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Abstract

Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during
embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in
reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that
transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are
considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ) induced long-term brain
plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS
transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression
phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F1 adults after treating F0 adult
males with PTZ and of F2 adults resulting from a cross between F1 males and normal females. Surprisingly, microarray
clustering showed F1 male profile as closest to F1 female and F0 male profile closest to F2 male. Differentially expressed genes
in F1 males, F1 females and F2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence
also led to the identification of upregulated rRNA in F2 males. Next, we generated microarray expression profiles of adult testis
from F0 and F1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in
them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we
report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression
characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms
underlying the phenomenon. The finding that adult acquired transcriptomic alteration in soma is spermatogenically inherited
across generations has potential implications in human health and evolution.
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Introduction

Environmental exposures influence health and disease. Under-

standing environment-genome interactions is crucial for dissecting

the underlying mechanisms. Whereas only a few of the

environmental factors that cause disease susceptibility have been

shown to promote mutation in DNA sequence, emerging evidence

suggests that environmental influences may mainly be mediated by

epigenetics, i.e., the processes that lead to changes in gene

expression without a change in the DNA sequence [1,2,3].

Because epigenetic changes can alter whole-genome expression

profiles of various cell types that constitute different tissues and

organs, these modifications provide plausible basis for transcrip-

tomic alterations that are associated with various diseases [4,5].

Epigenetic alterations can be mitotically inherited in somatic cells

and can exert long-term effect on gene expression. This

mechanism is supposed to underlie risk of developing diseases

secondary to prenatal and early postnatal environmental expo-

sures [6,7,8,9]. Importantly, increasing evidence suggests that

meiotically heritable epigenetic modifications may also be

transgenerationally inherited [2,10,11,12,13]. Available instances

of inheritance of epigenetic transgenerational phenotype are

limited to environmental exposures during embryonic and adult

gonadal development [14,15]. Adult exposures can also affect

gametogenesis and thereby potentially result in reprogramming of

the germline [14]. Although examples of epigenetic effects on

gametogenesis exist, it is notable that transgenerational inheritance

of environment-induced adult phenotype has not yet been

reported [14,16,17,18,19,20].

Model organisms have proven highly valuable in understanding

epigenetic mechanisms of gene regulation [21]. Vertebrate and

invertebrate species share numerous aspects of germ cell behavior,

migration and gonadal development [22,23]. Certain molecular

aspects of germ cells and gonadal development are also suggested

to be similar in different organisms [22,23]. Notably, available

data suggests that major features of chromatin condensation in

Drosophila spermatogenesis correspond to those of the epigenetic

event in mammalian species [24]. All stages of spermatogenesis,

from germline stem cell division to functional sperm production,

are present in adult Drosophila testes [25]. We selected Drosophila to
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search for evidence of transgenerational epigenetic inheritance of

environmental effect following exposure of adult males. Epigenetic

codes are considered to be critical in neural plasticity [26]. A

Drosophila systems model of pentylenetetrazole (PTZ) induced long-

term brain plasticity has recently been described [27]. In this

model, chronic PTZ treatment of adult males causes alterations in

CNS transcriptome [27]. Readily available microarray data

showing transcriptomic alteration in heads of PTZ treated male

flies motivated us to search for transgenerational effect of the drug,

if any, at gene expression level. Transgenerational transcriptomes

have earlier been analyzed after embryonic germline exposure

[3,28,29]. Our focus here was to specifically analyze transgenera-

tional transcriptome after adult spermatogenic exposure. Use of

genetically identical animals is required for demonstrating a

transgenerational epigenetic effect [30]. We thus used a freshly

generated isogenic line of Drosophila in our analysis. The wild-type

strain was the same that was used previously for developing the

PTZ model [27].

