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Abstract

Background: In this paper, we developed a novel algorithm to detect the valvular

split between the aortic and pulmonary components in the second heart sound which

is a valuable medical information.

Methods: The algorithm is based on the Reassigned smoothed pseudo Wigner–Ville

distribution which is a modified time–frequency distribution of the Wigner–Ville

distribution. A preprocessing amplitude recovery procedure is carried out on the

analysed heart sound to improve the readability of the time–frequency representation.

The simulated S2 heart sounds were generated by an overlapping frequency

modulated chirp–based model at different valvular split durations.

Results: Simulated and real heart sounds are processed to highlight the performance

of the proposed approach. The algorithm is also validated on real heart sounds of the

LGB–IRCM (Laboratoire de Génie biomédical–Institut de recherches cliniques de

Montréal) cardiac valve database. The A2–P2 valvular split is accurately detected by

processing the obtained RSPWVD representations for both simulated and real data.

Keywords: Phonocardiography, Heart sound, Valvular split, Reassigned Smoothed

Wigner–Ville distribution

Introduction

Heart sounds are recorded as a digital signal to be processed by advanced digital sig-

nal processing techniques. This processing provide valuable information in relation to

the cardiac activity of the patient. The acoustic recording of heart sounds also known as

phonocardiogram (PCG) signal is achieved by means of a microphone placed carefully

on the chest of the patient. The PCG signal is therefore composed of sounds of the heart

generated during the systole and the diastole phases which are mainly marked by the

first (S1) and the second (S2) heart sounds. Two others sounds denoted S3 and S4 could

appear during the diastole. Thus, the PCG signal is mainly formed by the S1 and the S2

heart sounds as depicted in Figure 1. The S1 heart sound is mainly composed by 2 valvu-

lar sounds denoted M1 and T1 generated by the closure of the mitral and the tricuspid

valves respectively. Likewise, the S2 heart sounds is formed by A2 and P2 components

which are generated by the closure of the aortic and the pulmonary valves respectively.

© 2013 Djebbari and Bereksi-Reguig; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1 Normal PCG signal (one cardiac cycle).

It is well known that digital phonocardiography is a powerful tool for assessing the pul-

monary artery pressure than Doppler echocardiography [1]. Xu et al. [2] found out that

the pulmonary artery pressure is correlated with the A2–P2 valvular split.

The split within the S1 and the S2 heart sounds emerged as an indicator of several valvu-

lar diseases alongside the Doppler echocardiography (DE). However, the DE is inaccurate

in approximately 50% of patients of normal pulmonary artery pressure (PAP), 10–20% of

patients with increased PAS, and 34–76% of patients with chronic obstructive pulmonary

disease, a weak Doppler signal or a poor signal to noise ratio (SNR) [2]. Indeed, Fisher

et al. [3] studied the accuracy of the DE in hemodynamic assessment of the pulmonary

hypertension (PH). They demonstrated that DE can usually overestimate and underesti-

mate the PAP in PH patients. This can be partly explained by inaccuracies of the right

atrial pressure estimation as well as poor Doppler imaging of the transtricuspid regurgi-

tant blood flow. Moreover, Rich et al. [4] compared the Doppler echocardiography (DE)

with the right sided heart catheterisation (RHC) as an invasive measure of the PAP in 160

patients with PH. They found out that the DE is inaccurate in estimating the PAP in 50.6%

of patients at a bias of 8.0 mmHg. Therefore, the DE–based estimation of the PAP is not

reliable to diagnose the PH or to assess the efficacy of therapy.

In contrast, the split duration as well as the dominant frequency of P2 are increased in

pulmonary hypertension and are considered as reliable parameters to estimate the PAP.

Xu et al. [2] found that the duration between the onsets of the aortic (A2) and the pul-

monary (P2) components within the S2 heart sound (S2) allow accurate measurement

of the PAP through advanced digital signal processing techniques. However, this split
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Figure 2 Simulated aortic (A2) valvular chirp.
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duration is limited (<100 ms) and still difficult to measure since these components are

often overlapping and are of frequency modulated chirp behaviour [5,6]. The separation

of the valvular components of both the S1 and the S2 heart sounds remains a problematic

issue. Indeed, several studies reported the complexity of analysing such a transient signals

formed by overlapping chirps [7,8]. Xu et al. proposed a nonlinear transient chirp model

to simulate the A2 and P2 components of the S2 heart sound [5]. They also proposed a

dechirping approach using the Wigner–Ville distribution (WVD) to estimate the instan-

taneous frequency (IF) of the aortic (A2) and the pulmonary (P2) components. However,

they reported weak energies at the beginning and the end of each chirp component to

recover the frequency modulated behaviour of heart sounds in the time–frequency plane.

