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ABSTRACT

The Karin cluster is a young asteroid family thought to have formed only 5.75Myr ago. The young age can be
demonstrated by numerically integrating the orbits of Karin cluster members backward in time and showing the
convergence of the perihelion and nodal longitudes (as well as other orbital elements). Previous work has pointed
out that the convergence is not ideal if the backward integration only accounts for the gravitational perturbations
from the solar system planets. It improves when the thermal radiation force known as the Yarkovsky effect is
accounted for. This argument can be used to estimate the spin obliquities of the Karin cluster members. Here we
take advantage of the fast growing membership of the Karin cluster and show that the obliquity distribution of
diameter D 1 2– km Karin asteroids is bimodal, as expected if the YORP effect acted to move obliquities toward
extreme values (0° or 180°). The measured magnitude of the effect is consistent with the standard YORP model.
The surface thermal conductivity is inferred to be 0.07–0.2Wm−1K−1 (thermal inertia
300 500– J m−2K−1 s-1 2). We find that the strength of the YORP effect is roughly 0.7 of the nominal
strength obtained for a collection of random Gaussian spheroids. These results are consistent with a surface
composed of rough, rocky regolith. The obliquity values predicted here for 480 members of the Karin cluster can
be validated by the light-curve inversion method.
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1. INTRODUCTION

The Karin family with the estimated age of 5.75 ± 0.05Myr

is one of the youngest families in the main belt (Nesvorný et al.

2002; Nesvorný & Bottke 2004). Because of its recent

formation, it is possible to numerically integrate the orbits

backward in time and demonstrate the young age by showing

that the orbits of individual members converge together at the

time of the parent body breakup. Improving on previous work,

Nesvorný & Bottke (2004) have shown that a precise

reconstruction of the orbital histories requires that the

Yarkovsky effect is taken into account in the backward

integration. This allowed them to infer the semimajor axis

drift rate for individual members of the Karin cluster and

verify, for the first time, how the Yarkovsky effect operates on

the main-belt asteroids over million-year-long timescales. A

by-product of this study was a determination of spin obliquities

for 70 individual members of the Karin cluster with absolute

magnitudes <H 16 (roughly diameters >D 2 km for

albedo =p 0.2V ).
Many new asteroids have been discovered since the last

dynamical analysis of the Karin cluster. Here we repeat the

analysis of Nesvorný & Bottke (2004) with an orbital catalog

that contains nearly seven times more asteroids than there were

available back in 2004. In Section 2, we revise the Karin family

membership by applying the usual clustering method on the new

orbital catalog. The taxonomical and albedo interlopers are

eliminated. We then apply a more stringent criterion of the Karin

family membership by requiring that orbits converged with each

other 5.75Myr ago. In Section 3, we use the method

developed in Nesvorný & Bottke (2004) to estimate the

Yarkovsky drift rates of individual bodies. This data is compared

to the theoretical expectations for the Yarkovsky effect.

We find that the distribution of spin obliquities ε of small
Karin members ( D 1 2– km) is bimodal with only very few
values near e = 90 and peaks for smaller and larger
obliquities (Section 4). It is shown that this obliquity
distribution is consistent with an initially random orientation
of spin axes that was modified by the YORP effect (Sections 5–
7; e.g., Rubincam 2000; Čapek & Vokrouhlický 2004). In
Section 8, we apply a standard YORP model to estimate the
thermal conductivity and calibrate the strength of the YORP
effect. The results are discussed in Section 9. Finally, we
perform new numerical simulations with the Yarkovsky force
and/or gravitational perturbations of (1) Ceres (Section 10),
and discuss the latter as a stochastic factor that sets firm limits
on what can be achieved with this type of study. Section 11
presents our conclusions.

2. FAMILY IDENTIFICATION

To define the Karin cluster membership, we first turned our
attention to the family identification data from Nesvorný et al.
(2015). In that work, the Karin cluster was identified using the
Hierarchical Clustering Method (HCM hereafter) and a velocity
cutoff of 10 m s−1 in the domain of the proper orbital elements
a e i, , sin( ; see Table 2 in Nesvorný et al. 2015 for further
details). To eliminate possible interlopers, we adopted the
classification scheme of DeMeo & Carry (2013). Specifically,
we used the fourth release of the Sloan Digital Sky Survey-
Moving Object Catalog (SDSS-MOC4; Ivezić et al. 2001) and
computed the gri slope and ¢ - ¢z i colors. In addition, we used
information from three major photometric/spectroscopic sur-
veys: the Eight-color Asteroid Survey (Zellner et al. 1985;
Tholen 1989), the Small Main Belt Spectroscopic Survey (Xu
et al. 1995; Bus & Binzel 2002a, 2002b), and the Small Solar
System Objects Spectroscopic Survey (Lazzaro et al. 2004).
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There were 13 objects with known taxonomical information in
total, six of which have a C-complex taxonomy and are
therefore incompatible with the S-type taxonomy of the Karin
cluster. After eliminating these objects, we end up with a
sample of 535 Karin family members.

To account for possible members of the Karin cluster that
may have been excluded by the velocity cutoff used in
Nesvorný et al. (2015), we define a box in proper a e i, , sin( )
space with the following ranges: 2.855–2.878 au in a, 0–0.1 in
e, and 0.0122–0.0611 in isin . These values correspond to the
full range of a e i, , sin( ) values in the Karin cluster from
Nesvorný et al. (2015), plus a margin of 0.002 au in a and 0.03
in e and isin . After eliminating SDSS-MOC4 interlopers, we
were left with a sample of 1117 additional objects. Of these,
only 8 objects have known albedo values <p 0.1V (Masiero
et al. 2012) and can be potential albedo interlopers.

