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Abstract: Defective insulators seriously threaten the safe operation of transmission lines. This paper
proposes an insulator defect detection method based on an improved YOLOv4 algorithm. An
insulator image sample set was established according to the aerial images from the power grid
and the public dataset on the Internet, combining with the image augmentation method based on
GraphCut. The insulator images were preprocessed by Laplace sharpening method. To solve the
problems of too many parameters and low detection speed of the YOLOv4 object detection model, the
MobileNet lightweight convolutional neural network was used to improve YOLOv4 model structure.
Combining with the transfer learning method, the insulator image samples were used to train, verify,
and test the improved YOLOV4 model. The detection results of transmission line insulator and defect
images show that the detection accuracy and speed of the proposed model can reach 93.81% and
53 frames per second (FPS), respectively, and the detection accuracy can be further improved to
97.26% after image preprocessing. The overall performance of the proposed lightweight YOLOv4
model is better than traditional object detection algorithms. This study provides a reference for
intelligent inspection and defect detection of suspension insulators on transmission lines.

Keywords: transmission line; insulator; improved YOLOv4; lightweight convolutional neural net-
work; defect detection

1. Introduction

As the basic component of transmission lines, suspension insulators not only have to
withstand the vertical and horizontal loads and the tension of conductors, but also with-
stand the working voltage and over voltage, so they must have good electrical insulation
and mechanical properties. In practical engineering, insulators usually operate in complex
and diverse natural environment for a long time, which may lead to failures or defects such
as self-shattering, string breakage, crack, and foreign body erosion, etc. [1,2]. The insulation
degradation of defective insulators will seriously affect the safety of transmission lines.
Therefore, accurate and rapid detection of insulator defects is of great significance to avoid
large-scale power outages and reduce power grid losses.

Transmission line inspection methods mainly include manual inspection, helicopter
inspection [3], robot inspection [4], and unmanned aerial vehicle (UAV) inspection [5].
Manual inspection method is not easy to find defects on the line under special geographical
environment and meteorological conditions, and the inspection efficiency is low. Helicopter
inspections are usually with high investment costs, high safety risks, and high technical
requirements. UAV has gradually become an important means of transmission line inspec-
tion by virtue of its low cost, good operability and flexibility, and high efficiency [6]. UAV
inspections will generate a large amount of image information, and the manual judgment
by inspectors is inefficient and easy to cause false recognition, while deep learning tech-
nology can meet the needs of intelligent processing and analysis of massive inspection
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images, which is an effective method to achieve automatic identification of transmission
line defects.

At present, deep learning has been widely applied for inspection image recognition of
transmission lines. For example, Wang et al. [7] proposed a method to identify ice thickness
of transmission lines based on MobileNetV3 feature extraction network and SSD detection
network, which can reach an accuracy of 74.5%. Li et al. [8] used region of interest (ROI)
mining, K-means clustering algorithm, and focal loss function to improve the Faster RCNN
detection network, so as to achieve accurate detection of bird’s nests on transmission lines.
Zhao et al. [9] proposed an automatic visual shape clustering network (AVSCNet) for
transmission line pin-missing defect detection, and its mean average precision (mAP) for
bolts location and pin-missing defect detection can reach 0.724. Zhang et al. [10] applied
the SPTL-Net shared convolutional neural network (CNN) to improve Faster RCNN, so as
to achieve accurate detection of foreign objects on transmission lines. Hosseini et al. [11]
proposed a method of damage detection and assessment of transmission towers based on
ResNet convolutional neural network. Davari et al. [12] used Faster RCNN to detect the
equipment on power distribution lines in each frame of the UV–visible video, and then
identified the corona discharge of the line by the color threshold, and finally described the
severity of the fault by the ratio of the spot area to that of the equipment. Rong et al. [13] ap-
plied Faster RCNN, Hough transform, and advanced stereovision (SV) to detect vegetation
encroachment of power lines, and convert the two-dimensional (2D) images of vegetation
and power lines into three-dimensional (3D) height and location results to obtain precise
geographic location.