Results

The previous study reported microarray gene expression profiles

after chronic exposure of unmated males with PTZ for up to seven

days [27]. We treated unmated adult F0 males with PTZ for seven

days and after a washout period of seven days mated them with

normally grown females in vials containing normal food (NF). PTZ

was never used anytime henceforth. Head gene expression profiles

were generated for unmated F1 males and virgin F1 females

resulting from the above cross. Demonstrating transgenerational

inheritance secondary to adult exposure requires analysis of F2

generation [14]. To raise F2, we mated F1 males with independently

obtained normal females having no history of PTZ exposure in

earlier generation. Heads of unmated F2 males and virgin F2

females were used for generating microarray profiles. Clustering of

these profiles along with previously reported [27] PTZ male profile

showed similarity between F2 male and the latter and between F1

male and F1 female (Fig. 1a). F2 female profile was distinct from F2

male (Fig. 1a). The above result showed that PTZ induced

transcriptomic alteration is transmitted to F2 generation, with the

mode of transmission being complex. To examine robustness of this

microarray profiling based evidence, we generated another set of F1

male CNS microarrays. Importantly, the two F1 male profiles

clustered together (Fig. 1b). This demonstrated that our expression

profiles were robust enough for deriving valid inferences. Next, we

examined differentially expressed genes in our microarrays.

Presence of differentially expressed genes in all the samples – F1

males and females, and F2 males and females - provided further

evidence that PTZ exposure in F0 causes genomewide expression

perturbation across generations (Table S1, supporting materi-
al). Gene ontology (GO) based analysis showed enrichment of

various biological processes in differentially expressed genes (Table
S2, supporting material).

We reasoned that if drug-induced transcriptomic perturbation is

transgenerationally inherited then statistically significant overlap

may be observed between genes regulated by PTZ [27] and those

differentially expressed in F1 and F2. Interestingly, F1 males, F1

females and F2 males showed significant overlap (Fig. 2). Besides,

genes in F1 males significantly overlapped with those in F2 males

(Fig. 2). A lack of overlap in F2 females suggested that pattern of

inheritance from F0 to F1 is different than that from F1 to F2.

Cumulatively, our results demonstrated that PTZ’s transcriptomic

effect is transgenerationally inherited.

We next examined if a gametogenic mechanism is involved in

the transgenerational effects observed. Majority of transcription in

adult Drosophila testis occurs in spermatocytes products of which

are required for spermatid differentiation [31]. We thus generated

microarray expression profiles of F0 and F1 adult testis.

Interestingly, both F0 and F1 showed transcriptomic alteration.

Differentially expressed genes were identified in F0 as well as F1

testis (Table S3, supporting material). These genes were

found to enrich a few GO biological processes (Table S4,
supporting material). Importantly, PTZ regulated CNS genes

[27] showed significant overlap with differentially expressed F0

testis genes (Fig. 3). Also, genes in F1 male CNS and F1 testis

overlapped with a borderline significance (Fig. 3). A lack of

overlap between F0 and F1 testis genes supported the above

observation that genomic mechanism underlying F0 to F1

transmission is different from that of F1 to F2. To further examine

if what we observe is a case of transgenerational spermatogenic

inheritance, we clustered CNS and testis microarrays together.

Interestingly, F0 testis clustered with F1 male and F1 females

whereas F1 testis clustered with F2 female (Fig. 4). Cumulatively,

the above results provided evidence that transcriptomic perturba-

tion set off by PTZ in CNS perpetuates to future generations by

gametic involvement.

Microarray expression profiling provided evidence of transge-

nerational spermatogenic inheritance at overall transcriptomic

level. To confirm individual gene expression differences, we

selected four genes showing upregulation in F2 male microarrays

(Table S1, supporting material) and assessed their expression

using quantitative real-time RT-PCR. Intriguingly, all four genes

showed downregulation in RT-PCR (Fig. 5a). To investigate the

discrepancy, we selected eight genes which were not differentially

expressed in F2 male microarrays (Table S1, supporting
material) and analyzed their expression using RT-PCR.

