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Abstract. Background. Characterizing the intention to move by means of

electroencephalographic activity can be used in rehabilitation protocols with patients’

cortical activity taking an active role during the intervention. In such applications, the

reliability of the intention estimation is critical both in terms of specificity -number of

misclassifications- and temporal accuracy. Here, a detector of the onset of voluntary

upper-limb reaching movements based on the cortical rhythms and the slow cortical

potentials is proposed. The improvement in detections due to the combination of these

two cortical patterns is also studied. Methods. Upper-limb movements and cortical

activity were recorded in healthy subjects and stroke patients performing self-paced

reaching movements. A logistic regression combined the output of two classifiers: i) a

näıve Bayes classifier trained to detect the event-related desynchronization preceding

the movement onset and ii) a matched filter detecting the bereitschaftspotential. The

proposed detector was compared to the detectors using each one of these cortical

patterns separately. In addition, differences between the patients and healthy subjects

were analysed. Results. On average, 74.5 ± 13.8 % and 82.2 ± 10.4 % of the

movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections generated

per minute in the healthy subjects and the patients, respectively. A significantly better

performance was achieved by the combined detector (as compared to the detectors of

the two cortical patterns separately) in terms of true detections (p = 0.099) and false

positives (p = 0.0083). Conclusions. It is provided a rationale to combine information

from cortical rhythms and slow cortical potentials to detect the onsets of voluntary

upper-limb movements. It is demonstrated that the two cortical processes supply

complementary information that can be summed up to boost the performance of

the detector. Successful results have been also obtained with stroke patients, which

supports the use of the proposed system in brain-computer interface applications with

this group of patients.

1. Introduction

The use of electroencephalographic (EEG) activity to study cortical processes associated

with the execution of movements has been explored widely [1, 2, 2–4]. The online

decoding of this information has been successfully used to control external devices

assisting patients with motor disabilities [5–8].

During the last years, the development of brain-computer interfaces (BCIs) for

the functional rehabilitation of patients with motor disabilities has gained special

interest [9, 10]. The main purpose of BCIs in such scenarios is to provide a way to

promote the neural rehabilitation of the patients. EEG-based systems allow the real-

time characterization of cortical activity over the motor cortex while the subject is

performing motor tasks, which allows the online detection when a person is attempting

or imaging a movement [11–13], and to predict certain properties of the movement

to be performed [14–17]. Such information may in turn be used to close the loop with

neuroprosthetic or neurorobotic devices, thus resulting in a natural interface between the

patient’s expectations of movement and the actuation of external devices [18]. Recent

studies have proven the importance of the proprioceptive feedback timing to achieve

associative neural facilitation [19,20].
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In a series of previous studies, use of the Bereitschaftspotential (BP) to detect

the movement intention [13, 17, 21–23] has been proposed. The BP is defined as a

slow decay of the EEG voltage over the central regions of the cortex right before a

voluntary movement is performed [24, 25]. Because the BP is an identifiable pattern

that is decaying until the movement starts, it is suitable to achieve temporal precision

in the detection of voluntary movement onsets. In fact, previous studies showing results

of online systems based on this pattern indicate that average latencies of 315 ± 165

ms can be obtained [23]. Nevertheless, the BP is not detectable in all cases, since

some subjects do not present a significant pattern during self-paced movements. In

addition, results obtained in previous studies using the BP have not fully validated the

use of this cortical pattern alone to detect movement intentions in stroke patients [13].

In fact, altered BP patterns have been observed in previous studies with this type of

patients [26,27].

A possible way of boosting EEG-based systems aimed to detect the onsets of

voluntary movements is to combine the BP with other EEG movement-related patterns

providing complementary information [28]. The event-related desynchronization (ERD)

is a well-known cortical pattern related to the execution of voluntary movements.

The ERD over the sensorimotor cortex refers to the decrease of EEG signal power

in the contralateral alpha (8-12 Hz) and beta (13-30 Hz) rhythms starting about 2 s

before the onset of voluntary movements [1, 3, 4, 29]. Although a variable anticipation

may be observed in the ERD of a specific channel and frequency in a subject during

consecutive movements, the spatio-tempo-frequential distribution of the ERD observed

when averaging a number of EEG segments preceding voluntary movements shows a

desynchronization pattern attached to the movement event [30]. Therefore, the analysis

of the ERD also provides certain degree of information regarding the timing of volitional

motor actions. Indeed, previous studies have used the ERD pattern to anticipate

movement events [12, 31]. As in the analysis of the BP, the ERD pattern of stroke

patients presents variations with respect to healthy subjects [32]. Therefore, it is of

special relevance to study how stroke-related cortical changes may affect a BCI driven

by these cortical patterns.

