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Detection of Type, Duration, and Intensity of
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ABSTRACT

BONOMI, A. G., A. H. GORIS, B. YIN, and K. R. WESTERTERP. Detection of Type, Duration, and Intensity of Physical Activity

Using an Accelerometer. Med. Sci. Sports Exerc., Vol. 41, No. 9, pp. 1770–1777, 2009. Objective: The aim of this study was to

develop models for the detection of type, duration, and intensity of human physical activity using one triaxial accelerometer. Methods:

Twenty subjects (age = 29 T 6 yr, BMI = 23.6 T 3.2 kgImj2) performed 20 selected activities, including walking, running, and cycling,

wearing one triaxial accelerometer mounted on the lower back. Identification of activity type was based on a decision tree. The decision

tree evaluated attributes (features) of the acceleration signal. The features were measured in intervals of defined duration (segments).

Segment size determined the time resolution of the decision tree to assess activity duration. Decision trees with a time resolution of 0.4,

0.8, 1.6, 3.2, 6.4, and 12.8 s were developed, and the respective classification performances were evaluated. Multiple linear regression

was used to estimate speed of walking, running, and cycling based on acceleration features. Results: Maximal accuracy for the

classification of activity type (93%) was reached when the segment size of analysis was 6.4 or 12.8 s. The smaller the segment size, the

lower the classification accuracy achieved. Segments of 6.4 s gave the highest time resolution for measuring activity duration without

decreasing the classification accuracy. The developed models estimated walking, running, and cycling speeds with a standard error of

0.20, 1.26, and 1.36 kmIhj1, respectively. Conclusions: This study demonstrated the ability of a triaxial accelerometer in detecting

type, duration, and intensity of physical activity using models based on acceleration features. Future studies are needed to validate the

presented models in free-living conditions. Key Words: TRACMOR, DECISION TREE, CLASSIFICATION, AMBULATORY

MONITORING

P
hysical activity (PA) is recommended to improve
health and to reduce risk for several diseases, such as
cardiovascular diseases, diabetes mellitus type II,

osteoporosis, obesity, and certain types of cancer (3,11,
14,17). For this reason, the objective assessment of PA in
free-living conditions is an important component of many
scientific investigations aimed at defining the effectiveness
of intervention strategies to increase PA. Furthermore,
measuring accurately pattern, duration, and intensity of
PA is required to improve the understanding of individuals’
behavior and to quantify the relation between PA and
disease outcomes.

A variety of methods exist to objectively measure PA in
daily life (20). Ideally, PA should be measured for a period

representative of the habitual activity level, with minimum
discomfort for the subject and using low-cost systems for
implementation in large-scale studies. Activity monitors
based on an accelerometer sensor reasonably satisfy these
requirements, and therefore they have been widely used to
monitor PA. Accelerometer output, as defined by arbitrary
acceleration units (AAU) per minute, reflects pattern,
duration, and intensity of PA, and it is used to estimate
activity-related energy expenditure (5,23). However, the
description of PA by measuring AAU has limitations. AAU
has limited ability to identify types of PA performed. This
information is important because it may improve assess-
ment of activity pattern and intensity. Furthermore, mea-
suring PA in epochs of 1 min limits the time resolution for
determining activity duration. Thus, improvements in the
assessment of types, duration, and intensity of PA are
necessary to correctly evaluate habitual PA.

In recent decades, accelerometer sensors have been
adopted to identify human movements by using classifica-
tion algorithms. Zhang et al. (29) proposed a method based
on several accelerometers positioned in different body parts
(chest, legs, and feet) to identify up to 32 movements and
postures achieving a classification accuracy of 95%. In
other studies, multiple sensors have been used to identify
several types of PA achieving a classification accuracy from
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85% to 95% (2,10). More recently, identification of PA has
been investigated using a single acceleration sensor, placed
around the waist (15,21) or on the chest (8). Then, the
overall classification accuracy was between 71% and 91%
to identify postures, walking, and various sport activities
such as rowing, running, and cycling. The most common
classification algorithms are decision trees (2,8), neural
networks (29), Bayesian classifiers (16), and hidden
Markov models (24). These algorithms identify activity
types by evaluating attributes of the acceleration signal
measured in portions of defined length (segments). A
segment of the acceleration includes a certain number of
data points determined by the sampling frequency of the
signal and by the time length of the segment. Given a
certain sampling frequency, the longer the segment size, the
more samples are considered to calculate attributes (fea-
tures) of the acceleration. Acceleration features are used to
classify the type of activity performed in a certain time
interval. The use of short segments for the calculation of the
acceleration features would improve the ability to correctly
recognize short activities and to measure activity duration,
supposing that the classification performances are constant
regardless of the segment size.