We proceed by computing the components v v v, ,r t W( ) and
the terminal ejection velocityVej from the Gauss equations (e.g.,
Murray & Dermott 1999)
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where d = -a a aref , d = -e e eref , and d = -i i iref with

aref , eref and iref being a reference value, and f and ω are the true

anomaly and perihelion argument of the disrupted parent body

at the time of the breakup. Here we used = f 30 and

w+ = f 50 .5 (Nesvorný & Bottke 2004).
We find that the HCM members of the Karin family have
<V 70 mej s−1. As a final membership filter, we therefore

include bodies in the extended set with <V 80 mej s−1 (i.e.,
with a 10 m s−1 buffer). In total, 489 asteroids in the Karin
family and 189 in an extended family pass this filter. A plot of
the orbital distribution of 480 Karin family members, after
applying additional criteria discussed in the following text, is
shown in Figure 1.

To reconstruct the past orbital history of Karin cluster
members, we numerically integrated the orbits of all

+ =489 189 678 potential members with the symplectic
integrator known as SWIFT MVSF_ (Levison & Duncan 1994),
modified by Brož (1999) to include the online filtering of the
osculating elements. The integration included the gravitational
effects of all solar system planets (the radiation forces were
ignored). The initial velocity vectors of asteroids and planets
were multiplied by −1 such that, effectively, the orbits are
tracked back into the past. The normal orbital longitudes Ω and
ϖ were recovered from this simulation by using the relationships

*

* *v w
W= W + 
= W -

180 ,

, 2( )

where *W and *w are the nodal longitude and perihelion

argument computed from the backward integration with

SWIFT MVSF_ . The integration time step was set to be

one day.
Figure 2 shows the result of our backward simulation. We plot

there DW = W - WKarin and v v vD = - Karin, where WKarin

andvKarin are the orbital longitudes of (832) Karin. Note that the
angles converge in Figure 2 in the time interval between −5.6
and −5.8Myr, which is clear evidence that the Karin cluster
formed at that time (see also Novaković et al. 2012 for details on
the method of convergence of orbital angles as a membership
criteria). From the 678 member candidates identified above, we
found that 576 objects have angles converging with DW < 60
and vD < 60 at - < < -t5.8 5.6Myr. These 576 objects
represent our final membership list. Relative to Nesvorný &
Bottke (2004), we identified 479 new members of the Karin
cluster.

3. MEASUREMENT OF THE YARKOVSKY DRIFT

The convergence of angles in Figure 2 is not ideal because
our numerical integration only accounted for the gravitational
effects of planets and ignored all else. In reality, the orbits of
small members of the Karin cluster are affected by the
Yarkovsky effect that arises as a recoil force from a directional
emission of the thermal radiation (e.g., Bottke et al. 2006). The
main orbital effect of the Yarkovsky force is to either decrease
or increase the semimajor axis of an orbit. Since the precession
frequency of angles Ω and ϖ depends on the semimajor axis,
the Yarkovsky effect is thus expected to influence the
convergence of Ω and ϖ. This dependence can be used to
determine the Yarkovsky drift rates for individual members of
the Karin cluster (Nesvorný & Bottke 2004).
According to Nesvorný & Bottke (2004), the values of DWj

and vD j for asteroid j at time t= - + Dt t( ) are

d d tDW = -
¶
¶

- - - Dt
s

a
a a s s t

1

2
, 3j j j1 1( ) ( ) ( ) ( )

Figure 1. A (a, e) (top panel) and a i, sin( ) (bottom panel) projection of
members of the Karin cluster that satisfy the selection criteria discussed in
Section 3 (480 members, full black dots) and of asteroids in the local
background (full gray dots). The alignment of background gray objects seen for

isin 0.0375 is the Koronis(2) family (Molnar & Haegert 2009).
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v d d tD = -
¶
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- - - Dt
g
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where τ is the estimated family age, Dt is a small correction,

and daj is the total semimajor axis drift over time τ. Here, we

neglected the initial spread of these angles produced by Vej,

which should be of the order of 1 (Nesvorný & Bottke 2004).

Index j = 1 refers to (832) Karin. Quantities ¶ ¶s a and ¶ ¶g a

define how the nodal and apsidal precession frequencies

change with a. Here we adopt ¶ ¶ = -s a 70.0P arcsec yr−1

au−1 and ¶ ¶ =g a 94.4P arcsec yr−1 au−1 (Nesvorný & Bottke

2004). Corrections - Ds s tj 1( ) and - Dg g tj 1( ) vanish when

D =t 0. See Nesvorný & Bottke (2004) for a further discussion

of Equations (3) and (4).
By solving these two equations, we can obtain the values of
d dD = -a a aj j 1 required to compensate for DW and vD

obtained from our backward integration at time t. In general,
for an arbitrary time t, the two determinations ofDaj fromDW
and vD will be different. As the time t approaches the correct
age of the family, the difference is expected to disappear. We
use this method to determine the best estimate of τ.
Specifically, we define a c2-like variable of the form

åc =
D - D

-

v

=

W

t
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N 1
, 5

j

N
j j

2

( )
∣ ∣

( )
( )

where D Waj and D vaj are the two determinations at time t, and

search for the minimum of c t( ). When applied to the N = 576

previously identified members of the Karin cluster, we found

that the minimum occurs for t = 5.746 0.011Myr. This

result is in excellent agreement with the age estimate of

Nesvorný & Bottke (2004) who found t = 5.75 0.05Myr.

The higher accuracy of our estimate is justified by the fact that

our sample of the Karin cluster members is 7 times larger

than that of Nesvorný & Bottke (2004).
How well do the semimajor axis drift rates determined here

compare with those from Nesvorný & Bottke (2004)? To

answer this question, we computed the mean value

D = D + D vWa a a 2j j j( ) for each individual member and

compared these results with those obtained in Nesvorný &

Bottke (2004). Figure 3 shows the result of this comparison.