This study presents for the first time a classifier combining the information obtained

from the analysis of the BP and ERD cortical processes to estimate the onsets of

voluntary upper-limb reaching movements. The system validation is performed using

data from healthy subjects and chronic stroke patients. The comparison between the

classifier combining the ERD and BP patterns and equivalent classifiers using either the

BP or the ERD is also performed. Finally, the study describes the main differences found

between patients and healthy subjects, which leads to a discussion on how EEG-based

systems should be developed for rehabilitation applications.
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2. Methods

2.1. Participants

Two groups of subjects were recruited to validate the proposed system and also to find

differences between the two groups. On the one hand, six healthy subjects (all males,

right-handed and under 35 years old) were measured and considered the control group.

On the other hand, the patients group was comprised of eight chronic stroke patients

(three females, age 65 ± 12 years, mean ± SD; details are provided in Table 1). The

present study shows results corresponding to all control subjects and patients P1-P6.

Patients P7 and P8 were discarded for further analysis because they could not comply

with the demands of the task performed during the experimental protocol. None of the

subjects measured had prior experience with BCI paradigms.

Pat. Age Gender Stroke Affected Years since Fügl-Meyer Minimental Ashworth Rh sessions

code type hemisphere stroke a week

P1 52 F Isquemic L 4 126 30 0 1

P2 54 M Isquemic R 4 69 30 2 2

P3 54 M Isquemic L 3 68 30 3 2

P4 75 M Hemorrg L 1 60 30 3 2

P5 69 M Hemorrg R 4 64 29 3 -

P6 57 F Isquemic L 1 93 26 1 Discont

P7 83 F Isquemic L 5 112 23 1 2

P8 75 M Isquemic L 3 - (mixed aphasia) - 2 2

Table 1. Description of the patients participating in the present study

The experimental protocol was approved by the Ethical Committee of the

Universidad Rey Juan Carlos (Madrid), and warranted its accordance with the

Declaration of Helsinki. All participants signed a written informed consent.

2.2. Experimental protocol

The design of the experimental sessions was inspired in related studies [13]. Each

participant was measured during one single session. The study was performed in a

sound and light-attenuated room. Participants sat in a comfortable chair with their

arms supported on a table. During the measurement phase, participants were instructed

to remain relaxed with their eyes open and their gaze fixated on a point on the wall.

They were asked to perform self-initiated reaching movements with the affected arm (the

dominant arm in the case of the control subjects). The point to be reached was in the

midline of the body and at 75 % of the maximum distance achievable by each subject.

The average distance between consecutive movements was around 8-15 s. During the

resting state between movements, participants were asked to remain as relaxed and quite

as possible, whereas they were asked to start a movement as soon as they felt the urge

to do so.

Intervals containing at least 5 s of resting activity followed by a self-initiated

reaching movement were considered trials and were used in the subsequent steps of
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the data analysis. On average, 53 ± 8 and 55 ± 12 trials were collected with the

healthy subjects and the patients, respectively.

2.3. Data Acquisition

Arm movements were measured with solid-state gyroscopes and surface electromyog-

raphy (sEMG). Three gyroscopes (Technaid S.L., Madrid, Spain), placed on the hand

dorsum, the distal third of the forearm, and the middle of the arm measured the limb

kinematics. The data were sampled at 100 Hz.

Surface EMG was recorded using bipolar derivations on the main muscle groups

involved in the execution of the reaching task (pectoralis major, anterior deltoids,

medium deltoids, biceps, triceps and wrist extensors). The data were amplified (Zerowire

Wireless EMG, Aurion, Milan, Italy) and sampled at 2,000 Hz.

EEG signals were recorded from 31 positions (AFz, F3, F1, Fz, F2, F4, FC3, FC1,

FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz,

P2, P4, PO3, PO4 and Oz, all according to the international 10-20 system) using active

Ag/AgCl electrodes (Acticap, Brain Products GmbH, Germany). The reference was set

to the voltage of the earlobe contralateral to the arm moved. AFz was used as ground.