Unexpectedly, these genes in general also showed downregulation

(Fig. 5b). One possible explanation of this finding could have

been that the endogenous control used in RT-PCR, 18S rRNA,

may itself be upregulated in F2. Most remarkably, comparison of

total RNA isolated from heads of control F2 and F2 adult males

with history of PTZ exposure in F0 showed higher abundance of

rRNA in the latter (Fig. 6). This result was surprising. Synthesis of

rRNA is known to be upregulated by enriched nutritional

conditions [32]. Remarkably, all three genes encoding yolk

proteins in D. melanogaster, Yp1, Yp2 and Yp3, used for nutritional

purpose, were among the total 16 upregulated genes in F2 male

CNS (Table S1, supporting material). These three genes

together represented the most significantly enriched biological

process, vitellogenesis, in these males (Table S2, supporting
material). Considering that Yp1, Yp2 and Yp3 are female specific

genes [33], it was interesting to note their expression in males.

Discussion

We have shown here that exposure of a neuroactive compound

to adult Drosophila males causes gene expression alteration in CNS

of not only the individuals exposed but also their future

generations. The genes affected reveal statistically significant

overlap across generations. Further, gene expression in adult

gonads also shows alterations across generations. The affected

genes in testis show some overlap with those in CNS.

Transcriptomic similarity thus provides credible evidence that

drug induced gene expression alterations leaks to future genera-

tions through gametes. Interestingly, we also find that drug

exposure causes abnormal expression of rRNA in grandsons of

exposed individuals.

Notwithstanding its Lamarckian flavor, transgenerational sper-

matogenic inheritance has been detected in our search. To our
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knowledge, this is the first evidence of gametogenic inheritance of

adult male acquired somatic characteristic across generations.

Given this, our fly model offers an excellent opportunity to further

dissect mechanisms underlying the epigenetic inheritance in-

volved. Notably, the model can readily be used as a simple means

to test agents for their potential in causing transgenerational effects

or erasure thereof. For example, differential expression of rRNA in

F2 generation may be used as a rapid screen to test agents

producing or modifying transgenerational effects.

Although it is difficult to predict the exact mechanism of

epigenetic inheritance observed, involvement of some kind of

nervous system-gametogenesis connectivity may possibly be

hypothesized. It is interesting to speculate here, for example, a

role of neuropeptides as a connecting link. These peptides regulate

most, if not all, biological processes across animal species including

Drosophila and humans [34]. Neuropeptides are expressed by

neurosecretary cells and may be released into the circulatory

system to act as neurohormones [35]. Neuropeptides and their

receptors are known to express in germ cells [36,37]. Neuropep-

tide mediated synaptic plasticity is known to involve regulation of

gene expression and chromatin structure [38]. It is tempting to

speculate that inheritance of gene expression alteration induced by

brain plasticity interfering drugs is mediated by epigenetic changes

in the gametes caused through some kind of nervous system-

spermatogenesis axis. Alternatively, a direct effect of environmen-

tal agents on gametogenesis, besides CNS, may also be possible.

The evidence that gene expression phenotype acquired by an

adult can be transmitted to future generations has obvious

implications in human health and evolution. Recent epidemiolog-

ical evidence supports existence of sex-specific, male line

transgenerational responses in humans [39]. The experimental

evidence presented here warrants systematic investigations to

examine if epigenetic inheritance of environmentally induced

characteristics exists in man. A topical example to underscore the

necessity of such efforts is the ongoing debate whether the use of

cognitive enhancement drugs by normal healthy individuals is

Figure 2. Overlap between differentially expressed CNS genes. PTZ genes used in this analysis was derived from previously reported [27]
microarray data related to seven days of drug treatment. PTZ genes were compared to those in F1 and F2 generations, whereas F1 male genes were
compared only to F2. Hypergeometric distribution p values (2log10) are plotted on y-axis. Note significant overlap ($1.3) in all except F2 female pair-
wise comparisons. Differentially expressed genes used in the analysis are listed in Table S1.
doi:10.1371/journal.pone.0005763.g002

