and 11"/4); (2) with probability q, add the most

promising connection (i.e., the highest passive spin); and

(3) with probability I-p-q, remove the most uninteresting con

nection.

We are currently testing the energy function and the algorithm

to investigate its plausibility as a grouping or regularity-detection

mechanism. In addition, we will start with a parallel implemen

tation of it by means of transputers.

(Manuscript received August 8, 1990;
revision accepted for publication May 21, 1991.)