This is due to the weak amplitude of all of the valvular heart sound chirps at their onsets

and their ends [5].

The A2–P2 valvular split can be originated under physiological or pathological condi-

tions. In normal subjects, a physiological split of the S2 heart sound can occur during

inspiration as a result of the delayed pulmonary pressure to raise over the right intraven-

tricular pressure which closes the pulmonary valve. Cardiac pathologies such as the right

bundle branch block and the pulmonary stenosis may induce a wide S2 split [9,10].

In a previous paper [11], we applied the Smoothed pseudo Wigner–Ville distribution

(SPWVD) on aortic stenosis and normal heart sounds to quantify their different spectral

content within the time–frequency plane. The time-frequency representations we pre-

viously obtained by the SPWVD yield global quantification of the valvular intracardiac

activity and should be improved through reassignment [12,13] to adequately represent

the intracardiac valvular activity within each heart sound.

Santos et al. [14] proposed an A2–P2 valvular split detection algorithm based on the

instantaneous frequency calculated by theHilbert transform. However, the instantaneous

frequency of a multicomponent signal cannot be estimated as the derivative of the phase

of its analytic signal which is calculated through the Hilbert transform [15]. Therefore, a

powerful method that takes into account the multicomponent behaviour of heart sounds

should be investigated to represent the intracardiac valvular activity.

In this paper,We developed a new algorithm based on the Reassigned smoothed pseudo

Wigner–Ville distribution (RSPWVD) to accurately detect theA2–P2 valvular split within

simulated and real S2 heart sounds. Firstly, we recovered the onset and the end amplitude

of each valvular component by an envelope recovery procedure we developed. Secondly,

we reconstructed the IF of simulated heart sounds at a higher time–frequency resolu-

tion by the RSPWVD. We recovered their time–frequency content at several valvular

split durations (from 30 to 60 ms at a step of 10 ms). Subsequently, we processed real S2

heart sounds of the LGB–IRCM (Laboratoire de Génie biomédical–Institut de recherches

cliniques de Montréal) cardiac valve database to validate the algorithm in real conditions.

This paper is organised as follows. Section “Phonocardiographic data”, entitled ‘Phono-

cardiographic data’, presents simulated and real S2 heart sounds to be processed by the

developed algorithm. Section “Time–frequency analysis”, recalls the theoretical back-

ground of the WVD, Smoothed pseudo WVD (SPWVD) and the Reassigned SPWVD

(RSPWVD). Section “Detection algorithm of the A2–P2 valvular split” presents the detec-

tion algorithm of the A2–P2 valvular split within S2 heart sounds. Sections “Detection of

the A2–P2 valvular split in simulated heart sounds” and “Detection of the A2–P2 valvu-

lar split in real S2 heart sounds of the LGB–IRCMcardiac valve database” present the
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Figure 3 Simulated pulmonic (P2) valvular chirp.

detection results of the algorithm applied on simulated S2 heart sounds at various valvular

split durations and real S2 heart sounds (LGB–IRCM cardiac valve database) respectively.

Phonocardiographic data

Valvular heart sound model

Tran et al. developed a heart sound simulator by combining a set of equations to model

several phonocardiogram behaviours [16]. This model is formed by a linear chirp with

an amplitude adjusted according to clinically recorded S1 and S2 heart sounds. Xu et al.

extended this model to a narrow–band non–linear chirp signal with a fast decreasing IF

over the time–frequency plane to model the valvular heart sound [5,6]. This decreasing

frequency behaviour is generated by the decaying aortic and pulmonary pressures after

the end of systole and during the beginning of early diastole. The modulated frequency

content of the valvular sound is of chirp nature rather than linear. Indeed, in previous

works, we confirmed that heart sounds are narrow–band non–linear chirp signals [17,18].

Xu et al. discussed the exponentially damped sinusoid model [19,20], the matching pur-

suit method [21,22], and the linear chirp model as modelling approaches of heart sounds.

They found out that the transient nonlinear chirp signal they developed is the suitable

model for the analysis–synthesis of the valvular heart sounds.

We used the model proposed by Xu et al. [5,6] to generate simulated valvular sounds to

study the performance of the detection algorithm we developed. The valvular non–linear

chirp model is defined by an amplitude and a phase functions according to (1) as follows:

v(t) = a(t) sin (ϕ(t)) (1)

where a(t) and ϕ(t) represent the IF and the phase of the valvular sound respectively.