The deep learning algorithms have also been widely applied for identification and
location of transmission line insulators and their defects. For example, Tao et al. [14]
designed a new type of cascaded CNN and used image augmentation method to increase
the number of defective insulator images. The precision and recall rate of insulator defect
detection can reach 91% and 96%, respectively. Ling et al. [15] proposed a combination
method of Faster RCNN and U-Net, while Faster RCNN was used to locate glass insulator
strings, and U-Net was used to accurately classify pixels in cropped images of different
sizes, the detection precision and recall rate are 94.9% and 95.4%, respectively. Liu et al. [16]
designed a box-point detector for transmission line insulator defect detection, which was
composed of DCNN and two parallel convolution heads. The defect detection of insulators
was divided into the aggregation task of box location and point estimation, and the test
accuracy reached 94%. Sadykova et al. [17] used YOLOv2 to detect insulators in UAV aerial
images, and extracted the target area of insulators. Then, different classifiers, including
SVM, CNN, Bayes net, etc., were used to identify the insulator surface conditions, which can
accurately identify four surface conditions like clean, water, snow, and ice. Wang et al. [18]
constructed the Mask RCNN model and designed appropriate network parameters, so
as to achieve detection of insulator targets in the infrared image. Then, the temperature
distribution of the insulator was extracted by a proper fitting function to evaluate the
condition of insulators. Han et al. [19] proposed a novel two-step method for insulator
faults detection, which considers CNN features, and unique color and area features. Firstly,
the region of interest (RoI) of insulator was extracted, and then the defect region was
marked through Grab-cut and adaptive morphology algorithm. Wen et al. [20] used the
feature pyramid network (FPN), generalized intersection over union (GIoU) and region
of interest align (RoI-Align) to build an exact region-based CNN (Exact R-CNN), and
used U-Net to generate the mask of insulators and eliminate the complex background.
The cascaded network of U-Net and Exact R-CNN can effectively detect insulator defects.
Liu et al. [21] applied the MnasNet network as feature extraction network to improve the
SSD detection algorithm, and two multiscale feature fusion methods were used to fuse
multiple feature maps, which can achieve 93.4% detection accuracy on the insulator and
spacer. However, most of them focus on the improvement of detection accuracy, while the
detection speed of inspection images lacks necessary considerations, which is difficult to
meet the requirement of real-time detection.
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In practical engineering applications, the object detection algorithms can achieve
real-time detection on high performance computers such as servers. However, a lot of
time has been wasted in the process of image acquisition, transmission, encryption, and
detection, which indirectly makes it difficult for inspectors to take measures in a timely
manner. Moreover, it is difficult to obtain the detection results due to insufficient processor
performance when the model was transplanted to the embedded devices such as mobile
phones. Therefore, in order to improve the speed of the object detection model and facilitate
the deployment of the model in practical engineering applications, many researchers have
made lightweight improvements to the existing object detection algorithms. For example,
Yu et al. [22] improved the CSPDarknet53 of YOLOv4 to the CSP1_X module, and used
the CSP2_X module to enhance the feature extraction, while the adaptive image scaling
was used to process the input image. The improved model can effectively reduce the
computation and redundancy, which can reach the mAP of 98.3% and the 54.57 frame per
second (FPS) in face mask recognition. Roy et al. [23] used DenseNet and two new residual
blocks to optimize the backbone and neck, which improves the feature extraction and
reduces the computing cost. The test results can reach a precision of 90.33% and a detection
speed of 70.19 FPS in detecting four different diseases in tomato plants. Zha et al. [24] used
MobileNetv2 to replace the feature extraction network of YOLOv4 to realize the lightweight
of the detection network. Yang et al. [25] used the YOLOv4-tiny, a lightweight version of
YOLOv4, to identify the bird’s nest in transmission lines and towers. Qiu et al. [26] used
the YOLOV4-tiny and training skills to identify bird species related to transmission line
faults. In addition to the above methods, there are various ways to achieve lightweight
of CNN, such as using depthwise separable convolution [27] and group convolution [28],
using global pooling to replace the fully connected (FC) layers [29], using 1 × 1 filter to
realize dimensionality reduction [30], etc.

According to the current research situation, the lightweight improvements to the
model are also made from the aspects of real-time detection and complexity of deployment.
This paper proposes a transmission line insulator defect detection method based on the
improved YOLOv4 algorithm. A sample set of transmission line insulator images was
constructed based on the collected aerial images and a public dataset on the internet,
and the image augmentation and preprocessing were carried out on these images. Then,
the MobileNet, a lightweight CNN, was used to replace the feature extraction network
CSPDarkNet53 of the YOLOv4 detection model. At the same time, the PANet network
was improved and the width multiplier was adjusted to further reduce the parameters
of the object detection network. A total of 2403 images in the dataset were used to train,
validate, and test the improved YOLOv4 model, and the test results were compared with
other object detection algorithms. The results show that the method proposed in this paper
has high detection accuracy and faster speed, which can provide a reference for real-time
detection of transmission line insulator defects.