There is a very good correlation between the drift values

obtained back in 2004 and here. Unfortunately, Nesvorný &

Bottke (2004) explicitly listed the Daj values obtained for

= -t 5.7 and −5.8 Myr, but not for the time corresponding to

the best age estimate. To use these estimates in Figure 3,

we have computed the mean of these values. Since the

drift rates obtained for these times are systematically higher

than the ones for = -t 5.75Myr, the mean is also slightly

higher. This explains why, in Figure 3, the estimates

for = -t 5.75Myr obtained in our work are systematically

higher, by about 20%, than the values inferred from the

2004 work.
Figure 4 shows the Daj values obtained here for the Karin

cluster members, including hundreds of small members that

were not known previously. As in Nesvorný & Bottke (2004),

Figure 2. Past evolution of the osculating (left panel) and mean (right panel) Ω and ϖ angles for 34 large members of the Karin cluster. The vertical dashed lines
delimit the time interval between −5.6 and −5.8 Myr. The mean perihelion and nodal longitudes were obtained using the Frequency Modified Fourier Transform

(FMFT) method of Šidlichovský & Nesvorný (1997). The convergence of angles of all these large members of the Karin cluster were originally reported in Nesvorný
& Bottke (2004).
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we eliminated from the original sample of 576 members all

objects with orbital uncertainties in semimajor axes larger than

10−4 au, and those whose incompatibly large differences

between D Waj and D vaj would suggest that they are probably

interlopers (namely, those with D - D > ´vWa a 1.5j j∣ ∣
-10 4 au, a value significantly larger than that for the vast

majority of the studied possible Karin member). The latter

criterion eliminated only two objects.
The results shown in Figure 4 are in excellent agreement

with Figure 3 in Nesvorný & Bottke (2004). The measured

magnitude of the semimajor axis drift increases with H, as

expected for the Yarkovsky effect, whose strength is inversely

proportional to the object diameter. The Yarkovsky drift

magnitude over the estimated age of the family nearly reaches
-10 3 au for the smallest members, which is just the right

value for D 1–2 km asteroids with extreme values of

obliquities (see below and Bottke et al. 2006 for more
discussion).

4. THE BI-MODALITY OF DRIFT RATES

The small members in Figure 4 ( H 16–16.5) appear to
have a bimodal distribution of semimajor axis drifts with either
relatively large positive or large negative values. This trend is
reminiscent of the semimajor axis distribution found in several
older asteroid families, where the distribution of the semimajor
axis values is similarly bimodal. This trend has been interpreted
as a result of the interplay between the Yarkovsky and YORP
effects (see, e.g., Vokrouhlický et al. 2006a, 2015; Nesvorný
et al. 2015). A similar line of reasoning suggests that the Karin
cluster is at the initial stage of this process.
Specifically, we suggest that the YORP effect acted on the

Karin cluster members to slightly shift their obliquities toward
extreme values (0° and 180°) and this affected the overall
magnitude of the accumulated Yarkovsky drifts. Obviously, the
Da values measured in Section 2 are relatively small
(< -10 3 au; Figure 4), and the Yarkovsky effect has not altered
the overall structure of the Karin family in proper element
space. Instead, the small change of the semimajor axes has only
influenced the convergence of angles (as we discussed in the
previous section). Before we present a detailed model of the
Yarkovsky and YORP effects in Section 8, here we verify
whether the measured magnitude of drifts is in agreement with
our theoretical expectations for the Yarkovsky effect.
First, in Figure 5, we divide the accumulated drifts Daj by

the family age τ, obtaining the effective drift rate of
tá ñ = Dda dt aj j for each Karin member. A distinct char-

acteristic of the Yarkovsky effect is that the drift rate is
inversely proportional to body’s diameter D. Therefore, in
Figure 5, we also plot isolines of =D1 const (gray lines). The
highlighted gray lines correspond to a drift value of

Figure 3. Correlation between the drifts found in Nesvorný & Bottke (2004)
and those obtained from the present analysis. The gray line 1 has a slope of 1;
the gray line 2 has a shallower slope of 0.8, implying that the values obtained in
this work are about 20% smaller (see the text for an explanation).

Figure 4. Semimajor axis drift Da for 480 Karin cluster members that we
inferred from the convergence of secular angles at t = 5.746 Myr. The blue
triangles and the red stars denote the Da values computed over the estimated
family age from DW and vD , respectively. There is a good consistency
between the two determinations.

Figure 5. Effective drift rate á ñda dt of the Karin cluster members (ordinate) vs.
their diameter D (abscissa). The gray lines are isolines of á ñ µda dt D1 . If we
choose D = 1.4 km as the reference value, the thin lines correspond to á ñda dt

values of ´ -3, 6, 9, 12 10 5( ) au Myr−1. The thick gray lines, approximately

enclosing all data points, correspond to á ñ =  ´ -da dt 1.4 10 4 au Myr−1 for
D = 1.4 km. The two size ranges, shown by the light gray rectangles, are
=D 0.9 1.7– km (denoted I1) and =D 2.5 3.5– km (denoted I2). The interval I1

contains 280 data points, while I2 contains 55 data points. The distribution of
drift rates in I1 is clearly bimodal with only a few bodies with á ñ da dt 0. The
drift rates in I2 are roughly evenly distributed.
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 ´ -1.4 10 4 auMyr−1 for a D = 1.4 km body. These isolines
approximately envelope the distribution of measured á ñda dt .

This trend has been noticed previously (Nesvorný & Bottke
2004), but here we also characterize the distribution for
=D 1 2– km asteroids, which were not known in 2004.