The highest and the lowest frequencies of the chirp model differ from each valvular

sound to another. However, the valvularmodel is valid for the overall valvular components

of both the S1 and the S2 heart sounds. According to (1), Figures 2 & 3 illustrates the A2

and P2 valvular sounds respectively. The A2 chirp begin from 250 Hz and falls to 53 Hz

at 60 ms whilst the P2 chirp goes from 200 to 50 Hz [5,6,23]. The A2 and P2 components

last usually 30 up to 60ms but less than 80ms [5,6]. The split duration between them rises

during inspiration to reach 30 up to 80 ms, and decreases under 15 ms during expiration

[24,25].

According to the valvular model in (1), the S2 heart sound is given by;

S2(t) = aA2(t) sin (ϕA2(t)) + aP2(t − ds) sin (ϕP2(t − ds)) (2)
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where (aA2(t), ϕA2(t)) and (aP2(t), ϕP2(t)) denote the amplitude and the phase of the A2

and the P2 valvular sounds respectively. The split duration interval denoted by ds sepa-

rates the beginning of A2 and P2 components. The simulated valvular non–linear chirp

component duration is set to 60 ms [5].

The LGB–IRCM cardiac valve database

The PCG signals of the LGB–IRCM cardiac valve database were recorded in the IRCM

(Institut de recherches cliniques de Montréal) and the Montreal General Jewish Hospital

in Quebec (Canada). This database is set up with PCG and ECG signals recorded from

172 patients with a prosthetic heart valve in the aortic or the mitral position. All patients

signed an inform consent form attesting their assent to take part in the recording of the

LGB–IRCM cardiac valve database.

The patient was placed in dorsal decubitus in a recording room. The back of the bed

was raised to have 45° between the bust of the patient and the horizontal plane. After that,

a thorax auscultation had been carried out to localise the auscultation areas on the chest

of the patient. Subsequently, the recording was carried out after 5 minutes rest and calm

breathing.

A precordial multi–sites recording was carried out from the aortic, pulmonary, left ven-

tricular, and apical auscultation areas. For each PCG recording, the ECG (derivation II)

signal was simultaneously acquired.

The PCG signal was band–pass filtered between cut–off frequencies of 50 and 2 kHz.

The PCG and ECG signals were digitised by a 12 bits analog–to–digital converter on

IBM–PC computer at sampling rates of 5 kHz and 500 Hz respectively. The ECG was

recorded to be used as a reference signal in segmenting the PCG signal in systole and dias-

tole phases. Each recording contains approximately 30 cardiac cycles. Figure 4 illustrates

a PCG–ECG sample of the LGB–IRCM cardiac valve database.

40 60 80 100 120 140 160

time, ms

S1 S2 S1 S2

R R

T T

Figure 4 Data file sample (10001.11) of the LGB–IRCM cardiac valve database: PCG (recorded from

the aortic auscultation area) and ECG signals over 2 cardiac cycles.
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Methods

Time–frequency analysis

The Wigner–Ville distribution (WVD) and the Smoothed pseudo WVD (SPWVD)

are both members of the shift–invariant class, also known as the Cohen’s class. This

generalised time–frequency class can be formulated as [12,26];

Cx(t,ω) =

∫∫ +∞

−∞

φTF(u,�) WVx(t − u,ω − �) du
d�

2π
(3)

where x(t) represents the signal to be analysed and φTF (u,�) denotes the kernel of the

time–frequency distribution.

Wigner–Ville Distribution (WVD)

TheWigner–Ville distribution (WVD) [27] is defined by

Wx(t, f ) =

∫ +∞

−∞

x
(

t +
τ

2

)

x∗
(

t −
τ

2

)

e−j2π f τdτ (4)

where x(.) denotes the signal to be analysed.

In order of highlight the benefits behind using theWVD, it is worthy to compare it with

the spectrogram which is the squared magnitude of the Short–time Fourier transform

(STFT) of a given signal x(t);

Sx(t, ν) =

∣

∣

∣

∣

∫ +∞

−∞

x(τ )h∗(τ − t)e−j2πντ dτ

∣

∣

∣

∣

2

(5)

where h∗(t) is the sliding window.

The spectrogram is calculated by a linear then a bilinear operations. Firstly, the linear

operator consists of a Fourier transform, and secondly the squared modulus as a bilin-

ear operator is applied to the signal to be analysed. In contrast, the WVD begins with a

quadratic estimation of the energy and then a Fourier transform is applied to the signal

according to (4) [28]. The WVD combines the time and the frequency representations

with some required properties to adequately represent a given signal x(t) in the time–

frequency plane [27]. A summary of these nice properties can be found in the appendix

in section* “Appendix: Properties of the Wigner–Ville distribution”.