2. Construction and Preprocessing of Insulator Image Dataset
2.1. Image Augmentation Based on GraphCut Segmentation

The images acquired by transmission line inspection are usually with different shoot-
ing angle, uneven illumination, and complex backgrounds. In order to obtain a more robust,
stable, and generalizable deep learning model, the GraphCut segmentation algorithm was
used to extract defective insulator targets, which were blended with the background image
of practical power grid environment. The constructed defective insulator images based
on this image blending method can not only expand the sample set, but also balance the
sample numbers of normal insulators and defective insulators.

The GraphCut segmentation algorithm [31] uses the energy function E(x) to determine
each pixel in the image is whether foreground or background. An image is defined as
G = (X, Y), where X represents all pixel nodes in the image and Y represents the connection
edge between nodes. For anyone node i∈X in the image, xi = 1 if i belongs to the foreground
target; otherwise, xi = 0 if i belongs to the background. Thus, the image segmentation
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problem can be described as an extreme value solution of energy function. The energy
function of image segmentation is defined as

E(x) = ∑
i∈X

E1(xi) + λ ∑
i,j∈Y

E2(xi, xj) (1)

where E1 is the energy consumed by defining the node i as the foreground or background;
E2 is the energy cost of two adjacent and different pixel nodes, which depends on the color
similarity of two pixels; and λ is the energy balance parameter and it is generally taken
as λ = 50, which is a compromise between model-based classification and smooth-based
classification. The calculation of energy E1 and E2 can refer to literature [32], and then the
minimum value of E(x) is obtained by MaxFlow [33], so as to realize the segmentation of
insulators in the image. Finally, the segmented insulator target was fused with the real
and complex background image of the transmission line to form a virtual insulator defect
image sample, as shown in Figure 1. This method can generate a large number of image
samples containing real backgrounds and defective insulator targets, thereby avoiding the
imbalance numbers between normal insulators and defective insulators, improving the
robustness and generalization ability of the model.
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Figure 1. Schematic diagrams of image augmentation: (a) Original image, (b) Segmentation image,
(c) Background image, (d) Composite image.

2.2. Laplacian Sharpening

The color of insulator string is often too similar to the background and not easy to
distinguish at the edge. In order to highlight the edge details of the target insulators
in the image and improve the contrast, the Laplacian sharpening was used for image
enhancement. For the binary insulator image f (x, y), the Laplace transform is

∇2 f (x, y) =
∂2 f
∂x2 +

∂2 f
∂x2 (2)

Then, the second-order partial differentials of the binary image f (x, y) in the direction
of x and y are

∂2 f
∂x2 = f (x + 1, y) + f (x− 1, y)− 2 f (x, y) (3)

∂2 f
∂y2 = f (x, y + 1) + f (x, y− 1)− 2 f (x, y) (4)
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Substituting the Equations (3) and (4) into Equation (2), the Laplace operator is

∇2 f (x, y) = f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)− 4 f (x, y) (5)

According to Equation (5), the sharpening filter is (0, 1, 0; 1, −4, 1; 0, 1, 0). Then, the
Laplace image can be extracted by convoluting the original image with the original image.
Furthermore, the original image and the Laplace image were superimposed according to
Equation (6) to obtain the g(x,y) of the sharpened image. The comparison of images before
and after Laplacian sharpening is shown in Figure 2 and no matter overall or locally, the
sharpened image can effectively improve the contrast and reduce the influence of image
blur and mist.

g(x, y) = f (x, y)−∇2 f (x, y) (6)
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2.3. Transmission Line Insulator Image Dataset

The transmission line insulator image dataset used in this paper was partly derived
from the China power line insulator dataset (CPLID) [14], which was already published
on the Internet, including 600 normal insulator images and 248 defective insulator images.
Another 216 images were collected from the UAV inspection results of high voltage trans-
mission lines. Other images were generated by image augmentation method based on
the GraphCut segmentation. The above samples together constitute the transmission line
insulator image dataset, with a total of 2403 pictures.