Detection of activity intensity is essential for measuring
PA. According to Ainsworth et al. (1), the categorization of
dynamic activities such as walking and cycling into light,
moderate, or vigorous intensity depends largely on move-
ment speed. In the past, accelerometers have been used to
assess intensity of PA by measuring AAU. Several studies
showed a linear relationship between AAU and activity
intensity as defined by energy expenditure measured using
indirect calorimetry (13,18,22). However, this linearity is
valid only within a single activity type (22). In addition, this
AAU-based method can only be applied to activities with
duration longer than 1 min. For this reason, improvements
are required to evaluate intensity of a variety of activities in
daily life. Recently, trunk-mounted accelerometers have
been used to assess speed of walking. Schutz et al. (27)
proposed an algorithm to estimate the walking speed based
on features of the acceleration signal. Other studies (30,31)
proposed to measure walking speed, estimating gait
characteristics such as step length and duration of the stride
cycle by using the acceleration of the body. Nowadays, the
most accurate method to measure walking, running, and
cycling speed in daily life is based on accelerometers and
global positioning systems (GPS) (26). However, accurate
GPS units have limited wearability and are still too
expensive to be used in large-scale studies (28).

The purpose of this study was threefold. The first aim
was to use one triaxial accelerometer to identify a large
number of activities like walking, running, cycling, stand-
ing, sitting, and lying, developing a decision tree model.
The second aim was to determine the highest time
resolution achievable, preserving the classification perfor-
mance of the model. For this purpose, a decision tree was
developed using features measured in not overlapping

intervals of different length, and the consequent classifica-
tion performance was evaluated. The third aim was the
definition of intensity for common dynamic activities like
walking, running, and cycling, investigating the association
between features of the acceleration signal and movement
speed.

METHODS

Subjects. Twenty healthy adults (13 men and 7
women) were recruited by advertisement in local news-
papers. All subjects gave written informed consent to par-
ticipate in the study, which was approved by the Ethics
Committee of the Maastricht University Medical Centre.
Subjects’ characteristics are described in Table 1.

Instrumentation. Body acceleration was measured
with a modified version of ‘‘the triaxial accelerometer
for movement registration’’ (Tracmor; Philips Research,
Eindhoven, The Netherlands) as applied in previous studies
for the assessment of PA (5,23). Sensor and data logger
were integrated in one device. The sensor detected
accelerations in three perpendicular directions, and the
sampling frequency of the signal was set to 20 Hz. The
battery life of the device was 36 h at this sampling fre-
quency. The device size was 8 � 3.5 � 1 cm, and the
weight was 34.85 g (battery included). The device is cur-
rently used for research purposes, and it is not commer-
cially available. During the trial, the device was attached on
the lower back using an elastic belt and it was positioned
under the clothes to maximize the comfort for the subject.
The device was oriented to have the x, y, and z axes, sens-
ing acceleration in the vertical, medio-lateral, and antero-
posterior direction of the body, respectively.

Experimental methods. The experimental setup con-
sisted of series of physical activities performed in super-
vised conditions. The subjects were involved in the
following activities: lying on a bed, sitting on a chair,
sitting while working on a computer, standing, standing
washing dishes, walking along a corridor, walking down-
stairs and walking upstairs, walking outdoors, running
outdoors, and cycling (Fig. 1). The walking and running
outdoors activities were conducted on a level and straight
sidewalk of 226 m. The cycling part was performed on a
straight street of 428 m. The subjects were instructed to

TABLE 1. Subjects’ characteristics.