The analytic form of the analysed signal is necessary to avoid the interference between

positive and negative frequency components. However, cross–terms within theWVD are

unavoidable between components of the analysed signal. For a multicomponent signal

x(t) formed by 2 components x1(t) and x2(t), the WVD can be written;

Wx(t, f ) = Wx1 (t, f ) + Wx2(t, f ) + 2ℜWx1x2(t, f ) (6)

where Wx1 and Wx2 are auto–terms, also know as signal–terms, are the WVDs of x1(t)

and x2(t) which are assumed to be analytic as well as x(t). Whereas the term Wx1·x2 rep-

resents cross–terms, also known as outer–artefacts, which appear midway between Wx1

and Wx2 within the time–frequency plane. Therefore, the WVD of x(t) is formed by the

WVDs of its constituents and the cross–terms which represents their cross–Wigner–

Ville distribution (XWVD). Unfortunately, when the analysed signal contains several

components, the obtained time–frequency representation becomes unreadable.
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Figure 5 Simulated S2 heart sound (duration: 90ms, A2–P2 valvular split: 30 ms), A2–P2 valvular

split: 30 ms.

Smoothed PseudoWigner–Ville Distribution (SPWVD)

The SPWVD reduces the unwanted cross-terms of the WVD by two–dimensional

low–pass filtering. This smoothing is achieved by a double convolution in time and fre-

quency by two functions g and h through the kernel φTF(u,�) = g(u)H(�) according to

(7) [29];

SPWx(t, ν) =

∫ +∞

−∞

h(τ )

∫ +∞

−∞

g(s − t)x
(

s +
τ

2

)

x∗
(

s −
τ

2

)

ds e−j2πντ dτ (7)

where g and h are two real even windows with h(0) = G(0) = 1.

The SPWVD has a separable smoothing kernel (g(t),H(f )) which provides an inde-

pendent control of the time and frequency resolutions. For a zero time–resolution, i.e.,

g(t) = δ(t), the calculated SPWVD has no time smoothing (where H(f ) is the Fourier

transform of h(f )). Thus, the resulting time–frequency distribution is known as the

pseudo–WVD (PWVD).

Smoothing the time–frequency distribution affects the time–frequency localisation of

the signal content. Therefore, a trade–off between interference attenuation and time–

frequency localisation occurs to ensure a good time–frequency representation [30-34].
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Figure 6 Instantaneous frequency of the simulated A2 (duration: 60ms, frequency:250→53 Hz) and

P2 (duration: 60 ms, frequency: 200→50 Hz) components of the S2 heart sound, A2–P2 valvular split:

30 ms.
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Figure 7 Instantaneous frequency of the S2 heart sound (duration: 90ms, A2–P2 valvular split:

30 ms), calculated from the IFs of the A2 and P2 valvular components of Figure 6.

Reassigned Smoothed PseudoWigner–Ville Distribution (RSPWVD)

The reassignment method was first applied by Kodera et al. [35,36] to the spectrogram

to surpass its unavoidable Gabor–Heisenberg inequality [34,37] to provide a better time–

frequency representation. Auger et al. [12] studied the reassignment method and demon-

strated its effectiveness to improve the readability of all the bilinear time–frequency

representations. This method rearranges the coefficients of the time–frequency distribu-

tion around new zones to yield a high resolution TFR. Thus, this method can be used as

a complement to any bilinear time–frequency distribution.

The reassignment method can be formulated by recalling the generalised time–

frequency representation of the Cohen’s class (section “Time–frequency analysis”). The

integration within the time–frequency distribution in (3) refers to the sum of the distri-

butions at a point (t,ω) within the time–frequency plane. This is the sum of the terms

φTF(u,�)WV (x; t − u,ω − �) which represents the weighted coefficients of the WVD in

the points at the vicinity of (x; t−u,ω−�). Therefore, the distribution is concentrated at

the time–frequency support of the kernel φTF(u,�). Unfortunately, the cross–terms are

attenuated at the cost of spreading the auto–terms of the analysed signal. The modified

time–frequency distribution attributes new values to each coefficient to its neighbouring

centre of gravity according to (8) and (9) as follows;

t̂(x; t,ω) = t −

∫∫ +∞
−∞ u · φTF (u,�)WVx(t − u,ω − �)du

d�

2π
∫∫ +∞

−∞ φTF (u,�)WVx(t − u,ω − �)du
d�

2π

(8)

ω̂(x; t,ω) = ω −

∫∫ +∞
−∞ � · φTF (u,�)WVx(t − u,ω − �)du

d�

2π
∫∫ +∞

−∞ φTF (u,�)WVx(t − u,ω − �)du
d�

2π

(9)

The reassigned time–frequency representation is then formulated by (10) as follows;

RTFR(x; t′,ω′) =

∫∫ +∞

−∞

TFR(x; t,ω)δ
(

t′ − t̂(x; t,ω)
)

· δ
(

ω′ − ω̂(x; t,ω)
)

dt
dω

2π
(10)

where δ(.) denotes the Dirac impulse.
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Figure 8 Discrete IF of the envelope recovered S2 heart sound of Figure 9.