The transmission line insulator image dataset needs to be annotated before training
the object detection model. In this paper, the MRLabeler labeling tool was used to annotate
the location and category of the insulator and its defect by a bounding box. Regardless
of normal or defective insulators, their location and category were labeled as ‘insulator’.
While, for defective insulators, the location and category of the defect were labeled as
‘defect’. This labeling method makes it possible to learn the spatial relationships between
defects and insulators during model training. The annotation format is Pascal VOC [34], a
common format in the field of computer vision, and the target location information can
be obtained from the upper left vertex coordinates (xmin, ymax) and lower right vertex
coordinates (xmax, ymin) of the bounding boxes.
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3. Detection Model of Transmission Line Insulator Defects

Aiming at the problems that the size of insulator defects is too small in the transmission
line inspection images, some insulators are not significant in the real environment, the
overlapping occlusion of insulators is serious and the speed of model detection is slow.
An improved YOLOv4 algorithm model was proposed in this paper to realize fast and
accurate detection of insulator defects during transmission line inspection, and the process
of insulator defect detection is shown in Figure 3. The basic principles of the model are
introduced as follows.
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3.1. YOLOv4 Detection Algorithm

The main advantage of the series of YOLO (you only look once) algorithms is that
the detection speed is fast, but the early versions of the YOLO algorithm are not accurate
enough. However, YOLOv4 [35] introduced by Alexey in 2020 improves the detection
performance of the model by introducing the advantages and tricks from other detection
models, which is a mainstream detection algorithm in the field of object detection. There-
fore, YOLOv4 has good detection accuracy and detection speed, and can be used as the basic
detection network to realize the lightweight of the model, thus facilitating the deployment
of the detection model. The structure of YOLOv4 is shown in Figure 4. It can be seen that
YOLOv4 mainly includes feature extraction network (CSPDarknet53), feature pyramid
(SPP and PANet) and prediction network (YOLOHead). The different modules of YOLOv4
and their functions are introduced below.

Firstly, the input images will be transmitted to the CBM module, which consists
of convolution layer (Conv), batch normalization layer (BN), and activation function
layer (Mish). Secondly, five CSP modules are used to extract features with three scales
including 52 × 52, 26 × 26, 13 × 13. The features of different scales are fused through the
spatial pyramid pooling (SPP) [36] and path aggregation network (PANet) [37]. Then, the
classification and position of targets are predicted through the 3× 3 and 1× 1 convolutions.
Finally, non-maximum suppression (NMS) [38] is used to eliminate redundant bounding
boxes, thus obtaining the final predicted bounding box.

Among them, the CSPDarknet53 feature extraction network is an improved feature
extractor based on Darknet53 feature extraction network in YOLOv3 and CSPNet [39], and
the difference between CSPDarknet53 and Darknet53 is shown in Figure 5. The CSP module
not only contains multiple resblocks, but also connects the input to the corresponding
output through N resblocks by means of the cross stage partial connections. As for the
value of N resblocks in the CSPDarknet53, it was set to five types of 1, 2, 8, 8, and 4,
which has been shown to have good feature extraction ability and high detection precision.
Moreover, in addition to improving the feature extractor, YOLOv4 also uses the SPP and
PANet to enhance the representation capacity of features. The SPP concatenates feature
maps after maxpooling with different pooling kernel sizes (1 × 1, 5 × 5, 9 × 9, 13 × 13) as
output, which can increase the receptive field of feature extractor more effectively than the
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maxpooling with a single kernel size, and significantly separate important context features.
Furthermore, the context features separated by SPP layer would be input into the PANet
network, and the deep and shallow features are fused through convolution, upsampling,
and down-sampling. Finally, YOLOHead uses repeatedly fused features to achieve target
recognition and location.
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3.2. Depthwise Separable Convolution

Depthwise separable convolution (DSC) is the core components of MobileNet [40].
It replaces the original 3 × 3 standard convolution with 3 × 3 depthwise convolution
and 1 × 1 pointwise convolution. The principle of depthwise convolution is to use a
single convolution kernel for each input channel to extract features, while 1 × 1 pointwise
convolution is used for linear feature fusion of multiple outputs of depthwise convolution.
DSC breaks the connection between the output channel and the convolution kernel, thus
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reducing the computational complexity of the model. Compared with standard convolution,
the principle is shown in Figure 6.
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Suppose the input image size is DF × DF ×M, if the standard convolution is adopted,
the parameter quantity is