The signal was amplified (gUSBamp, g.Tecgmbh, Austria) and sampled at 256 Hz.

All data were synchronised with a common digital signal and analysed offline using

Matlab (The Mathworks Inc., Natick MA, USA).

2.4. Detection of the onset of the movements

To detect the time at which each movement started, kinematic information (gyroscopes)

was used instead of the muscle activation data (sEMG). This decision was made to solve

the difficulties in detecting muscle activation onset in spastic muscles likely found in the

affected limbs of stroke patients.

The gyroscopic sensor that first detected that a movement was starting was used

to locate the onsets of the reaching movements. This sensor selection was performed for

each participant. Data were low-pass filtered (Butterworth, 2nd order, fc = 6 Hz), and

the peak amplitude was estimated for each subject performing the reaching movement.

The threshold amplitude for detecting the onsets of the movements was set to 5 % of

this peak amplitude.

The sEMG data was used to ascertain that no sudden muscle activations were

present in any of the muscles of the measured arm during the resting intervals between

consecutive movements. Sudden muscle contractions (which were only observed in

the patients in few moments along the recordings, such as when they readjusted their

position on the chair to be comfortable) were marked as artifacts and were not considered

in subsequent analyses.
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2.5. Description of the classifier architecture and validation

The following sections describe the design of two movement onset detectors, the first

based on the characterization of the ERD preceding movement onset and the second

characterizing the BP pattern. The process for combining the outputs of these two

classifiers is described as well. The results section focuses mainly on the performance

of the combined (ERD and BP) detector, although a comparison between the three

proposed systems (based only on the BP, based only on the ERD and based on both

processes) will also be addressed.

Since a limited number of trials could be acquired with certain subjects, the system

was validated according to a leave-one-out methodology, i.e. once all trials had been

identified, each of them was classified with a detector trained with the rest of the trials

of the same session. The techniques applied here are specifically designed for real-time

functioning of the proposed system. Therefore the results obtained with this validation

methodology are expected to be similar to those obtained in a truly online scenario.

After testing the system online, we decided to generate estimations of movement every

125 ms to enable the correct function (without data loss) of an average computer.

2.5.1. ERD-based detector of the onset of the movement

A näıve Bayes classifier was used to detect the ERD pattern preceding the

movements. Previous studies have demonstrated the suitability of this type of classifiers

for ERD detection [31, 33]. Band-pass filtering was first applied to the EEG signals

(Butterworth IIR filter, 3th order, 6 Hz < f1, 35 Hz > f2) and then a small laplacian filter

(for each electrode position, the average voltage of the closest neighbours is subtracted)

was used [34]. Frontal, fronto-central, central, centro-parietal and parietal channels were

kept. The power values were estimated in segments of 1.5 s and for frequencies between

7-30 Hz in steps of 1 Hz. Welch’s method was used to this end (Hamming windows of

1 s, 50 % overlapping). Estimations were generated every 125 ms.

The power estimations obtained in all training trials from -3 s to -0.5 s (with

respect to the movement onsets) were labelled as examples of the resting state, whereas

the estimations generated at t = 0 s where labelled as movement onset examples. The

Bhattacharyya distance was used to select the 10 best features (channel/frequency pairs)

to build the classifier. This number of features was chosen on the one hand to correctly

characterize the ERD pattern in several channels and frequencies and, on the other

hand, to achieve a real-time working classifier without requiring an excessively high

computational load.

The trained classifier was applied to the test data generating estimations of

movement intention every 125 ms.

2.5.2. BP-based detector of the onset of the movement

A similar procedure to the one proposed in [13, 17] was used to detect the BP.

However, unlike in those two previous studies, we used a finite impulse response band-
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pass filter with linear phase (FIR filter, 15th order, 0.05 Hz < f1, 1 Hz > f2) using the

fir1 routine of Matlab software. This solution was adopted because linear preservation

is crucial to extract the entire BP pattern, and using non linear phase filters (as for

example the Butterworth filter) does not allow decoding of this pattern unless zero-

phase filtering (filtering in the forward and reverse direction) combined with framing of

the EEG signal is performed, which leads to delayed (by a few hundreds of milliseconds)

detection of the BP in the online function, due to filtering edge effects.