The reassigned time–frequency distribution is not bilinear. However, it is time and

frequency shift–invariant, and respects the energy conservation property. Moreover, its

powerful property perfectly localises chirps [12].

The reassignment method [13] applied to the SPWVD modifies values of the time–

frequency representation as follows:

1. Compute the Smoothed pseudo–WVD of the signal,

2. Evaluate the local centres of gravity ta(t, ν) and νa(t, ν) of the calculated SPWVD

in every point of the time–frequency representation,

3. Assign the energetic content to the new point within the time–frequency plane

according to (11);

|Fx(t, ν)|2 −→ Sx (ta(t, ν), νa(t, ν)) (11)

Therefore, the reassignment method improves the readability of the calculated time–

frequency representation by boosting the time and frequency resolutions [12,13,38].

Detection algorithm of the A2–P2 valvular split

Xu et al. demonstrated that heart sounds are formed by overlapping chirp components

which are generated by the closures of the intracardiac valves [5,6]. Unfortunately, the

restrictive weak amplitude at the onset and the end of each chirp component confined

the time–frequency chirp shape of each component at its highest amplitude domain [5].
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Figure 9 Envelope recovered S2 heart sound (detected A2–P2 valvular split: 36 ms).
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Figure 10 WVD of the S2 heart sound of Figure 5.

The algorithm we developed sorts out this downside by recovering these weak ampli-

tude areas through an envelope recovery of the analysed signal. This is the first step of

the algorithm which paves the way to make up the full content of heart sounds in the

time–frequency plane. The detection algorithm of the valvular split within heart sounds

is summarised as follows;

1. Envelope recovery: the signal is consecutively multiplied with its complement to 1

until the correlation between the latest consecutive signals exceeds 99.90%.

2. Calculation of the Reassigned–SPWVD (RSPWVD) of the signal.

3. Estimation of the IF by detecting frequencies of the RSPWVD coefficients with

highest intensities over the time domain.

4. Processing the IF as unidimensional curve to detect the split inflection by localising

the maximum and the minimum having the maximum amplitude difference.

We propose a detection approach of the A2–P2 valvular split based on the calcula-

tion of the Hilbert transform envelope of the S2 heart sound. This step is optional used

comparison purposes with the RSPWVD–based algorithm and is summarised as follows;

1. Calculation of the envelope of the signal by the Hilbert transform which is given by

to (12) [27];

H {x(t)} = x(t) ∗
1

π t

=
1

π
p.v.

{
∫ +∞

−∞

x(τ )

t − τ
dτ

}

(12)

where p.v. {.} denotes the Cauchy principal value.

2. Detection of the split by localising the midway local minimum of the envelope at

the higher amplitude.

The discrete IF is calculated as the inverse of the detected periods of heart sounds

through the time domain. This detection is carried out by localising time–instants of

zero–crossings of the analysed heart sounds. This discrete IF sequence enables to back

up the discussion of the final IF detected from the RSPWVD.
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Figure 11 RSPWVD of the S2 heart sound of Figure 9.

Results and discussion

Firstly, we applied the algorithm we developed on simulated heart sounds at various A2–

P2 valvular split durations to show its ability to retrieve these splits within the time–

frequency plane. Secondly, we processed several real S2 heart sounds of the LGB–IRCM

cardiac valve database presented in section “The LGB–IRCM cardiac valve database” to

validate the algorithm in real conditions. Time–frequency representations and the A2–

P2 split detection results for a sample data file selected from the LGB–IRCM cardiac

valve database are presented. The Hilbert envelope detection approach (section “Detec-

tionalgorithm of the A2–P2 valvular split”) and the discrete IF are used as complementary

tools to check the obtained results.
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Figure 12 Ridges (yellow line) of the RSPWVD of Figure 11 (detected A2–P2 valvular split:
25.5+35.5

2
= 30.5ms).
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Table 1 The A2–P2 valvular split detectedby the RSPWVD–based detectionmethod

Split (ms) 30 40 50 60

A2–P2min 25.5 37 38.5 49

A2–P2max 35.5 51 52.5 63.5

A2–P2mean 30.5 44 45.5 56.25

A2–P2error +0.5 +4 +4.5 -3.75

Detection of the A2–P2 valvular split in simulated heart sounds

The simulated data are generated by the valvular heart sound model presented in

section “Valvular heart sound model” [5,6]. According to (2), Figure 5 illustrates a simu-

lated S2 heart sound with an A2–P2 split duration of 30 ms. The IF of the simulated S2

heart sound is illustrated in Figure 6. We processed the simulated S2 heart sounds at var-

ious valvular split durations (30, 40, 50 and 60 ms). Figure 7 shows the IF of the simulated

S2 heart sound of Figure 5 with a A2–P2 split of 30 ms. This IF is the average of the IFs

(Figure 6) of the A2 and P2 components which form the S2 heart sound (Figure 5). The

discrete IF estimated by detecting the zero–crossings of S2 is illustrated in Figure 8. Both

IFs show the inflection related to the valvular split around 30ms at a high correlation level.