DK · DK ·M · N · DF · DF (7)

where DK is the size of the convolution kernel, M is the number of input channels, and N is
the number of output channels. If depthwise separable convolution is used, the parameter
quantity of depthwise convolution and pointwise convolution is{

CDW = DK · DK ·M · DF · DF
CPW = M · N · DF · DF

(8)

where CDW and CPW are the corresponding parameter quantity of depthwise convolution
and pointwise convolution. According to Equation (9), the parameter quantity of deep
separable convolution is 1/N + 1/Dk

2 of the standard convolution parameter quantity, and
N�D2

K in the general model structure. The convolution kernel DK × DK commonly used
in MobileNet is 3 × 3, so the parameter quantity of the DSC can be reduced to 1/8~1/9 of
the standard convolution parameter quantity.

DK · DK ·M · DF · DF + M · N · DF · DF
DK · DK ·M · N · DF · DF

=
1
N

+
1

D2
K

(9)

Since the practical deployment on mobile devices requires less parameter quantity and
a high detection speed of the model, in MobileNet the number of channels in the model is
multiplied by a hyperparameter, which is called width multiplier α. Then the parameter
quantity of the convolution operation is

DK · DK · αM · DF · DF + αM · αN · DF · DF (10)

The default value of α in the standard MobileNet is 1.0, and the computation and
parameter quantity of the model can be effectively reduced with a less α value. The values
of α are usually set as 1.0, 0.75, 0.5, 0.25.

3.3. Improved YOLOv4 Insulator Defect Detection Model

The model structure of improved YOLOv4 based on MobileNet is shown in Figure 7,
where the number behind the DSC represents the amount of the DSC module. The CBR
convolution module is similar to the CBM module in Figure 4, except that the activation
layer is the ReLU6 activation function. The CDC module indicates that the input has been
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convolutional calculated for three times, including two convolution types CBR and DSC.
The MFC module represents that the input has been convolutional calculated for five times,
which also includes CBR and DSC. According to Figures 4 and 7 the main improvement lies
in the replacement of the feature extraction network and the improvement of the PANet
based on DSC, which are described in detail as follows.
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1. Feature Extraction Network

The feature extraction network adopted by YOLOv4 is CSPDarknet53. By replacing the
CSPDarknet53 with MobileNet, the input size required by the initial network is reshaped
from 224 × 224 to 416 × 416. According to the convolution operation, the features after
five DSC modules are extracted as feature 1, and the features after six DSC modules are
extracted as feature 2, the features after two DSC modules are extracted as feature 3. The
sizes of the three feature maps in the improved YOLOv4 model will be reshaped to 64 × 64,
32× 32, and 16× 16, while the sizes in YOLOv4 are 52× 52, 26× 26, and 13× 13. Then the
features 1, 2, and 3 are used for pooling and feature fusion of SPP and PANet. In addition,
the Mish activation function in YOLOv4 is replaced by the ReLU6 activation function in
MobileNet, the function expression is

y = min[6, max(x, 0)] (11)

2. DSC-SPP and DSC-PANet

It is found through tests that the total parameter quantity in YOLOv4 is about 64.43 mil-
lion. If only the feature extraction network is replaced by the standard MobileNet with
α = 1, the total parameter quantity in YOLOv4 is about 41 million and the number of
parameters is not significantly reduced. The reason is that most of parameters in YOLOv4
are concentrated in the convolution operation of PANet. Therefore, in order to achieve
a lighter detection model, the DSC was introduced into the SPP and PANet, which are
improved as DSC-SPP and DSC-PANet. Firstly, the standard convolutions (Conv × 3),
composed of three CBR, before and after SPP network are replaced with CDC module. In
detail, the second CBR in Conv × 3 is replaced with DSC, as shown in Figure 7 and keeps
the number of output channels unchanged. Then, the five standard convolution (Conv × 5)
in the PANet network is improved as the MFC module, whose principle is to replace the
second and fourth CBR with DSC. Finally, the standard convolution with the kernel 3 × 3
in YOLOHead is also replaced with DSC. Through the above three parts of improvements,
the total parameters of the improved YOLOv4 detection model are about 12.75 million,
which has been greatly reduced compared to the original YOLOv4 model.