Parameters All Calibration Validation

n (M/F) 20 (13/7) 15 (10/5) 15 (3/2)
Age (yr) 29 T 6 29 T 7 28 T 5
Weight (kg) 72 T 9.0 70.5 T 9.9 74.3 T 5.7
Height (m) 1.74 T 0.09 1.75 T 0.09 1.74 T 0.12
BMI (kgImj2) 23.6 T 3.2 23.1 T 2.7 24.9 T 4.6

Data are presented as mean T SD.
BMI, body mass index; All, characteristics of the population used for the development
and for the cross-validation of the decision trees; Calibration, characteristics of the
population used for the development of the models to estimate walking, running, and
cycling speed; Validation, characteristics of the population used to test the performance
of the models to estimate speed.
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perform four walking, running, and cycling outdoor tasks,
adopting four different speeds voluntarily chosen. Average
speed was measured by dividing the path length covered by
the duration of the activity task. During the cycling
activities, the same bicycle with a rear wheel size of 0.71
m and a gear ratio of 48/20 was used by the test
participants. The starting and finishing time of each activity
was recorded with a stopwatch. The stopwatch and the
internal clock of the accelerometer were synchronized to the
same reference.

Data processing. The acceleration signal of each
activity task was isolated according to the starting and the
finishing time as recorded with the stopwatch. Valid data for
each activity task was considered from 5 s after the starting
time to 5 s before the finishing time. This 5-s time delay was
set to analyze only data recorded during a stationary state for
each activity, and it was determined by visual inspection of
the data set. The isolated acceleration signal was then
processed to calculate features to use for the development
of an activity classification model. Accurate assessment of
activity duration requires analysis in small segments, but
segments of larger size might carry more meaningful
information on the type of activity and improve the rec-
ognition of PA. To investigate which segment size allowed
the highest classification accuracy, six decision trees were
developed by analyzing the acceleration signal using
segments of 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 s, including
8, 16, 32, 64, 128, and 256 samples, respectively. The
acceleration signal stored in each segment was processed to
extract features in the time and frequency domain.

The acceleration features in the time domain were as
follows: the average (a), the standard deviation (R), the
peak-to-peak distance (app), the cross-correlation (R) of the

acceleration in the same axis, and the R of the acceleration
between sensing axes. The R of the acceleration in the same
axis was calculated as presented in equations 1 and 2.

R>A ¼ maxðr>AÞ ½1�

~
N�i�1

j¼0
>iþjAj;r>A ið Þ ¼

r>Að�iÞ;

i Q 0

i G 0

8<
: ½2�

where > and A represent two subsequent segments of the
same axis, i is the shift between the two segments, and j is
an index that covers the full length of the overlapping
samples between > and A. N represents the segment size.
This feature provided a measure of the similarity in the
acceleration over two subsequent time intervals for the
same axis. The R of the acceleration between axes was also
calculated as defined in equations 1 and 2. In this case, >
and A represent segments of the acceleration in the same
time interval but recorded on different axes. This feature
provided a measure of the similarity in the acceleration
between axes. Some features were also computed in the
frequency domain. Firstly, the power spectral density (P) of
the acceleration was used to define the harmonic content of
the signal. P was calculated using the fast Fourier transform
algorithm on the acceleration signal of each segment. After
that, attributes of P were described by frequency domain
features, such as the dominant frequency, the amplitude
of the spectral peak (A), and the frequency domain entropy
(J ). The dominant frequency was the frequency at which
P had the maximum value. The A was defined as the max-
imum value of P, and J was defined as in equation 3.

J ¼ j ~
N=2

i¼1
½P
C
ðiÞlogðP

C
ðiÞÞ� ½3�

where
C
P is the normalized power spectral density, i is an

index that cover the entire length of P, and N is the number
of samples contained in the segment of the acceleration.
These features were measured for each axis and used for the
classification of the segments. The processing scripts used
to calculate the features were developed using Matlab (The
MathWorks, Natick, MA).

Modeling and statistics. Decision tree models were
developed to identify activity types, as proposed earlier
(2,8). The activity tasks performed by each subject during
the experimental protocol were grouped in categories
addressed by the decision tree. These categories were
‘‘lie,’’ ‘‘sit,’’ ‘‘stand,’’ ‘‘dynamic standing’’ (DS), ‘‘walk,’’
‘‘run,’’ and ‘‘cycle.’’ The lying task was labeled as ‘‘lie,’’ the
sitting and working on a computer tasks were labeled as
‘‘sit,’’ and the standing task was labeled as ‘‘stand.’’ The
washing dishes task, dynamic standing, was labeled as
‘‘DS.’’ The walking along a corridor, walking downstairs,
walking upstairs, and walking outdoor tasks were labeled as
‘‘walk.’’ The running and cycling tasks were labeled as
‘‘run’’ and ‘‘cycle,’’ respectively.