After the temporal filters were applied, spatial filtering and channel selection were

performed. Three virtual channels were computed from the original 31 channels in the

experimental set-up. These channels were obtained by subtracting the average potential

of channels F3, Fz, F4, C3, C4, P3, Pz, and P4 from channels C1, Cz and C2 (similarly

to [17]). The average BP was computed for the three resulting channels by using the

training data. The channel showing the highest absolute peak at the movement onset

was selected for the BP-based detection of movement onsets. We selected one of these

channels instead of directly choosing Cz (as in [17]) because in healthy subjects, upper

limb movements typically present a maximal late BP over the contralateral central areas

of the cortex [25].

A matched filter was designed by using the previously selected channel. To this

end, the average BP was obtained by using the time intervals from -1.5 s to 0 s of the

trials in the training dataset. The matched filter was applied to the virtual channel in

the validation dataset. Estimations based on the test data were also made every 125

ms.

2.5.3. Detector of the movement onsets based on the combination of the ERD- and

BP-based detectors

Outputs from ERD-based and BP-based detectors were combined by using a

logistic regression classifier. Training examples of the resting condition were taken from

estimations of the two detectors between -3 s and -0.5 s with respect to the movement

onset (in steps of 125 ms). The output estimations of the ERD and the BP classifiers at

the movement onset were used to model the movement state. The classifier generated

estimations of the intention to move every 125 ms.

2.6. Threshold selection

On the test data, a threshold was applied to the output of the detector to decide at

each moment whether movement intention was detected. The threshold was optimally

obtained from the training dataset, following the criterion of maximizing the percentage

of good trials (GT), i.e., trials with a true positive (TP) and with no false positives

(FP). The metrics are further defined in 2.7.
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2.7. Metrics of the detector performance and threshold selection

Because the present study uses an asynchronous paradigm, conventional metrics used

in traditional BCI paradigms could not be used [35, 36]. Three metrics were used to

evaluate the ability of the detector to reliably locate movement onsets. The TP rate

was defined as the percentage of trials with movement detection contained in the time

interval from -0.75 s to +0.75 s with respect to the actual onset estimated by the

gyroscopes. The precision of the detector was characterized as the number of FP per

minute (FP/min), i.e. rate of detections during the resting intervals. One or more false

activations could be generated in a single trial. Therefore, the percentage of GT was

obtained by counting the amount of trials in which no FP were generated and a TP was

achieved. Finally, the latencies of the TP with respect to the actual onsets of movements

were also computed to analyse the temporal accuracy of the system.

2.8. Statistical analysis

A comparison between the performance of the proposed detector combining the ERD

and the BP information and the performances of detectors based only on each one of

the two patterns was carried out to validate the proposed methodology. Given that

the performances of the three detectors depend on each subject, a Friedman’s test was

used. To gain statistical power and reduce the size of the statistical results, samples

from healthy subjects and patients were used together to test the hypothesis that the

three proposed detectors supplied significantly different results. Bonferroni post-hoc

correction was used to analyse significant differences between pairs. The statistical

analysis was performed on the dependent variables GT, TP and FP/min. The rest of

the presented results are reported as the mean ± SD and are provided separately for

patients and healthy subjects.

3. Results

3.1. Summary of observed cortical patterns in patients and healthy subjects

A summary of the average BP and ERD patterns observed in all patients and healthy

subjects is shown in Figs. 1 and 2. Overall, the ERD and BP could be observed in

most subjects analysed, although differences in spatial distribution and in strength of

these patterns were found. The average BP peak across healthy subjects was found at

-19.8 ± 57.6 ms with respect to movement onsets. In the case of the patients, this peak

was observed at 97.5 ± 47.3 ms. A more homogeneous BP pattern could be observed

in the group of healthy subjects than with the patients according to both, the temporal

BP pattern and its spatial distribution. The ERD spatial distribution presented a

predominant contralateral activation both in the alpha and beta bands in the group of

healthy subjects, whereas activation patterns presented a central (P1, P2, and P5 in

the alpha band and P2, P3, and P5 in the beta band) or bilateral distribution (P3 in

the alpha band and P1 in the beta band) in the patients group.
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Figure 1. Average BP of all subjects (discontinuous lines), and average BP across

subjects (solid line). Averages from healthy subjects and patients are presented in the

left and right panels, respectively

3.2. Results of the detection of the movement onsets

Fig. 3 shows a representative example of the detector function on a single trial

performed by participant C2. The different stages in EEG signal processing to extract

information regarding movement intention are represented. The three last curves show

the estimations of the onset of the movement based either on the BP pattern, on the

ERD pattern, or on the combination of both, respectively. In this example, EEG-based

detection is achieved with few hundreds of milliseconds of anticipation.