3.4. Prediction Network

YOLO-Head uses multi-scale features obtained from the PANet structure to perform
regression and classification prediction. In this part, PANet provides three feature maps,
respectively, with sizes of 64 × 64 × 256, 32 × 32 × 512, and 16 × 16 × 1024 corresponding
to shallow, middle, and deep prediction boxes. The scales of output feature maps in YOLO-
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Head are 64 × 64 × 21, 32 × 32 × 21, and 16 × 16 × 21, respectively. The third dimension
is 21, which can be split into 3 × (2 + 5), as shown in Figure 8a; 2 represents the total
number of categories in the transmission line insulator image dataset; 5 can be divided
into 1 + 1 + 1 + 1 + 1, which respectively represent the x-axis offset, y-axis offset, height H,
and width W of the prediction box, and confidence degree. When the prediction results are
obtained, the prediction boxes can be drawn directly on the original picture.
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Figure 8. Multi-scale prediction principle: (a) The third-dimension calculation principle of output
feature maps in YOLO-Head, (b) Prediction box regression.

The predicted output feature maps of three scales also need to be decoded, and the
original picture will be decomposed into 64 × 64, 32 × 32, and 16 × 16 grids, just like the
3 × 3 grid in Figure 8b. The coordinates of each grid point plus its corresponding x-axis
offset and y-axis offset are the coordinates of the center point of the prediction box, and
then use the anchors and the prediction height H, width W to calculate the length and
width of the prediction box. The calculation principle is shown in Equation (12). Finally,
the prediction box on the original image can be obtained.

bx = σ(tx) + cx
by = σ(ty) + cy
bw = Pwetw

bh = Pheth

(12)

4. Case Study of Transmission Line Insulator Defect Detection
4.1. Simulation Environment and Evaluation Indexes

The transmission line insulator defect detection cases were completed in the software
environment of Visual Studio Code 2016, Keras 2.1.5, TensorFlow 1.13.2, CUDA 10.0,
cuDNN 7.4.1.5, and the hardware environment with GPU Nvidia GeForce GTX 1660 Super,
6 GB video memory.

In order to compare the performance of different models and algorithms, the precision
(P), recall (R), average precision (AP), and mean average precision (mAP) are taken as
indexes to evaluate model performance. The definitions of precision and recall are

precision =
TP

TP + FP
, recall =

TP
TP + FN

(13)

where TP is the number of correctly positioned targets, TP + FP is the total number of
positioned targets, and TP + FN is the total number of actual targets. The P–R curve can
be plotted with the calculated P and R as ordinate and abscissa, while the area under the
curve is AP, and the mean value of AP is mAP. For multi-class (N classes) object detection,
the definitions of AP and mAP are

AP =
∫ 1

0
P(R)dR , mAP =

1
N

N

∑
i=1

APi (14)
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In addition, F1 score is also used to evaluate the performance of detection models,
which represents the harmonic average of precision and recall and considers that precision
and recall are equally important. The definition of F1 score is

F1 = 2 · precision · recall
precision + recall

(15)

In order to compare the detection speeds of different object detection models and
reflect the real-time detection ability, this paper also introduces frames per second (FPS) as
an evaluation index, which means the total number of images detected by the model in one
second, that is, the time taken by the model to detect one image.

4.2. Implementation Process of Defect Detection

The implementation process is shown in Figure 9. The model is firstly pre-trained
using ImageNet [41], a public image dataset. The pre-trained model is transferred to
the transmission line insulator image dataset by the stage-wise training method, while
the training process is divided into two stages. Moreover, before training the model,
random combinations of geometric and optical transformations (including flip, scale,
hue, etc.) will be used to augment the samples, thereby further increasing the robustness
and generalization capabilities of the model. At the same time, three training techniques
including Mosaic data augmentation, cosine annealing, and label smoothing were applied
to improve the accuracy and generalization ability of the model.
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In Figure 9, the optimal anchor size obtained based on the K-means clustering algo-
rithm in the training set is (15,14 21,135 21,15; 39,18 81,21 107,36; 252,52 265,80 266,126),
including the width and height of nine groups of anchors. The first three groups of anchors
correspond to the 16 × 16 feature map, the middle three groups of anchors correspond to
the 32 × 32 feature map, and the last three groups of anchors correspond to the 64 × 64
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feature map, which are responsible for detecting targets of different sizes. The parameter
settings during training and test are shown in Table 1.