FIGURE 1—Acceleration measured in the antero-posterior direction
of the body (z axis) during the experimental protocol. Arrows highlight
the signal measured during the tasks included in the test: lying (A);
sitting (B); sitting working on a computer (C); standing (D); washing
dishes (E); walking along a corridor (F); walking downstairs (G);
walking upstairs (H); walking outdoor (I–L); running outdoor (M–P);
cycling outdoor (Q–T).
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The development of the decision tree consisted of two
main steps. The first step was the selection of the best
features to use for the classification of the training data set.
The second step was the definition of logical conditions
based on the selected features to drive the classification of
the training data set. For each segment size used to calculate
acceleration features, a decision tree was developed. The
classification performance of each decision tree was tested
using the leave-one-subject-out cross-validation algorithm
(12). The classification accuracy and the F-score obtained
from the cross-validation were used to determine which
segment size allowed the development of the decision tree
with the highest classification performance. The classifi-
cation accuracy was defined as the average percentage
of correctly classified segments over the entire set of cross-
validation segments as measured at each step of the leave-
one-subject-out cross-validation. The F-score was calculated
as the average of the harmonic mean between sensitivity
and positive predictive value measured at each step of the
leave-one-subject-out cross-validation (equation 4). This
parameter was defined to evaluate the overall performance
of the model specifically for each activity type.

F< scorek ¼
1

20
~
20

i¼1
2
Se ik � PPVi

k

Se ik þ PPVi
k

½4�

where i is an index that represents each step of the leave-
one-subject-out cross-validation, k represents the type of
activity considered, the constant 20 is the number of steps
in the leave-one-subject-out cross-validation, Se is the
sensitivity of the decision tree for the k-activity type, and
PPV is the positive predictive value of the decision tree for
the k-activity type. Se describes the ability to avoid false-
negative classifications for a certain activity type. PPV
defines the ability to avoid false-positive classifications for
a certain activity type. Considering the number of true-
positive classification (TP), false-positive classification
(FP), true-negative classification (TN), and false-negative
classification (FN), Se was calculated as TP / (TP + FN),
and PPV was calculated as TP / (TP + FP). The Student
t-test was used to determine differences in the classification
accuracy of the decision trees trained using different
segment length. The classification accuracies were ex-
pressed as mean T SD. Statistical significance level was
set to P G 0.05. The development of the classification

models and the cross-validation was performed using
Matlab (The MathWorks). The C4.5 algorithm (6) was
used for the training and pruning of the decision tree. The
minimum number of objects included in the terminal
branches of the decision tree was set to 5% of the training
instances.

Three separate models were developed to estimate
walking, running, and cycling speed for the outdoors tasks.
Stepwise multiple linear regression was used to select the
best independent elements to include in the models. The
independent elements of the models were body character-
istics and acceleration features measured in segments of
6.4 s and averaged over the entire duration of the activity
task. The study population was divided in two groups: the
‘‘calibration group’’ (75%) and the ‘‘validation group’’
(25%). Subjects were randomly assigned to the calibration
or the validation group. Data from the calibration group
were used to develop the models to estimate walking,
running, and cycling speed. Data from the validation group
were used to test the performance of the developed models.
The standard error of estimation was defined to measure the
ability of the developed models in fitting the measured
speed of the calibration population. The standard error of
validation (SEV) was defined to determine the ability of the
models in predicting the measured speed of the validation
population. Furthermore, the residuals between estimated
and measured speeds of the validation population were
analyzed to define the bias and the limits of agreement of
the models with the measurements (4). The development of
these models to estimate speed and the statistical analysis
of the prediction performance were conducted using Matlab
statistical toolbox (The MathWorks) and SigmaStat (Systat
software, San Jose, CA).

RESULTS

Activity classification. Decision trees developed using
segments of 12.8 and 6.4 s showed the highest classification
accuracy. The smaller the segments size considered the
lower was the classification accuracy (Table 2). There was
no significant difference between the classification accuracy
of the models developed using segments of 12.8 and
6.4 s (P = 0.41). The paired t-test between the classification
accuracy of the models developed using segments of 3.2

TABLE 2. Classification performances of the decision trees developed using different segment sizes.