Table 2 summarizes the results obtained by the detector based on the ERD and

BP patterns. On average 63.3 ± 13.8 % and 66.4 ± 18.8 % of GT are obtained with the

healthy subjects and the patients, respectively. The percentage of true positives achieved

with patients is smaller than with healthy subjects, but also the FP/min generated with

the patients is higher. These results lead to a similar average performance of the system

in terms of detections and false activations in both groups. Nevertheless, more delayed

detections are obtained with patients (35.9 ± 352.3 ms) than with healthy subjects

(-89.9 ± 349.2 ms).

The features selected by the ERD-based detector of movement onsets in the healthy

subjects and patients are summarized in Table 3 and Table 4, respectively. According

to the average ERD patterns observed in section 3.1 a predominance of contralateral

central features is observed in the first case (healthy subjects), therefore most features

correspond to channel C3 and the surrounding positions. In the case of the patients,
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Figure 2. ERD and BP spatial maps with healthy subjects (left) and patients

(right). Left and central columns show the spatial distribution of the α-ERD and

β-ERD (normalized power changes) obtained by comparing a window of 1.5 s ending

at the movement onset with an equivalent window 4 s before the onset. The third

column shows the spatial distribution of the BP peak amplitude. For each column, the

same colour scales are used with all subjects. Colour scale normalization is performed

representing the lowest value in each column with dark blue and calibrating the level

of dark red in order to optimize the patterns representation.

a more spatially spread distribution of selected features is obtained. Features from the

midline (around Cz) become more relevant in this case. The selection of features from

the alpha or beta band varies for each subject, although beta band features predominate.

Finally, the tables show that selected features relative to the alpha-band in the case of

the patients present lower frequencies than the ones in the group of healthy subjects.

Fig. 4 compares the detection results obtained with the combined detector (ERD

and BP) with the results obtained by detectors based only on the BP or the ERD.

Statistically significant differences between the three detectors are found in GT, TP
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Figure 3. Simulated online function of the single-trial EEG-based detector of onsets

of voluntary movements. The plots show from top to bottom: 1) the gyroscopic data

used to locate the actual onset of the movement, 2) the raw EEG signal of a single

channel, 3) the virtual channel obtained after spatial and temporal filtering the EEG

signal to detect the BP pattern, 4) the EEG signal in one channel after applying a small

laplacian filter and a band-pass filter (between 6 Hz and 35 Hz) for the ERD-based

detection, 5) the output of the matched filter applied by the BP-based detector, 6) the

output of the bayesian classifier applied by the ERD-based detector, and 7) the final

estimation of the intention to move and the optimal threshold level used to convert

the estimation to a boolean signal.

and FP/min (p = 0.002, p = 0.010 and p = 0.008, respectively). Pos-hoc multiple

comparisons show significant differences between the ERD-based detector and the

combined detector in GT (p = 0.007) and FP/min (p = 0.015), but not in TP (p =

0.192). In the comparison between the BP-based detector and the combined detector,
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Code GoodTr (%) TP (%) FP/min Latency (ms)