Table 1. Simulation parameter setting.

Parameters First Stage Second Stage

Batchsize 8 2
Initial learning rate 1 × 10−3 1 × 10−4

Training epochs 50 50

IoU threshold 0.5
NMS threshold 0.3

Label smoothing value 0.01
Minimum learning rate of cosine annealing 1 × 10−6

4.3. Result Analysis
4.3.1. Detection Results with Different Proportion of Samples

In order to analyze the influence under different proportion of insulator image samples
on the detection accuracy, the proportions of the training set (including the validation set)
and the test set were taken as 5:5, 6:4, 7:3, 8:2, and 9:1, and 10% of the samples in the training
set were used as the validation set, as shown in Table 2. The performance indexes including
P, R, AP, and mAP of the test results under different sample proportions are shown in
Figure 10.

Table 2. Number of samples in different proportions.

Proportion Training Set Validation Set Test Set

5:5 1081 120 1202
6:4 1297 144 962
7:3 1514 168 721
8:2 1730 192 481
9:1 1946 216 241
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It can be seen from the Figure 10 that the values of P, R, AP, and mAP show upward
trends with the increased proportion of training set to test set, and the proportion has a
greater influence on insulator defect targets. When the proportion is 9:1, all the performance
indexes have the maximum values, which are above 90%. The mAP value can reach 93.81%.
Since the model has the highest detection accuracy, the proportion of 9:1 is used in the
following analysis.
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4.3.2. Detection Results with Different Width Multipliers

The influence of width multiplier α on detection accuracy was also analyzed. The test
results with different values of α, namely, 0.25, 0.50, 0.75, and 1.0, were compared, and the
performance indexes are shown in Figure 11.
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It can be seen from Figure 11 that the P, R, and AP of defective insulators have upward
trends with the increase in the width multiplier α. The R and AP of normal insulators also
show upward trends, while the values of P decrease slightly, but they are all above 94% and
the overall mAP also shows an upward trend. When α = 1.0, except for the value of P for
normal insulators, the other performance indexes have the maximum values. According to
the requirements in practical applications, the width multiplier α of the lightweight model
can be adjusted flexibly to realize insulator defect detection with superior precision and
high real-time performance.

4.3.3. Comparison with Different Detection Algorithms

In order to verify the effectiveness of the proposed method, four types of object
detection models were also constructed, including Faster RCNN, SSD, YOLOv3, and
YOLOv4. The transmission line insulator image dataset was also used for training and test
of these object detection models. The detection results are shown in Table 3.

Table 3. Performance indexes of different detection models.

Method
AP (%)

mAP (%)
F1 Score

FPS (pictures/s)
Insulator Defect Insulator Defect

Faster RCNN 87.27 92.54 79.91 0.79 0.92 1
SSD 93.81 75.03 84.42 0.81 0.72 28

YOLOv3 89.00 87.33 88.16 0.88 0.89 24
YOLOv4 96.14 96.43 96.21 0.96 0.95 19

Improved YOLOv4 94.53 93.09 93.81 0.96 0.94 53

From the results in Table 3, the YOLOv4 detection algorithm achieves high-precision
detection of insulators and its defects relying on its advantages of structure and training
method. The mAP can reach 96.21%, which is higher than that of Faster RCNN, SSD, and
YOLOv3, while the detection speed (FPS) of YOLOv4 is slow. The improved YOLOv4
model proposed in this paper can improve the detection speed to 53 pictures/s with the
cost of 2.4% precision; that is, the time required to detect one image is about 18.87 ms,
which is nearly 2.8 times the detection speed of YOLOv4. The detection accuracy is better
than Faster RCNN, SSD, and YOLOv3. Moreover, the F1 scores of improved YOLOv4 are
also superior to Faster RCNN, SSD, YOLOv3, and the F1 score of improved YOLOv4 in the
category of the insulator defect is only 0.01 lower than YOLOv4. The above results verify
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that the proposed method can realize the defect detection of transmission line insulators
with high precision and fast detection speed.