Presumably, the Karin members with the á ñda dt values close
to the enveloping lines have an extreme value of the obliquity,
because the Yarkovsky effect is maximized for e = 0 or
e = 180 . Asteroids with the á ñda dt values inside the zone
bracketed by the enveloping lines should have intermediate
values of the obliquity. Various complications of this simple
interpretation arise because the semimajor axis drift rate due to
the Yarkovsky effect depends on other parameters as well (such
as, e.g., the asteroid rotation period). Bodies with the same
obliquity value can thus drift at (slightly) different speeds (see
the next section).

5. MAXIMUM DRIFT RATES

Here we compare the measured maximum drift rates
(á ñ ´ -da dt 1.4 10 4 auMyr−1 for D = 1.4 km) with the
Yarkovsky effect theory developed in Vokrouhlický (1999; see
also Vokrouhlický et al. 2015). Assuming a large body limit
(i.e., penetration depth of the diurnal thermal wave much
smaller than the body size) and keeping just the diurnal variant
of the Yarkovsky effect, we have

a
e

F Q

+ Q + Q
da

dt n

4

9 1
cos , 6

1

2

2
( )

where a = - A1 , with A being the Bond albedo,

pF = D F mc42( ) ( ), F 166.4Wm−2 is the solar radiation

flux at the mean heliocentric distance of the Karin cluster, m is

the asteroid mass, c is the velocity of light, and n is the orbital

frequency.
Note that F µ D1 , which provides the aforementioned

proportionality of the Yarkovsky effects with D1 . The thermal

parameter  w sQ = G T3( ) depends on the surface thermal
inertia Γ, the rotation frequency ω, the surface infrared
emissivity ò, the Stefan–Boltzmann constant σ, and the sub-
solar temperature  a s=T F 1 4[ ( )] .

While we could use the thermal inertia Γ as an independent
parameter, we follow the tradition of the Yarkovsky effect

studies and express it as rG = K Cs , where K is the surface
thermal conductivity, rs is the surface density, and C is the
surface thermal capacity. For the sake of definiteness, we fix
r = 2s g cm−3 and C = 680 J/kg/K, and consider the thermal
conductivity K to be a free parameter (instead of Γ). The
relationship eµda dt cos gives the dependence of the
Yarkovsky effect on obliquity. Obviously, the maximum drift
rates will occur for e = 0 (maximum positive rate) and
e = 180 (maximum negative rate).

We now use Equation (6) to compute the values of da/dt
that would be expected for the D = 1.4 km Karin members. For
definiteness, we assume A = 0.1,  = 0.9, and bulk density
r = 2.5b g cm−3. The rotation rate ω and thermal conductivity
K are varied within a reasonable range of values. The
maximum drift rate of the Yarkovsky effect is obtained with
e = 0 . Figure 6 shows the results. For illustration, we chose
two typical values of the rotation period: 6 hr (solid line) and
18 hr (dashed line). The gray trapezoid in Figure 6 is where the
maximum drift rates are similar to the maximum drift rates

inferred from small members of the Karin cluster
( ´ -1.3 1.4 10 4( – ) auMyr−1).
We note that the maximum á ñda dt values inferred from the

small Karin cluster members are fully reasonable. In fact, they
are somewhat smaller than the optimal Yarkovsky drift rate for
D = 1.4 km Karin members that could be as large as

´ -2.2 10 4 auMyr−1 (for low surface thermal inertia). The
measured values of ´ -1.3 1.4 10 4( – ) auMyr−1 (Figure 5) can
be used to constrain the thermal conductivity/inertia. Assuming
the typical rotation periods between 3 and 24 hr, the measured
value corresponds to the surface thermal conductivity in the
range of 0.02–0.2Wm−1K−1 (Figure 6). This translates to the
thermal inertia values  170 500( – ) J m−2K−1 s-1 2. These
results are consistent with the determination of the thermal
inertia for small near-Earth asteroids (e.g., Delbò et al. 2007, and
M. Delbò updates 2016, personal communication).

6. PROGRADE VERSUS RETROGRADE ROTATORS

We now collect the á ñda dt measurements in the two
highlighted size intervals shown in Figure 5: (1) interval I1
with =D 0.9 1.7– km and (2) interval I2 with =D 2.5 3.5– km.
The former contains 280 measurements, while the latter
contains 55 measurements. The primary data set that we use
here to analyze the YORP effect is I1. The set I2 is a control
case that we use to make sure that our model (see below)

consistently fits data for large sizes as well (note that I2 was
roughly the size range available in Nesvorný & Bottke 2004).
Figure 7 shows the distribution ofDa values in the zones I1

(top) and I2 (bottom). In I1, there are 139 and 141 data points
with negative and positive values of Da, respectively.
Recalling that this reflects the sign of ecos (see Equation (6)),
we therefore find that an approximately equal number of small
Karin cluster members has prograde and retrograde rotation.
This is interesting: the measurement of the drift rate for larger
members indicates that there are more retrograde rotators
among the largest fragments. For example, the six members
with >D 4 km, except for (832) Karin itself, are inferred to

Figure 6. Theoretical value of the diurnal Yarkovsky drift rate da/dt at zero
obliquity (Equation (6)) as a function of the surface thermal conductivity for
D = 1.4 km. We assumed Bond albedo A = 0.1, thermal emissivity  = 0.9,
bulk density r = 2.5b g cm−3, surface density r = 2s g cm−3, and heat
capacity C = 680 J kg−1K−1. The rates were computed for two values of the
rotation period, P = 6 hr (solid line) and P = 18 hr (dashed line). Because da/
dt is a function of K/P, the results can be easily rescaled to other periods. The

gray trapezoid highlights = ´ -da dt 1.3 1.4 10 4( – ) au Myr−1, which is
roughly the range of the maximum drift rates in Figure 5.
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have a retrograde rotation (Nesvorný & Bottke 2004). (832)
Karin itself rotates in a prograde sense with a long rotation
period (e.g., Slivan & Molnar 2012). This asymmetry,
however, already disappears for the interval of sizes corresp-
onding to I2, where there are 29 and 26 cases with negative and
positive values of Da, respectively.