C1 81.3 82.8 0.47 -48±351

C2 63.8 81.0 1.34 -24±278

C3 39.0 56.1 2.63 -180±476

C4 64.6 70.8 0.38 -198±322

C5 69.8 84.9 1.13 -3±388

C6 61.5 71.2 1.96 -164±290

Average 63.3 ± 13.8 74.5 ± 10.8 1.32 ± 0.87 -89.9 ± 349.2

P1 56.5 84.8 1.83 -58±368

P2 75.0 83.3 0.92 123±290

P3 60.3 80.9 1.94 98±386

P4 60.0 70.0 1.08 83±449

P5 100.0 100.0 0.00 -89±147

P6 46.5 74.4 3.21 50±520

Average 66.4 ± 18.8 82.2 ± 10.4 1.50 ± 1.09 35.9 ± 352.3

Table 2. Detection results obtained with control subjects and patients

C1 C2 C3 C4 C5 C6

C3/21Hz C3/12Hz Pz/12Hz F1/7Hz C3/12Hz FC3/19Hz

CP3/21Hz C3/11Hz C3/12Hz F1/8Hz C3/19Hz CP1/19Hz

C3/20Hz C3/23Hz C3/13Hz C6/29Hz C3/11Hz FC3/20Hz

CP3/20Hz FC1/18Hz FC4/9Hz C3/27Hz CP3/10Hz FC3/18Hz

C3/10Hz FC1/17Hz P1/12Hz FC1/23Hz CP3/11Hz F3/19Hz

C3/19Hz C3/22Hz P1/11Hz C3/26Hz C3/22Hz CPz/20Hz

C3/22Hz C2/17Hz CP1/8Hz C3/24Hz CP3/12Hz C1/19Hz

CP3/19Hz FC1/19Hz Pz/10Hz C3/28Hz Pz/11Hz F3/18Hz

C3/9Hz FC1/14Hz P1/9Hz FC2/18Hz C3/18Hz CP3/18Hz

CP3/22Hz C3/13Hz FC4/10Hz C3/29Hz CP3/13Hz FC3/17Hz

Table 3. Features selected by the ERD-based detector for the control group

P1 P2 P3 P4 P5 P6

C1/9Hz C2/9Hz Cz/20Hz F3/8Hz CP2/13Hz C3/14Hz

Cz/13Hz C2/8Hz Cz/21Hz C1/10Hz C2/13Hz P2/18Hz

FC1/10Hz C2/10Hz Cz/13Hz F3/9Hz C1/22Hz C3/19Hz

FC1/13Hz CP2/18Hz Cz/22Hz C2/11Hz C1/21Hz C2/23Hz

C1/10Hz C2/7Hz Cz/14Hz F1/8Hz Cz/21Hz CP3/14Hz

CP4/18Hz Cz/9Hz Cz/16Hz P1/10Hz C1/20Hz CP1/15Hz

FC1/9Hz Cz/10Hz Cz/15Hz C1/9Hz CPz/22Hz FC2/19Hz

FC1/11Hz CP2/19Hz Cz/17Hz P3/8Hz CPz/16Hz Pz/22Hz

C1/12Hz CP2/17Hz CP1/11Hz F4/20Hz CPz/12Hz CP4/21Hz

C1/13Hz Cz/8Hz Cz/19Hz FC3/8Hz C1/23Hz CP3/11Hz

Table 4. Features selected by the ERD-based detector for the patients

significant differences are found in GT (p = 0.003) and TP (p = 0.003), but not in

FP/min (p = 0.0.059). Finally, no significant differences are found in GT (p = 0.611),

TP (p = 1) and FP/min (p = 0.305) between the detector based on the ERD and the

one based on the BP.
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For healthy subjects, the detector combining ERD and BP information achieves 6.5

± 5.2 % more GT than the BP-based detector and 22.4 ± 10.0 % more GT than the

ERD-based detector (see Table 5). For patients, the percentage of GT also increases

when using the combined detector (13.3 ± 10.9 % and 12.6 ± 16.3 % increase as

compared with the BP- and ERD-based detectors, respectively).
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Figure 4. Performances of the three compared detectors (BP-based, ERD-based and

combined detector) in the healthy subjects group (left) and in the patients (right) in

terms of GT, TP and FP/min

Code GT (%) vs BP GT (%) vs ERD

C1 4.7 32.8

C2 10.3 12.1

C3 14.6 12.2

C4 0.0 35.4

C5 5.7 18.9

C6 3.8 23.1

Average 6.5 ± 5.2 22.4 ± 10.0

P1 4.3 10.9

P2 20.8 -6.9

P3 30.9 -4.4

P4 10.0 36.0

P5 1.9 19.2

P6 11.6 20.9

Average 13.3 ± 10.9 12.6 ± 16.3

Table 5. Gain in the performance of the detector (GT) when using the combined

information of the ERD and BP compared to the use of either of these patterns alone.