Segment Size (s) Classification Accuracy (%)

F-score (%)

Lie Sit Stand DS Walk Run Cycle

0.4 90.4 T 0.3 100.0 85.7 53.9 67.6 97.3 99.1 89.3
0.8 91.9 T 0.2 100.0 86.4 59.6 71.9 98.3 99.7 92.2
1.6 92.3 T 0.3 100.0 86.6 58.0 72.8 98.8 99.9 93.3
3.2 92.6 T 0.3 100.0 86.7 59.7 72.5 99.1 100.0 93.4
6.4 93.1 T 0.5 100.0 87.4 62.4 75.2 99.2 100.0 93.9

12.8 93.0 T 0.6 100.0 86.4 60.0 74.5 99.5 100.0 95.1

Bold numbers in the table represent the maximum value of F-score.
Segment size, length of the intervals used to segment the acceleration; classification accuracy, percentage of the correctly classified segments over the entire set of validation segments
as measured using the leave-one-subject-out cross-validation; F-score, defined as the harmonic mean of sensitivity and positive predictive value of the classification method; DS,
dynamic standing activity.
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and 1.6 s showed a P = 0.05. The paired t-test between the
classification accuracy of all the other models showed a
statistically significant difference (P G 0.05). The F-scores
of the decision tree developed using segments of 12.8 s for
each activity types ranged from 60% to 100% (Table 2).
The features selected to classify activity types were stable at
each step of the cross-validation and were also stable for
each segment length considered (Fig. 2).

Speed estimation. Subjects’ characteristics for the
calibration and the validation group were similar (Table 1).
Measured walking, running, and cycling speeds were 5.2 T

0.9, 9.8 T 2.2, and 16.0 T 4.0 kmIhj1, respectively. The
model to estimate walking speed showed an SEE of
0.2 kmIhj1 and an SEV of 0.47 kmIhj1. The model had
a bias of 0.32 kmIhj1, with T95% prediction interval
of T0.70 kmIhj1 (confidence interval [CI] from –0.38 to
1.02 kmIhj1). The model to estimate running speed showed
an SEE of 1.26 kmIhj1. The SEV was 2.45 kmIhj1. This
model overestimated the measured speed with a bias
of 0.29 kmIhj1, with T95% prediction interval of T4.89
kmIhj1 (CI from –4.6 to 5.18 kmIhj1). The model to
estimate cycling speed showed an SEE of 1.36 kmIhj1.
The SEV was 2.88 kmIhj1. This model had a bias of
0.26 kmIhj1, with T95% prediction interval of T5.76 kmIhj1

(CI from –5.50 to 6.02 kmIhj1). The independent elements
of these three models are presented in Table 3.

DISCUSSION

Classification of PA. In this study, we developed a
method to identify types of PA. The classification process
was based on information carried by features of the
acceleration of the body as measured using one triaxial
accelerometer placed on the lower back. On the basis of this
information, a decision tree showed high accuracy in
identifying activity types. The highest classification accu-
racy (93%) was achieved by measuring acceleration
features in intervals of 6.4 or 12.8 s.

During the experimental protocol, 20 standardized activ-
ities were performed by the subjects. These activities were
grouped in seven classes that represent common types of
daily PA. The lying, sitting, and standing classes were
defined to represent human postures. The walking and
running classes were defined to represent gait and ambula-
tion. The DS class was defined to represent human
movements performed in the standing position not related

FIGURE 2—Structure of the decision tree developed using segments of
6.4 s. The circles represent decision nodes. In the decision nodes, logic
conditions based on the noted features distinguish the seven activity
types (lie, sit, stand, dynamic standing [DS], walk, run, and cycle). The
features selected for the classification were the standard deviation of
the acceleration in the vertical, mediolateral, and anteroposterior
direction (Rx Ry Rz); the average acceleration in the vertical direction
of the body (ax); and the cross-correlation of subsequent intervals of
the acceleration in the anteroposterior direction (Rz).

TABLE 3. Models to estimate walking, running, and cycling speed.