Figure 1. Hierarchical clustering of CNS expression profiles. City Block similarity metric and average linkage methods were used for
hierarchical clustering of arrays. The cluster was generated using Acuity 4.0 (Molecular Devices). Each time point represents mean of normalized log2

ratio (635/534) of four biological replicates with balanced dye-swaps. Note clustering of PTZ treated males’ profile with their grandsons (a). Cluster
shown in (b) represents all the profiles in (a) and a freshly generated F1 male profile. Reproducibility of expression profiling is evident from similarity
between the two F1 male profiles (b). PTZ profile shown here was derived from previously reported [27] microarray data related to seven days of drug
treatment. * indicates replication set.
doi:10.1371/journal.pone.0005763.g001
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ethical [40]. Evidence supporting transgenerational inheritance of

effects produced by these drugs would compel the present

argumentation in a radically new direction.

Materials and Methods

Fly handling and drug treatment
Unless mentioned otherwise, previously described materials and

methods were used [27]. In brief, standard fly medium consisting

of agar-agar, maize powder, brown sugar, dried yeast and nipagin

was used. An isogenic line of D. melanogaster Oregon-R strain was

used. Standard methods of fly handling and manipulation were

followed. Final concentration of PTZ (Sigma-Aldrich) in the fly

medium was 8 mg/ml. Unmated males were first treated with

PTZ for seven days and then crossed with virgin females in groups

seven days after withdrawing PTZ, to obtain F1. Unmated males

and virgin females of F1 generation were collected separately. The

F1 males were crossed to normally grown females, without any

history of PTZ exposure in earlier generation, in groups to obtain

F2 progeny. Unmated males and virgin females of F2 generation

were collected separately. For use as control in expression analysis,

flies were treated with vehicle (water) instead of PTZ in parallel.

Microarrays
Unless mentioned otherwise, previously described materials and

methods were used [27]. In brief, total RNA was isolated from

frozen fly heads or testis using TRI REAGENT (Sigma),

according to the manufacturer’s protocol. Microarray -cDNA

Synthesis Kit, -Target Purification Kit, and -RNA Target

Synthesis Kit (Roche) were used to generate labeled antisense

RNA. Four biological replicates, with balanced dye-swap, were

used for generating expression profiles. Each replicate compared

experimental versus control flies. The hybridization mixture was

denatured at 65uC and applied onto cDNA microarray slides

(14Kv1, CDMC, Canada). Analyzable spots in at least three of

four biological replicates performed were retrieved for down-

stream analysis using SAM 3.0 (Excel Add-In) [41]. Wherever

absent in the fourth replicate, the values were imputed using SAM.

For cluster analysis, all four values in the entire set were used. City

Block similarity metric and average linkage methods were used for

hierarchical clustering of arrays. The cluster was generated using

Acuity 4.0 (Molecular Devices). For identifying differentially

expressed genes, both false discovery rate (FDR) in SAM and

fold change (FC) in Acuity were used separately. Previously,

microarray profiling using the same methods used here identified

Figure 3. Overlap between differentially expressed testis and CNS genes. PTZ genes used in this analysis was derived from previously
reported [27] microarray data related to seven days of drug treatment. PTZ CNS genes were compared to those in PTZ testis (F0) and F1 CNS, whereas
F1 testis genes were compared only to F1 CNS. Hypergeometric distribution p values (2log10) are plotted on y-axis. Note significant overlap ($1.3)
between PTZ CNS and F0 testis genes and an overlap between F1 CNS and F1 testis genes with borderline significance (1.24). Differentially expressed
genes used in the analysis are listed in Table S1 and S3.
doi:10.1371/journal.pone.0005763.g003
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reported no gene as differentially expressed below 96% FDR [27].