The latencies in the detections of the movement onsets are represented by means

of histograms in Fig. 5. The latencies obtained when using the detectors based only on

the BP or the ERD information are superimposed in the figure. The histograms shown
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depend on how much do the ERD and BP patterns vary across trials with respect to the

onsets of the movements, and also on the detection threshold applied to each one of the

three detectors. The figure shows a more delayed distribution of the detections with the

group of patients. Nonetheless, around 85 % of these BP detections are located earlier

than +375 ms. Given that the window used for the BP detector are 1.5 s long, this result

supports the absence of movement artefacts in the activity analyzed. The ERD-based

detector appears to be the less precise in terms of latencies of the detections, while the

BP-based detector presents distributions clearly centred at t = 0 s. Also noticeably, the

ERD-based detector shows a certain degree of anticipation in the detections of movement

onsets in the group of healthy subjects, although it generates delayed detections in the

case of the patients.
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Figure 5. Histograms of the distances between the movement detections and the

actual movement onsets for healthy subjects (left panel) and stroke patients (right

panel). The histograms of the detectors based only on the ERD or the BP are

superimposed in the graphs

4. Discussion

The accuracy with which movements can be detected online by using EEG activity (both

in terms of temporal precision and ratio between true and false activations) represents

an important criterion when deciding whether BCI technology can be brought to clinical

practice in neurorehabilitation environments. This study showed the results of an EEG-

based detector of voluntary movement onsets that combined information extracted from

the processing of cortical rhythms and slow cortical potentials. This is the first time
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that both sources of information have been combined to this end. It is also the first

time the benefits of a detector combining information from the ERD and BP patterns

in patients with stroke have been demonstrated.

Previous studies have described several aspects on the characterization of the BP to

locate movement onsets. Garipelli et al. studied the relevance of choosing appropriate

spatial and temporal filters to extract the BP pattern [21], without showing results

regarding temporal precision in the detections. In a study by Lew et al., average results

of BP detection were presented for healthy subjects and stroke patients, although no

single trial validation was carried out [22]. To the authors’ knowledge, no one thus far

has studied the detection of upper-limb voluntary movements based on the detection of

the BP and using an online feasible design.

In a recent study, Xu et al. presented a system using a manifold method (Locality

Preserving Projection) with a LDA classifier to optimize the classification of the BP.

The algorithm was tested on healthy subjects performing ankle dorsiflexions. The TP

and FP/min results obtained in that study (79 ± 12 % and 1.04 ± 0.8, respectively)

were similar to the ones obtained here with healthy subjects and upper-limb movements.

Nevertheless, the average latencies presented in their study (315 ± 165 ms) were higher

than the ones obtained here. This differences could be due to variations in the way

subjects performed the task in each experiment (differences between upper-limb and

lower limb cortical patterns, length of the resting intervals between movements and

speed of movements among others). The observed differences could also be due to the

combined use of the ERD and BP features proposed here, which enables reduction of

the rate of FP and, as a consequence, enables the selection of less restrictive (more

anticipative) detection thresholds.

Although several previous studies have made use of cortical rhythms to either detect

movement events [7, 35] or to anticipate movement intentions [12, 31], no studies so

far have tried to use ERD information to locate voluntary movement onsets with time

precision. In a previous study by Fatourechi et al., the combined use of cortical rhythms

and slow cortical potentials was proposed for an asynchronous BCI, although in that

case the device was not intended to detect the onset of voluntary movements [28]. The

näıve Bayes classifier described here has demonstrated that the ERD supplies valuable

information in this sense. Indeed, we have shown here the benefits of the combined use

of the information about the ERD and BP as compared to detectors relying solely on

either the BP or the ERD.

Significantly better performances could be achieved with the combined detector in

all metrics analysed: a higher number of GT and TP was achieved with lower rates of

false activations during the resting intervals. Previous studies have demonstrated that

different neural mechanisms are involved in the generation of the ERD and the BP and

therefore may justify their complementarity. The BP is assumed to originate in the

presupplementary and supplementary motor areas [25, 37], which are associated with

the movement planning and with the process of attending the intention to move [38].

In contrast, the ERD is first visible over the contralateral motor cortex [4], and it is
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associated with the formation of more specific neural assemblies synchronized at higher

frequencies to generate the desired descending motor commands [4, 39]. The spatial

distribution of both phenomena in the here presented data also points to different

cortical sources. Given these evidences, it seems reasonable to point to an improved

outcome in the combination of both sources of information to estimate certain aspects

regarding motor planning.

Differences in the average ERD and BP patterns between patients and healthy

subjects were found. A delayed peak of the BP was observed in the patients group,

likely associated with the higher cognitive motor planning time and the slower speed

with which stroke patients perform voluntary movements [17, 26]. Differences in the

spatial distribution of both ERD and BP patterns were also observed (see Fig. 2),

reflecting altered cortical activation patterns in stroke patients, as described in previous

studies [26, 32,40,41].