The medianDa values for the negative and positive rotators
in I1 are - ´ - 4.3 10 4 and ´ -3.4 10 4 au. Thus the peak of
negative values is slightly more extended than the peak of
positive values. There may be a physical reason for this. Part of
the difference could be caused by the neglected drift of 832
Karin itself. However, considering that the maximum drift of
Karin computed using the Vokrouhlický (1999) model of the
Yarkovsky effect, the WISE estimated diameter, and the values
of the parameters of the Yarkovsky force from Brož et al.
(2013) is of the order of ´ -6 10 5 au, i.e., smaller than the
observed difference, other mechanisms may be at play. Recall
that the obliquity evolution of the prograde rotators can be
influenced by the spin–orbit resonances (e.g., Vokrouhlický
et al. 2003, 2006b). If various other parameters such as the
rotation period and dynamical ellipticity are favorable for
capture in a resonance, the obliquity may end up oscillating
around an equilibrium resonant point (e.g., Vokrouhlický et al.
2003). This may halt the usual YORP-driven obliquity
evolution of prograde rotators toward the extreme values and
produce an asymmetry of the accumulated drifts (note that the
retrograde rotators are not subject to resonant capture; see
Figure 27 in Vokrouhlický et al. 2006b). A detailed invest-
igation of the spin–orbit dynamics is left for future work.

7. COMPARISON WITH STANDARD YORP THEORY

Here, we verify whether the YORP hypothesis for the origin
of the bimodal distribution in the top panel of Figure 7 is
consistent with the standard YORP theory. The strength of the
YORP effect has a stronger dependence on D than the
Yarkovsky effect (it scales with µ D1 2 rather than µ D1 of
the Yarkovsky effect; e.g., Vokrouhlický et al. 2015). This is
why the Yarkovsky effect is detected in both size intervals I1
and I2, while the YORP-effect-induced bi-modality is apparent
in I1 but not in I2. Assuming that the initial distribution of the
spin vectors of small Karin members was isotropic, we estimate
that the bimodal distribution in I1 requires a characteristic
change of 0.5 in ecos over the Karin cluster age. This
roughly corresponds to an obliquity change of ∼30°–40°.
Čapek & Vokrouhlický (2004) modeled the YORP effect for

a statistical sample of smooth Gaussian spheroids with
D = 2 km and a heliocentric distance =a 2.5 au. Figure 11
in their paper shows that the maximum obliquity change of
these bodies is typically 8°.6 Myr−1 (the maximum change
happens for e  35 ). An average rate for an arbitrary obliquity
is roughly one-half of this value, or 4°.3 Myr−1, which would
accumulate to ~ 25 over the Karin family age. The YORP
strength scales as µ D a1 2( ) . Using this scaling, we estimate
that the obliquity of D = 1.4 km asteroids (characteristic size in
the interval I1) should have changed, on average, by ~ 38 .
This is exactly what is required to explain the measured bi-
modality in the interval I1. On the other hand, the estimated
obliquity change of D = 3 km bodies in the interval I2 is only
~ 8 , which is clearly too small to appreciably affect the
distribution.

8. THE YARKOVSKY-YORP MODEL

Encouraged by the estimates discussed in the previous
section, we now proceed by constructing a simple model for the
Yarkovsky and YORP effects on small Karin cluster members.
We assume that the fragments initially created in the Karin-
cluster formation event had: (1) an isotropic distribution of spin
axis vectors, and (2) their rotation rates were distributed
according the Maxwellian distribution (e.g., Pravec
et al. 2002). Impact simulations, such as the ones in Nesvorný
et al. (2006), can be used to test whether (1) is reasonable. As
for (2), we note that the Maxwellian distribution represents a
good proxy for the distribution of rotation rates of fragments in
the laboratory-scale impact experiments (e.g., Giblin
et al. 1998).
In our simulations, we track the obliquity ε and rotation rate

ω of each of the fragments as they evolve by the YORP effect.
The basic formulation of the YORP effect has been developed
by Rubincam (2000). Čapek & Vokrouhlický (2004) extended
this approach to also include the effects of the surface thermal
conductivity, and computed the characteristic YORP strength
for a large sample of smooth irregular shapes (the so-called
Gaussian spheroids). Their results can be summarized as
follows.
The obliquity and rotation-rate evolution is given by two

differential equations

w
e=

d

dt
f , 7( ) ( )

e e
w

=
d

dt

g
, 8

( )
( )

Figure 7. Distribution of Da values in the intervals I1 (top) and I2 (bottom).

Here we use a bin size of ´ -1.5 10 4 au. Top: the sample contains 280 bodies
with equally populated negative and positive values (139 vs. 141). The
distribution is clearly bimodal. The median negative and positive values are

- ´ - 4.3 10 4 au and ´ -3.4 10 4 au, respectively. Bottom: the sample
contains 55 bodies. There is no statistically significant difference between the
number of negative and positive values (29 vs. 26). Here the distribution is
peaked at the origin.
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where f and g are functions of obliquity. Each asteroid, having

its own distinct shape, is described by different functional

forms f and g, but in a statistical sense the characteristic

evolution can be obtained from the median functions derived in

Čapek & Vokrouhlický (2004). In particular, we use the

median values determined for the thermal conductivity

K = 0.01W/m/K (see their Figures 8 and 11 in Čapek &

Vokrouhlický 2004). In this setup, the obliquities always

evolve toward the extreme values e = 0 and 180°, and the

rotation rate may either increase or decrease when these

asymptotic values are reached.
Čapek & Vokrouhlický (2004) found that the tendency

toward increasing or decreasing the rotation rate is roughly the
same, at least for the statistical sample of asteroid shapes they
tested. This means that the value of the function f is equally
likely positive or negative when e = 0 or 180°. The f and g

functions given in Čapek & Vokrouhlický (2004) are rescaled
here to D = 1.4 km (corresponding to I1) using µf D1 2

and µg D1 2.
Over the past decade, a number of very detailed approaches

have been developed to model the YORP effect (see, e.g.,
Vokrouhlický et al. 2015, for a review). One of the major
findings of these works was a recognition that the small-scale
surface irregularities can have an important contribution to the
overall YORP strength. For example, the results of Rozitis &
Green (2012) and Golubov & Krugly (2010) indicate that the f
and g functions can have a somewhat smaller magnitude than
the ones obtained for a smooth surface. Additionally, a rough
surface can trigger a tendency for the YORP effect to increase
the rotation rate.