The A2–P2 split is represented as a rapid transient during the merging interval between

the aortic and the pulmonary chirp components within the time–frequency plane. As

depicted in Figure 7, it should be noticed that the split occurs approximately between 50

and 150 Hz. The decreasing frequency of both the A2 and the P2 valvular components

are adequately confirmed by the discrete IF plotted in Figure 8.

To deal with the amplitude weakness of the valvular sounds encountered by Xu et al. [5]

during time–frequency analysis of heart sounds, we calculated another version of heart

sounds which we call the envelope recovered heart sound as presented in section “Detec-

tion algorithm of the A2–P2 valvular split”. Figure 9 illustrates the envelope recovered

sound of the S2 heart sound of Figure 5. This adjusted sound benefits of the same

amplitude for its entire time support.

The Hilbert envelope detection approach retraces the instantaneous power of this S2

heart sound and shows an amplitude variation which is related to the A2–P2 split. This

split is localised at 36 ms from the onset of the A2 valvular component at an error of 6 ms

from the original split (30 ms).
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Figure 13 Simulated S2 heart sound, A2–P2 valvular split: 40 ms.



Djebbari and Bereksi-Reguig BioMedical Engineering OnLine 2013, 12:37 Page 13 of 21

http://www.biomedical-engineering-online.com/content/12/1/37

0 20 40 60 80 100
−1

−0.5

0

0.5

1

time, ms

a
m

p
li
tu

d
e
, 
%

Figure 14 Envelope recovered signal (solid line) of the S2 heart sound (dash–dot line) of Figure 13

and its Hilbert transform envelope (dashed line). Valvular split: 40 ms.

The recovery of the heart sound is carried out until reaching a cross–correlation

between consecutive steps of 99.90% as presented in section “Detection algorithm of

the A2–P2 valvular split”. This procedure of the A2–P2 split detection algorithm is not

CPU time consuming and still a vital step for the time–frequency analysis. It should be

noticed that 8 iterations are sufficient to reach the desired cross–correlation rate for this

simulated S2 heart sound.

As illustrated in Figure 10, the WVD of the S2 heart sound of Figure 5 is blurred by

cross–terms. Moreover, the weakness of the A2 and P2 components at their onsets and

their ends affects their respective time–frequency coefficients. Indeed, These compo-

nents appears at their middle rather than the entire durations of each components.

In contrast, the RSPWVD provides an extraordinary time–frequency representation

which retraces perfectly the IF of the S2 heart sound. Indeed, as illustrated in Figure 11,

the RSPWVD of the envelope recovered S2 heart sound of Figure 9 is highly correlated

with the original IF of Figure 7 as well as the discrete IF of Figure 8. This reassigned distri-

bution recovered the A2–P2 split around 30 ms and between 50 and 150 Hz as previously

defined during the synthesis of the S2 heart sound (Figure 5).

In Figure 12, the discrete IF of Figure 8 is represented with local extrema of the inflec-

tion zone within the RSPWVD. It should be noticed that the obtained RSPWVD retraces
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Figure 15 RSPWVD of the envelope recovered S2 heart sound of Figure 14 (A2–P2 valvular split of

40ms detected at 44ms).
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perfectly this discrete IF in the effective duration of the analysed S2 heart sound. More-

over, we detected the maximum intensity coefficients of the RSPWVD of Figure 12 to

yield the IF of the analysed S2 heart sound. We also detected local maxima and min-

ima of this curve to give an estimation of the A2–P2 valvular split by averaging time

instants of the maximum and the minimum points at the inflection zone of the detected

IF. According to this estimation approach, we found 30.5 ms as an A2–P2 valvular split in

the RSPWVD of Figure 12.

The RSPWVD detection method is based on the variation of the IF of the S2 heart

sound within the time–frequency plane rather than following variations in the amplitude

of the signal as carried out by the Hilbert envelope detection approach. Therefore, the

RSPWVD–based A2–P2 detection is accurate and improves the detection in comparison

to the Hilbert envelope approach.