In the present SAM analysis, genes were considered differentially

expressed if found within 20% FDR in SAM. For FC analysis,

equal or more than 1.3 FC was used for all profiles except F1 testis

where 1.2 was used instead of 1.3. Significant match was found

between SAM and FC sets of differentially expressed genes. As

number of differentially expressed genes identified by either

method was smaller, both sets were combined together for further

analysis. As differentially expressed genes matched significantly

between two replicates of F1 male profiles, the two sets were

combined together for further analysis. GOTool Box [42] was

used to retrieve overrepresented biological processes in up- or

down- regulated genes, under the settings, ontology, biological

process; mode, all terms; reference, genome; evidence, all-all

evidence; species, D. melanogaster; GO-stats; statistic test, hypergeo-

metric, Bonferroni adjustment. Hypergeometric distribution

probabilities for matching of differentially expressed genes

Figure 5. Validation of microarrays using RT-PCR. Genes were
either upregulated (a) or not differentially regulated (b) in F2 male
microarrays. Equal amount of F2 male RNA samples from all the four
biological replicates used in microarray experiment represented in
Figure 1 were pooled together for use in RT-PCR. Fold-change values
are plotted on y-axis. Note general downregulation of gene expression
in RT-PCR.
doi:10.1371/journal.pone.0005763.g005

Figure 4. Hierarchical clustering of expression profiles of testis
and CNS. City Block similarity metric and average linkage methods
were used for hierarchical clustering of arrays. The cluster was
generated using Acuity 4.0 (Molecular Devices). Each time point
represents mean of normalized log2 ratio (635/534) of four biological
replicates with balanced dye-swaps. PTZ profile shown here was
derived from previously reported [27] microarray data related to seven
days of drug treatment.
doi:10.1371/journal.pone.0005763.g004
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between profiles were calculated assuming population sizes of

12000, approximately the number of unique genes in the

microarrays. The full microarray data set has been deposited in

the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/) under accession series GSE15136.

Real-Time PCR
Equal amount of RNA samples from all the four biological

replicates used in microarray experiment were pooled together for

use in RT-PCR. Unless mentioned otherwise, previously described

materials and methods were used [27]. In brief, RT-PCR

amplification reactions were carried out in an ABI Prism 7700

sequence detection system (Applied Biosystems). ABI gene expression

assay IDs used were Dm02151842_g1, Dm01813277_g1,

Dm01813506_g1, Dm01813276_g1, Dm02152877_s1,

Dm03420546_m1, Dm02361408_s1, Dm02367441_s1,

Dm02149362_m1, Dm01825573_m1, Dm02140334_g1 and

Dm01828736_m1, for Anp, Yp1, Yp3, Yp2, Acp98, Scp1, Mlp84B,

CG6409, Tm1, Rfabg, Cyp313a1 and wupA, in that order.

Gel electrophoresis
Equal amount of RNA samples from all the four biological

replicates used in microarray experiment were pooled together for

electrophoretic analysis. Standard methods of RNA agarose gel

electrophoresis and ethidium bromide staining were followed.

Supporting Information

Table S1 Differentially expressed genes in CNS. Up- and down-

regulated genes in F1 and F2 male and female CNS are listed.

Except F1 male, each set of genes were identified using four

biological microarray replicates with balanced dye-swaps. In F1

males, an additional batch of four microarrays were generated.

Differentially expressed genes identified using each batch showed

significant overlap and were therefore pooled together. See text for

further details.

Found at: doi:10.1371/journal.pone.0005763.s001 (0.30 MB

XLS)

Table S2 Enriched biological processes in differentially ex-

pressed genes in CNS. Gene lists provided in Table S1 were used

in enrichment analysis. GOTool Box was used to retrieve

overrepresented biological processes in up- or down- regulated

genes. See text for further details.

Found at: doi:10.1371/journal.pone.0005763.s002 (0.13 MB

XLS)

Table S3 Differentially expressed genes in testis. Up- and down-

regulated genes in individulas exposed to PTZ (F0) and F1 male

are listed. Each set of genes was identified using four biological

microarray replicates with balanced dye-swaps. See text for further

details.

Found at: doi:10.1371/journal.pone.0005763.s003 (0.03 MB

XLS)

Table S4 Enriched biological processes in differentially ex-

pressed genes in testis. Gene lists provided in Table S3 were used

in enrichment analysis. GOTool Box was used to retrieve

overrepresented biological processes in up- or down- regulated

genes. See text for further details.

Found at: doi:10.1371/journal.pone.0005763.s004 (0.03 MB

XLS)
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