We introduce two empiric parameters in our YORP model to
account for these complications (see Bottke et al. 2015 for a
similar approach). First, we set =f c fYORP 0 and =g c gYORP 0,

where f0 and g0 are the median functions from Čapek &
Vokrouhlický (2004), and cYORP is a free strength parameter
that expresses the actual strength of the YORP effect relative to
f0 and g0. As noted above, we expect that <c 1YORP . Second,
we introduce an asymmetry parameter dYORP, defined as the
fraction of bodies that undergo a slow down of their rotation
rate ( d-1 YORP is the fraction that is spun up). The original
model Čapek & Vokrouhlický (2004) gives d = 0.5YORP , but
considering the surface roughness, values d < 0.5YORP may be
more appropriate. The best-fit values of parameters cYORP and

dYORP can be obtained from a fit to the measured distribution of
obliquities.

We numerically integrate Equations (7) and (8) using a
simple Euler-type integration scheme with a time step of
0.01Myr. The initial obliquity and rotation period values are
chosen at random. Each simulation is repeated 10 times with
different initial values. The simulations are stopped at
t = 5.746Myr, which is our best estimate of the Karin family
age (Section 3). As time progresses, for each individual body,
we accumulate the change of the semimajor axis Da by the
Yarkovsky effect from

⎜ ⎟
⎛

⎝

⎞

⎠ò

ò
a

e

D =

=
F Q

+ Q + Q

t

t

a
da

dt
dt

n
dt

4

9 1
cos . 9

model
0

0
1

2

2
( )

The parameters entering the right-hand side of this equation

were explained in Section 5. Note that some of the variables,

assumed to be constant, were pulled in front of the integral in

(9), but some other variables were left in the integrand (e.g., Θ

and ε). Note that the latter parameters change due to the YORP

effect. In particular, wQ µ . To keep things simple, in each

run, we use a single value of the thermal surface conductivity K

for all bodies, but vary K from one run to another. The bulk

density of bodies is assumed to be 2.5 g cm−3. Below we will

discuss how the results change for different density

assumptions.
Once the simulation is over, the model distribution of

Damodel values is compared with the measured distribution of
Da shown in Figure 7 (top panel). Because our model is not
designed to reproduce any asymmetry in the distribution of
obliquities (see the discussion in Section 3), we modify the
distribution of measured drifts by folding the negative and
positive bins onto each other. This leads to a symmetrical
distribution shown by the red line in Figure 9.
In each simulation, we fix dYORP and run the model for

different values of cYORP and K parameters. We then attempt to
minimize the difference betweenDamodel and the measuredDa
distribution. We use a bin size of ´ -1.5 10 4 au (as in
Figure 7), which leaves us with N = 12 bins with useful
information. Our minimization procedure uses a c2-like target
function:

⎛

⎝
⎜

⎞

⎠
⎟åc

s
=

-n n
, 10

n

2 model
2

( )

where the summation is performed over the 12 bins, n is the

number of measurements and nmodel the number of model

bodies in each bin.
The denominator sn expresses the uncertainty of each n

value. A common practice is to set s  nn . By adopting this
assumption, we find that our best-fit solutions would give
c  132 , which is slightly larger than the number of bins. This
may mean that our simple model is incomplete or slightly
inaccurate. For example, as we discussed above, we do not
model the effect of spin–orbit resonances that may be important
for the prograde rotators. It is also possible that a better result
could be obtained if two cYORP parameters were used, one that
multiplies the f function and one that multiplies the g function.
Instead of investigating the possible physical reasons for this

slight discrepancy, which would be a considerable work on its

own, here we opted for a simple fix by setting s  n2n . Our
best fits give c  6.52 with this definition. The confidence
region in parameters K c, YORP( ) around the best-fit solution was
defined as c < N2 , where N = 12.

9. THE YARKOVSKY-YORP MODEL:
BEST-FIT PARAMETERS

We found that the results only weakly depend on dYORP. The
best fits were obtained d< <0.3 0.5YORP . We therefore fixed
d = 0.4YORP in all subsequent simulations. Figure 8 shows the
main result of these simulations. The inferred values of the
thermal conductivity range between K = 0.07Wm−1K−1 and
0.13Wm−1K−1, with the best-fit value of 0.1Wm−1K−1.
Equivalently, the value of thermal inertia is found to be
between 310 and 420 J m−2K−1 s-1 2. This range of values is
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consistent with (or perhaps only slightly larger than) the
thermal inertia values estimated in Delbò et al. (2007).

The confidence range of the cYORP parameter is 0.4–1.1, with
the best-fit value of 0.72. As discussed above such a value
would be expected for a rough surface. It is also in broad
agreement with the results obtained for older asteroid families
(e.g., Vokrouhlický et al. 2006a) and models of the pole and
rotation rate distributions of small main-belt asteroids (e.g.,
Hanuš et al. 2011).