As depicted in Table 1, we extended the processing to various A2–P2 valvular split

durations (30, 40, 50 and 60 ms). The simulated S2 heart sound splitted at 40 ms from its

A2 component is depicted in Figure 13. Its envelope recovered version and its RSPWVD

are illustrated in Figures 14 & 15, respectively. Similarly, a simulated S2 sound splitted at

60ms is illustrated in Figure 16, and its envelope recovered version as well as its RSPWVD

are depicted in Figures 17 & 18, respectively.

The A2–P2 split measurements summarised in Table 1 confirms the ability of the

RSPWVD–based method to detect the A2–P2 split. The RSPWVDs of Figures 15 & 18

continues to show the inflection behaviour at the A2–P2 split zone and provides 44 and

56.25 ms as measured values of the simulated split values of 40 and 60 ms.

Detection of the A2–P2 valvular split in real S2 heart sounds of the LGB–IRCM cardiac valve

database

The PCG signal of Figure 4 corresponding to the sample data file (10001.11) of the LGB–

IRCM cardiac valve database is considered for analysis to show the ability of the proposed

algorithm to detect the valvular split on real data. This PCG signal is segmented in sys-

tole and diastole by detecting the peak of the R–wave and the end of the T–wave by an

algorithm presented in [39] which uses both the amplitude and the curvature of the ECG

waves. This algorithm provides correct detection of the overall ECG–PCG signals of the

LGB–IRCM cardiac valve database.
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Figure 16 Simulated S2 heart sound, A2–P2 valvular split: 60 ms.
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Figure 17 Envelope recovered signal (solid line) of the S2 heart sound (dash–dot line) of Figure 16

and its Hilbert transform envelope (dashed line).

Figures 19 & 20 illustrate respectively the averaged S1 and S2 heart sounds of the PCG

signal of the LGB–IRCM data file 10001.11 (Figure 4). The main advantage behind aver-

aging the PCG segments over the consecutive cardiac cycles is to fade the background

noise to yield a smooth signal for the subsequent processing. The S2 heart sounds are

adjusted according to their recurrent autocorrelation functions over the consecutive car-

diac cycles. This adjustment resolves the jitter of the S2 heart sound within the diastole

phase and keeps up the aortic and the pulmonary chirp components for the subsequent

time–frequency analysis.

As depicted in Figure 21, the S2 heart sound averaged in Figure 20 is formed by two

chirps; namely the A2 and the P2 valvular components. The A2 chirp is of higher ampli-

tude than that of the P2 component which confirms the recording carried out from the

aortic auscultation area. The envelope recovered version of this S2 heart sound illustrated

in Figure 22 obviously highlights the frequency modulated behaviour of the valvular

sound.

The WVD of Figure 23 of the averaged S2 heart sound of Figure 21 is concentrated

within the time support of the A2 valvular chirp which is of highest amplitude than that

of the P2 component. The split behaviour we found in section “Detection of the A2–P2
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Figure 18 RSPWVD of the envelope recovered S2 heart sound of Figure 17 (A2–P2 valvular split of

60ms detected at 56. 25ms).
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Figure 19 LGB–IRCM cardiac valve database (data file: 10001.11): averaged S1 (yellow line) over 40

systolic phases (coloured lines).

valvular split in simulated heart sounds” is not reproduced by the WVD. As demon-

strated by Xu et al., the weakness of the valvular sounds at their extremities restricts

the energy bursts in the high amplitude time support of the analysed sounds within the

time–frequency plane [5].

The discrete IF of Figure 24, which is calculated from the envelope recovered S2 heart

sound of Figure 22, is adequately retraced by the RSPWVD of Figure 25. This RSPWVD

resolved the A2–P2 valvular split of the real S2 heart sound at a high time and frequency

resolutions. Indeed, the time–frequency representation illustrated in Figure 25 yields a

similar result in comparison to the simulations carried out in section “Detection of the

A2–P2 valvular split in simulated heart sounds”. The A2 and P2 valvular chirps are clearly

reproduced at a high correlation with the simulated heart sounds as well as their split

within the S2 heart sound. similarly, the valvular split in the real S2 heart sound is also

localised between 50 and 150 Hz. As depicted in Figure 25, if we take the average between

the time instants of themaximum (30.5ms) and theminimum (21.75ms) frequencies dur-

ing as an estimation of the A2–P2 valvular split, we obtain 26.125 ms which is confirmed

by the discrete IF illustrated in Figure 24.
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Figure 20 LGB–IRCM cardiac valve database (data file: 10001.11): averaged S2 (yellow line) over 40

diastolic phases (coloured lines).
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Figure 21 LGB–IRCM cardiac valve database (data file: 10001.11): averaged S2 over 40 cardiac cycles

and its Hilbert transform envelope (dashed line).