Var Coef SE Partial jr 2 P

Walking speed (r 2 = 96.3%)
Int 55.18 13.06
ln(Rx) 2.29 0.08 84.5 G0.001
Ryz 2.65 � 10j8 0.24 � 10j8 89.5 G0.001
H 2.42 0.30 93.8 G0.001
$x j0.03 0.0057 95.2 G0.001
Jx j0.13 0.03 96.3 G0.001

Running speed (r 2 = 70.2%)
Int j53.76
az
pp 0.006 9.39 � 10j4 53.5 G0.001

Rzx 8.88 � 10j8 1.68 � 10j8 64.1 G0.001
Az j7.81 � 10j6 3.33 � 10j6 67.3 0.023
Ay 5.36 � 10j6 1.97 � 10j6 70.2 0.009

Cycling speed (r 2 = 86.6%)
Int 4.76
Rz 0.33 0.03 78.7 G0.001
fz 1.01 0.26 85.0 G0.001
Rx 0.06 0.02 86.6 0.012

r 2, correlation coefficient; SEE, standard error of estimates; Var, acceleration features selected as predictor variables in the models; Coef, regression coefficients of the variables
included in the models; SE, standard error of the regression coefficients; Partial jr2, partial r 2 of the regression model; P, observed level of statistical significance; Int, intercept of
the regression line; ln(Rx), natural logarithm of the SD (x axis); Ryz, cross-correlation between the acceleration measured in the mediolateral and anteroposterior directions (y and z
axes); H, body height; $x, average value of the acceleration (x axis); Jx, frequency-domain entropy (x axis); az

pp, peak-to-peak distance (z axis); Rzx, cross-correlation between the
acceleration measured in the anteroposterior and vertical directions (z and x axes); Az and Ay, amplitude of the power spectral density peak (z and y axes); Rz and Rx, standard deviation
(z and x axes); Jz, dominant frequency of the power spectral density (z axis).
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to ambulation. In addition, the cycling class was considered
because cycling is a popular means of transport for trips of
short distance in several countries (25).

A close examination of the structure of the decision tree
developed using segments of 6.4 s permitted to understand the
role of the different features in the classification process
(Fig. 2). The standard deviation of the acceleration in the
mediolateral direction (Ry) was the feature used to group in
one branch activities as ‘‘lie,’’ ‘‘sit,’’ and ‘‘stand’’ and to
group in the other branch activities as ‘‘DS,’’ ‘‘walk,’’ ‘‘run,’’
and ‘‘cycle.’’ Thus, the standard deviation of the acceleration
in this direction of the body acquired high value for dynamic
or ambulatory movements while it attained low values for
static activities. The orientation of the vertical direction of the
body with respect to the direction of gravity (ax) was the
feature used to identify lying. The cross-correlation between
subsequent time intervals of the antero-posterior acceleration
(Rz) was used to identify sitting and standing. A high value
of the SD (Rx) of the acceleration in the vertical direction of
the body was characteristic of running. Classification of the
‘‘walk,’’ ‘‘cycle,’’ and ‘‘DS’’ types was mainly determined by
the SD (Rz, Rx) in the antero-posterior and the vertical
direction of the body. The decision tree showed high
performance for identifying lying, sitting, walking, running,
and cycling because the F-score associated to these activities
was above 86% in the models based on segments of 6.4 and
12.8 s. Thus, appropriate acceleration features were consid-
ered to classify these activities. Standing and DS were
frequently misclassified by the decision tree, and this was
reflected by the relatively low F-score. The reason was that
washing dishes was a standing activity characterized by
acceleration of small magnitude, and therefore there were no
features able to clearly discriminate the acceleration of these
two activities.

The identification of lying, walking, running, and cycling,
using the decision tree developed with segments of 6.4 s,
showed an accuracy comparable to that obtained in other
studies where PA was measured using several sensors
positioned in different body parts (Table 4). However, the
use of one accelerometer presented a limited ability to
identify the sitting and standing postures. The decision trees
trained using segments of 6.4 and 12.8 s showed an elevated
classification accuracy as compared with the one obtained in
earlier studies (8,15,24). However, it is worth to notice that
in the current study, the acceleration signal of each activity

type had different duration. According to the test protocol, a
greater number of walking, running, and cycling segments
were collected as compared with the number of sitting,
standing, and DS segments. In view of the fact that walking,
running, and cycling were identified more easily by the
decision tree than sitting, standing, and DS, the disproportion
in the number of segments per activity type determined a
general increase of the classification accuracy. Furthermore,
the fact that the DS class was represented by one activity task
in the experimental protocol could be recognized as a
limitation of this study because there is a broad range of
household and lifestyle-related activities that might be
considered to define this category.