Figure 9 shows how the best-fit solution compares with the
measured distribution of drift rates. The agreement is very
good. A slight inconsistency arises in Figure 9 because the
measured profile shows more depletion in the central bins with
D a 0 au. We suspect that this points to a slight incon-
sistency in the assumed dependency of the g function on ε for
e  90 . Recall that Čapek & Vokrouhlický (2004) computed
the g function for a specific collection of shapes. It is possible
that the young, freshly re-accumulated asteroids in the Karin
family have a different distribution of shapes. We leave this
interesting problem for a future work.

Figure 10 shows the distribution of the initial and final
values of the model rotation rates. We find that the small Karin
members should still have roughly the same distribution of
rotation rates as they had initially just after the the family-
formation event.

Above, we adopted the bulk density of r = 2.5b g cm−3. In
the subsequent simulations, we tested the dependence of the
results on rb and found that the best-fit solution scales as
 rµK 1

b
2 and  rµcYORP b (the confidence regions recalibrate

accordingly). The scaling of cYORP arises from the YORP
torque (inverse) dependence on the body’s mass. The scaling of
K is less transparent. It can be understood from the analysis of

the Yarkovsky drift rate in the semimajor axis given by
Equation (6). Note that in the relevant regime of large Θ values,

rµ Qda dt 1 b( ) and Q µ K . Therefore, to have the same

value of drift rate da/dt, r Kb needs to be kept constant. This
produces the aforementioned scaling of the results. The arrow
in Figure 8 indicates how the results would change
if r = 2b g cm−3.

Finally, we verified that our best-fit solution obtained for the
size interval I1 does not violate constraints from the interval I2.
For that we used the best-fit values of dK c, ,YORP YORP( ), and
re-run the simulations for D = 3 km, which is a characteristic
size in I2. The modeled distribution ofDamodel was found to be
consistent with the measured Da values shown in Figure 7
(bottom panel). We therefore confirm that the measured drift
rates in I2 were not significantly affected by the YORP effect.

10. NUMERICAL INTEGRATION WITH THE
YARKOVSKY EFFECT AND ENCOUNTERS

WITH CERES

The distribution of the semimajor axis drift rates were
obtained in Section 3, where we used analytical arguments to
improve the convergence of angles from a numerical simula-
tion that ignored any drift. Here we include the semimajor axis
drift directly in a numerical simulation to test how the
convergence of angles is improved. In a separate simulation,
we also include the gravitational effects of (1) Ceres to see how

Figure 8. Confidence interval defined as c < N2 with N = 12 (gray zone). The
best-fit solution is denoted by the black star. Here we fixed d = 0.4YORP and
varied the surface conductivity K (abscissa) and the cYORP parameter. The bulk
density was assumed to be 2.5 g cm−3. If r = 2b g cm−3 instead, the best-fit
solution would move as indicated by the arrow, and the confidence region
would shift as well.

Figure 9. Best-fit solution for d = 0.4YORP ,  =K 0.1W m−1 K−1, and
 =c 0.72YORP (the gray histogram and blue line). The distribution of drift
values inferred from the convergence criterion is shown by the red histogram.

Figure 10. Illustration of the YORP effect on the rotation frequencies in the
best fit from Figure 9. The abscissa shows the rotation frequency w p=f 2 in
cycles per day. The red histogram was the assumed initial distribution of the
rotation frequencies. The gray histogram shows the final distribution
at t = 5.746 Myr.
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the convergence can be affected by close encounters of the
Karin cluster members with Ceres.

We modified SWIFT RMVS_ 3 (Levison & Duncan 1994) to
include a semimajor axis drift (Nesvorný & Bottke 2004). For
each of the confirmed Karin cluster members, we generated 13
clones with different drift rate values near the analytical
estimate obtained in Section 3. The orbits of the clones were
tracked backward in time for 10Myr. We then checked which
of the clones showed the best convergence of Ω and ϖ at
t = 5.746Myr. The drift rate assigned to the best clones is our
best numerical estimate of the actual drift rate. On one hand,
the numerical rate inferred here can be considered a better
estimate of the true drift rates than the analytical method in
Section 3. In practice, however, the resolution with a limited
number of clones is not good enough to distinguish between
differences in the drift rates that are of the order of 5%.

About 70% of the best clones converged to within 10 in Ω
and ϖ at t = 5.746Myr. Their past orbital histories are shown
in Figure 11. The remaining 30% of the best clones converged
as well, but not within 10 . This is contributed by the limited
resolution of our numerical integration and/or, at least in some
cases, by short-period oscillations of the osculating angles Ω

and ϖ near the estimated family age. A more detailed study of
this problem is left for future work.

Next we discuss the results obtained when (1) Ceres was
included in the numerical integration. There are two ways that
(1) Ceres can be influencing the results. First, a close encounter
between a small asteroid and Ceres can lead to a change of the
small body’s semimajor axis, which would then influence the
measured drift rate. Second, the secular resonances with (1)
Ceres (Novaković et al. 2015) can alter the precession rates of
Ω and ϖ, and therefore influence the convergence of these

angles as well. To determine which of these effects has a bigger
weight, we monitored in the simulation all close encounters of
all bodies with (1) Ceres.
Figure 12 compares the distribution of Ω values obtained for

t = 5.746Myr in our numerical simulations with and without
Ceres (results for ϖ are similar). The distribution in the
simulation with Ceres is clearly broader. We find that this is
mainly a consequence of close encounters with Ceres. Of the
322 clones that converged within  10 in a simulation without
Ceres, roughly 80% converge within  10 in a simulation with
Ceres. The remaining 20% of the best clones do not converge so
well. Of these, roughly 75% suffered close encounters to Ceres
(within the Hill sphere or closer). A small fraction of clones
suffered a very close Ceres encounter, and had DW  30 at
t = 5.746Myr. On average, Ceres encounters add 4 to the
dispersion of angles at the time of convergence. This limits the
precision to which the convergence of angles can be determined,
and therefore the accuracy with which the Da values over the
estimated age of the family can be computed: a difference of 4°
corresponds to a difference of ´ -7.2 10 5 au in the Da
computed from the convergence of Ω and of ´ -5.3 10 5 au for
that from ϖ. Including other massive asteroids in the simulation
would slightly increase this threshold.