Regarding the single-trial detection results, previous offline studies [13] showed

differences in BP-based detection performance with healthy subjects and stroke patients

(significantly worse TP results were obtained with the patients). In contrast, the

detection results obtained here with the proposed system (in terms of GT, TP and

FP/min) were similar for patients and healthy subjects. Apart from the differences

in the recruited subjects and paradigms used in both experiments, these better results

with patients were likely due to the improved detector performance when the ERD

information was used. Specifically, there was a 13.3 ± 10.9 % increase in numbers of

GT as compared to the BP-based detector alone (see Table 5). In addition, differences

were observed in the detection latencies: detections in patients were achieved later than

with the healthy subjects. According to Fig. 5, this is especially evident in the ERD-

based detection (whereas ERD-based detections in healthy subjects tend to anticipate

the actual movement onsets, the reverse effect is observed in the group of patients). Such

difference may be the combined result of the altered ERD in stroke patients [32,41] and

an aging factor [42].

Given the detector design proposed here, the influence of movement artifacts in

the detections achieved after the onset of movements are considered negligible. First,

regarding the ERD-based system, the combined use of a small laplacian filter and a

band-pass filter discarded the presence of movement-related common low-frequency

components in the analysed EEG. In addition, the use of premovement signals in

the training stage ensured that the Bayesian classifier focused specifically on the ERD

phenomenon, as can be seen by analysing the features selected by the Bayesian classifier

(see Tables 3 and 4).

In the case of BP-based detection, use of spatial filtering together with the spatial

distribution of this pattern (see Fig. 2) reduces the chance that artifactual sources are

having any influence. Indeed, around 95 % of the detections in the case of the healthy

subjects (around 85 % with the patients) were obtained with latencies under +375 ms

(see Fig. 5). Because a matched filter of 1.5 s was used, it is highly unlikely that any

of these detections were caused by the effect of movement artifacts. In fact, BP-based
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detections later than +375 ms in the stroke patients are likely related to the intrinsic

difficulties in detectinh the real onsets of the movements and also to the delayed BP

observed in these patients due to slower movement velocities with the affected limb [17]

and to an increased cognitive motor planning time [26].

Developing EEG-based systems that can be trained in a short period of time is a

critical aspect in bringing this technology into clinical practice. The training procedure

proposed here assumes that a number of self-initiated movements are performed in the

beginning of each session and are used to train the detector (this process takes around

5 min if 30 movements are used to train the system). In this regard, several studies

have proposed methods for using training data from different sessions to calibrate the

BCI system [43, 44], and these methods may be considered in future studies regarding

the EEG-based detector proposed here.

Finally, gyroscopic data were used to locate the movement events to extract and

characterize the subject-specific ERD and BP patterns. Similar previous studies have

frequently used muscle activation data (from EMG) for such purposes. In this case,

because functional upper limb movements were measured on stroke patients, detecting

the onsets of the movements from muscle activation became difficult, particularly in

the patients with muscle spasticity. On the contrary, by using kinematic data from the

upper-limb segments, it becomes possible to finely detect when a functional movement

starts without significant latencies, considering that the electromechanical delay for

upper-limb movements is relatively small (on the order of tens of milliseconds [45]).

In agreement with this observation, results presented here of average BP patterns in

healthy subjects and patients -obtained with movement references based on gyroscopic

data- show peaks of the BP with similar latencies than those observed in other studies

using EMG data and healthy subjects [19].

5. Conclusion

EEG-based detection of the onsets of voluntary upper-limb movements combining

information about cortical rhythms and slow cortical potentials has been proposed and

tested in healthy subjects and stroke patients. With the proposed system the average

number of true positives (74.5 ± 13.8 %) and false activations per minute (1.32 ± 0.87)

obtained in the group of healthy subjects was similar to comparable previous studies,

and the latencies of the detections were smaller here (-89.9 ± 349.2 ms). Remarkably,

similar results to those obtained with the healthy subjects were observed in the group

of patients (true positives = 82.2 ± 10.4 %; FP/min = 1.50 ± 1.09), although in this

case, higher latencies in the detections were observed (35.9 ± 352.3). By comparing the

proposed detector with two alternatives relying either on the ERD or the BP patterns,

the study demonstrated the importance of combining these two sources of information

to boost the performance of the movement onset detector.
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