4.3.4. Influence of Image Sharpening Methods

In response to the problem of indistinct outline and low contrast caused by the similar-
ity between the insulator target and the background, the Laplace image sharpening method
was adopted to sharpen the transmission line insulator images, and compared with other
three sharpening methods including sobel, prewitt, and laplacian of gaussian (log). The
model detection results with different image sharpening methods are shown in Table 4.

Table 4. Performance indexes of detection model with different sharpening methods.

Sharpening Method
Insulator Location Insulator Defect Location

mAP (%)
AP (%) P (%) R (%) AP (%) P (%) R (%)

Non-sharpening 94.53 95.96 91.63 93.09 96.97 94.12 93.81
prewitt 94.04 93.91 89.27 93.56 93.94 91.18 93.80
sobel 94.76 93.42 91.42 95.57 98.44 92.65 95.17
log 94.32 95.22 89.70 93.62 96.97 94.12 93.97

laplacian 96.15 96.69 93.99 98.40 95.59 95.59 97.26

From Table 4, it can be drawn that the application of image sharpening methods
improves the detection ability of the model for insulator defects, with higher AP values
compared to the non-sharpening condition. Among the above four sharpening algorithms,
Laplace sharpening has the optimum indexes of insulator location and the highest AP and
R of insulator defect detection, while the overall mAP can reach 97.26%, with the highest
detection accuracy.

4.4. Generalization Ability and Robustness Verification

Due to the influence of time, weather, and angle during shooting, the UAV aerial
images are prone to uneven illumination and blur. In consideration of the possible influence
in practical applications, several preprocessing methods such as contrast and brightness
adjustment and image atomization were adopted to simulate the conditions of extreme
darkness, exposure, and foggy environment, so as to verify the generalization ability and
robustness of the model.

The improved YOLOv4 model was used to detect images under the above three
simulated conditions and the results were compared with Faster RCNN, SSD, YOLOv3,
and YOLOv4 models, which are shown in Figure 12. The red bounding boxes in YOLOv3,
YOLOv4, and the improved YOLOv4 represent the insulator, and the blue bounding boxes
represent the defect class. However, the blue bounding boxes in SSD and Faster RCNN
represent the insulator. According to the detection results, the YOLO models have superior
accuracy in transmission line insulator location and defect detection, while the SSD and
Faster RCNN have missed detections and poor detection effect on defect targets, which
may be caused by small sizes of defect targets. Among YOLO models, YOLOv4 has the
highest accuracy and can achieve accurate detection in the above three conditions. The
improved YOLOv4 model, with lightweight feature extraction network MobileNet and
optimized SPP and PANet network structures to reduce the number of parameters, can
also achieve accurate detection in the three conditions. As for the detection speed (FPS),
the proposed method increases the FPS to 53 pictures/s, which takes only 0.019 s to detect
one image.
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According to the above result analysis and model robustness verifications, it can be
seen that the mAP and FPS of the improved YOLOv4 model can reach 93.81% and 53
pictures/s, respectively. In addition, Laplace sharpening can be applied to compensate for
the loss of accuracy caused by lightweight model and improve the mAP to 97.26%. The case
studies validate that the proposed method is able to realize accurate, fast, and automatic
detection of transmission line insulator defects.

5. Conclusions

This paper constructs an improved YOLOv4 model based on lightweight CNN to
detect the transmission line insulator defects in UAV aerial images. Case studies were
carried out and different influence factors on the detection results were analyzed. The
detection performance was also compared to other object detection models. The conclusions
can be drawn as follows:

1. The data augmentation method based on Graphcut segmentation is effective to expand
the defective insulator images, which can avoid the problem of sample imbalance,
improve the training effect and test accuracy, and therefore improve the generalization
ability and robustness of the detection model.

2. The lightweight YOLOv4 model improved by MobileNet, DSC-SPP, and DSC-PANet
has good performance for detection of transmission line insulator defects, with a high
detection accuracy and a fast detection speed. The mAP and FPS respectively reach
93.81% and 53 pictures/s, and the overall performance is better than that of Faster
RCNN, SSD, YOLOv3, and YOLOv4 models.

3. Laplace sharpening is able to compensate the detection accuracy of the lightweight
YOLOv4 model, which increases the mAP to 97.26%, and its property is better than
other sharpening methods including sobel, prewitt, and log. The proposed method
is helpful for accurate detection of defective insulators on transmission lines, and
applicable to meet the requirements of real-time detection in practical engineering.
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