11. CONCLUSIONS

The main results of this work can be summarized as follows.

1. We revised the Karin family membership using the
identification from Nesvorný et al. (2015) and initially
including asteroids in the immediate neighborhood of the
Karin cluster. The taxonomical and albedo interlopers
were eliminated. We numerically integrated the orbits of
all selected objects backward in time over 10Myr. Using
the convergence criteria described in the main text, we
identified 576 asteroids that are very likely true members
of the Karin cluster.

2. Using the method of Nesvorný & Bottke (2004), we
inferred the drift rates caused by the Yarkovsky effect. By
minimizing the difference between two determinations of

Da from W and v, we found that the age of the Karin

Figure 11. Past orbital histories of 322 members of the Karin cluster: nodal
longitude (top) and perihelion longitude (bottom). The values of these angles
are given here relative to (832) Karin. Unlike in Figure 2, here we accounted
for the Yarkovsky effect explicitly in the integration. As a result, the
convergence at t = -5.764 Myr has significantly improved.

Figure 12. Distribution of Ω values at t = -5.764 Myr for the cases without
Ceres (red line) and with Ceres (blue line). The error bars are assumed to be
proportional to the square root of the number of objects in each bin.
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cluster is t = 5.746 0.011Myr. This age determination

is consistent with and improves on the previous estimate.
3. Since the Yarkovsky drift rate depends on obliquity, we

interpreted the observed distribution of the drift rates in

terms of the obliquity distribution. For small,

D = 1–2 km Karin cluster members, the distribution of

obliquities is clearly bimodal. The best explanation for

such a distribution is that the YORP effect acted to alter

the distribution that was initially more uniform.

4. We simulated the evolution of obliquities and spin rates

with a simple Yarkovsky/YORP model. We found that the

magnitude of the obliquity changes required to explain the

bimodal distribution is consistent with the YORP effect

and inferred age τ. The surface thermal conductivity is

inferred to be 0.07–0.2Wm−1K−1, corresponding to the

thermal inertia of 300 500– J m−2K−1 -s 1 2). We find

that the strength of the YORP effect is roughly0.7 of the

nominal strength obtained for a collection of random

Gaussian spheroids. These results are consistent with a

surface composed of rough, rocky regolith.
5. We performed additional numerical simulations with the

Yarkovsky drift and gravity of (1) Ceres. We found that

the close encounters of Karin cluster members with Ceres

act to increase the dispersion of angles and does not allow

us, even in principle, to obtain a perfect convergence. On

average, Ceres increases the dispersion of angles by ~ 4
at t = 5.746Myr.

Our work motivates new observational efforts. In particular,

it would be interesting to verify the obliquity distribution

inferred from our work. A decade ago, such a goal would have

been a remote possibility, but recent advancements in asteroid

shape and rotation state studies can lead to interesting results

soon. For example, the obliquities of individual bodies can be

obtained from the sparse photometry data of ground-based

survey programs (e.g., Ďurech et al. 2016). Even more

powerful results are expected from space missions such as

Gaia (e.g., Mignard et al. 2007).
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Table 1

Karin Cluster Members: Absolute Magnitudes, Proper Elements and Frequencies, Lyapunov Exponents, and Estimated mean Obliquities and Yarkovsky Drift Speed

Number H aP eP isin P
gP sP LCE ò Drift Speed

(au) ( yr−1) ( yr−1) (10−6 yr−1) (deg) -10 5( au Myr-1)

832 11.18 2.86440 0.04390 0.03687 70.639 −65.235 1.49

10783 13.41 2.86480 0.04411 0.03683 70.676 −65.270 1.49 113 −0.84

11728 13.48 2.86555 0.04443 0.03676 70.746 −65.334 1.56 180 −3.10

13765 14.41 2.86967 0.04585 0.03688 71.112 −65.667 1.15 180 −5.33

13807 13.68 2.86885 0.04527 0.03682 71.037 −65.590 1.92 162 −2.54

15649 14.70 2.86418 0.04393 0.03650 70.632 −65.226 1.47 180 −4.50

16706 14.43 2.86200 0.04330 0.03676 70.435 −65.051 1.49 180 −4.86

20089 14.76 2.86170 0.04312 0.03696 70.402 −65.022 1.46 139 −3.10

(This table is available in its entirety in machine-readable form.)

Figure 13. Relation between the effective obliquity eeff (column 9 of Table 1)
and the current obliquity ε (ordinate) of the simulated bodies in the Karin
family. The top panel is for D = 3 km members, a representative size in the
interval I2, while the bottom panel is for D = 1.4 km members (representative
for I1). The three curves in each of the panels were obtained for different
rotation periods: 4 hr (red), 8 hr (green), and 12 hr (blue). For a larger asteroid
size in the top panel, both obliquity values nearly coincide. For a smaller size,
the effective obliquity eeff can be slightly larger (if e < 90eff ) or smaller (if
e > 90eff ) than the current value of ε, especially if the rotation rate is slow.
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APPENDIX

In Table 1, we report the list of 480 identified Karin cluster
members. The table lists their absolute magnitude, proper
elements a e i, , sinP P P( ), frequencies g and s, Lyapunov
exponents (Lyapunov exponents with values near to
´ - -1.5 10 yr6 1 correspond to objects for which the integration

time was not long enough to obtain a convergence), estimated
mean obliquity ε, and estimated mean Yarkovsky drift speed.
Note to observers: the obliquity values listed in Table 1 are
historical mean obliquities and may not exactly coincide with
the current values. Figure 13 shows the correspondence
between the historical obliquity values given in Table 1 and
our estimate of the present obliquities.
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