Conclusions

The A2–P2 valvular split detection algorithm we developed is mainly based on the

Reassigned Smoothed Pseudo Wigner–Ville Distribution (RSPWVD). The Reassignment

mixed to the smoothing achieved both in time and frequency domains by the SPWVD

provides a higher readability to the obtained RSPWVD. The preprocessing envelope

recovery procedure we proposed adapts the analysed heart sounds to the WVD which is

optimal for analysing frequency modulated chirps. The performance of the algorithm is

confirmed on simulated heart sounds at various split durations (30, 40, 50 and 60ms). The

A2–P2 valvular split is localised at the frequency inflection in the obtained RSPWVD.

The developed algorithm is validated on real heart sounds of the LGB–IRCM cardiac

valve database and retraces the inflection of the A2–P2 valvular split of the S2 heart sound

within the time–frequency plane. The discrete IF is estimated for both simulated and real

data to confirm the results obtained through the RSPWVD. Therefore, the proposed algo-

rithm deals adequately with detecting the A2–P2 valvular split and confirms the chirp

behaviour of heart sounds. Thus, we demonstrated through the algorithm we developed

that the A2–P2 valvular split can be accurately detected by time–frequency analysis using

the RSPWVD.
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Figure 22 LGB–IRCM cardiac valve database (data file: 10001.11): envelope recovered S2 heart sound

(solid line) of the S2 heart sound (dotted line) of Figure 21.
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Consent

The patients were contacted in confidentiality by their treating cardiologist and they

signed an inform consent form attesting their assent to take part in the study allowing to

record the LGB–IRCM cardiac valve database. The signals were recorded at the Institut

de recherches cliniques deMontréal (IRCM) and at theMontreal General JewishHospital

in Quebec (Canada).

Appendix: Properties of theWigner–Ville distribution

TheWVD has some nice properties which are summarised as follows.

1. The WVD is a member of the Cohen’s class with a weighting function g(ν, τ) = 1.

2. Realness: The WVD is of real values over the time–frequency plane which makes it

suitable for representing the energy of the analysed signal.

3. Time and frequency marginals: As shown in (13), the integration of the

time–frequency distribution over time yields the spectral density of the signal. As

stated in (14), the integration of the time–frequency distribution over frequency

yields the instantaneous power of the analysed signal x(t), as follows;

∫ +∞

−∞

Wx(t, f ) dt = |X(f )|2 (13)

∫ +∞

−∞

Wx(t, f ) df = |x(t)|2 (14)

where X(f ) denotes the Fourier transform of the signal x(t), andWx(t, f )

represents its WVD.

4. Global energy: Integration of the WVD over the time–frequency plane yields the

global energy Ex of the analysed signal as follows;

∫∫ +∞

−∞

Wx(t, f ) dt df = Ex (15)
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Figure 23 WVD of the S2 heart sound of Figure 22.
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Figure 24 Discrete IF of the envelope recovered S2 heart sound of Figure 22.

5. Instantaneous frequency (IF): the first moment of the WVD with respect to

frequency of the analytic signal yields the IF as follows;

∫ +∞
−∞ fWx(t, f ) df
∫ +∞
−∞ Wx(t, f ) df

=
1

2π

d

dt
[ arg x(t)] (16)

6. Time delay (TD): the first moment of the WVD with respect to time of the analytic

signal of yields the TD as follows;

∫ +∞
−∞ tWx(t, f ) dt
∫ +∞
−∞ Wx(t, f ) dt

= −
1

2π

d

df
[ argX(f )] (17)

7. The WVD is limited to time–frequency support defined by the duration and the

bandwidth of the analysed signal x(t).

8. Convolution invariance: The WVD of the time–convolution of two signals

(x1(t)andx2(t)), yields the time–convolution of their respective WVDs
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Figure 25 RSPWVD of the envelope recovered S2 heart sound of Figure 22 and the discrete IF of

Figure 24 (circles plot).
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(

Wx1(t, f )andWx2 (t, f )
)

as follows;

x3(t) = x1(t) ∗
t
x2(t)

⇒ Wx3(t, f ) = Wx1(t, f ) ∗
t
Wx2(t, f ) (18)

9. Modulation invariance: The WVD of the frequency–convolution of two signals

(x1(t) andx2(t)) yields the frequency–convolution of their respective WVDs
(

Wx1(t, f ) andWx2(t, f )
)

as follows;

x3(t) = x1(t) · x2(t)

⇒ Wx3(t, f ) = Wx1(t, f ) ∗
f
Wx2(t, f ) (19)

The WVD is time and frequency invariant. Furthermore, a range of peaks of the IF and

TD of the analysed signal are directly readable on the WVD [40,41]. The WVD covers

the spectral bandwidth of the analysed signal. Moreover, fluctuations of the maximum

frequency of the analysed signal is well represented over the time domain by the WVD

[42].
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