Assessment of activity duration. The accurate as-
sessment of activity duration is important for the correct
evaluation of individuals’ behavior. In free-living con-
ditions, many activities are discontinuous and have a short
duration; for instance, the daily walking activity comprises
many short bouts as pointed out in a recent investigation by
Levine et al. (19). The assessment of activity duration
requires the correct detection of the instants at which an
activity starts and finishes. The approach adopted by
decision trees for the identification of activity type, which
is based on segment by segment analysis, encumbers the
exact detection of the activity boundaries. In natural
conditions, the segmentation would rarely match with the
beginning or the end of an activity. Therefore, the
performances of the classification model at the boundaries
of an activity are unpredictable because the segment will
present partly the features of the previous or of the
following activity and partly the features of the activity
under investigation. This boundary ambiguity of the
acceleration features might generate a misclassification,
and consequently the activity duration can be incorrectly
estimated. In addition, activities of duration smaller than the
segment size may be misclassified as the information
contained in the measured features will belong not only to
the considered activity but also to the adjacent parts.
However, these errors are minimized if the segment has a
short length. Thus, the advantages offered by the use of
short intervals for the segmentation of the acceleration
signal are the reduced error in the definition of activity
duration and the increased accuracy in the classification of
short activities. When the segmentation of the acceleration
signal is made by considering contiguous intervals, the use

TABLE 4. Classification performance of different models to identify types of PA.

Sensors Lie (%) Sit (%) Stand (%) Walk (%) Run (%) Cycle (%)

Zhang et al. (29) 5 99 99 99 99 99 NC
Bao and Intille (2) 5 95 95 96 90 88 96
Foerster et al. (10) 4 89 100 88 99 NC 100
Ermes et al. (8) 2 99 NCa NCa 81 90 91
Karantonis et al. (15) 1 74 NC NC 90 NC NC
Mathie et al. (21) 1 99 NCa NCa 100 NC NC
Current study 1 100 85 59 99 100 96

Sensors, number of sensors used to measure body acceleration; % values, represent sensitivity of the model developed to identify activity types; current study, sensitivity data relative
to the decision tree developed using segments of 6.4 s; NC, not considered.
a Sitting and standing were defined as a single activity class, and the classification accuracy was of 95%.
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of short intervals would increase the time resolution of
analysis, which improves the detection of activity duration.
Another method used to increase the time resolution is the
segmentation of the signal in overlapping intervals for the
calculation of acceleration features. Using this technique,
the time resolution is determined by the level of overlap
between segments, and it can be increased without reducing
the segment size. However, because of the overlap,
misclassifications due to activity transitions would affect
more segments. Thus, the shorter the segments of analysis,
the lower the propagation of the classification error due to
activity transitions, improving in this way the definition of
activity duration.

In this study, we reported that the use of short intervals for
the computation of acceleration features led to a reduction of
the classification accuracy. Using features measured in
segments of 0.4 s reduced by 3% the classification accuracy
as compared with the one obtained with segments of 6.4 and
12.8 s. The decline of classification performance for small
segments of analysis concerned most of the activity types as
shown by the decrease of the F-score. This can be explained
by the fact that the features had a higher intraclass
variability (variability within the same activity class) when
computed in shorter segments. Given that decision trees
discriminate features belonging to different activities by
defining cutoff values, if the features have higher intraclass
variability, the risk of overlapping between values of
different activities is higher. This reduces the ability of the
cutoff values to distinguish activity types, which results in a
decrease in the classification accuracy of the decision tree.
However, the accuracy to identify PA was similar for the
model with time resolution of 6.4 s as compared with the
model with time resolution of 12.8 s. Thus, segmenting the
acceleration signal in nonoverlapping windows of 6.4 s
gave the highest time resolution for measuring activity
duration without decreasing the classification accuracy.

Estimation of activity intensity. Intensity of walking,
running, and cycling is largely determined by speed.
According to Ainsworth et al. (1), movement speed could
be used to categorize walking, running, and cycling in
intensity levels, such as light (MET G 3), moderate (3 G
MET G 6), or vigorous (MET 9 6). For example, walking
below 4 kmIhj1 could be defined as light-intensity activity.

Walking between 4 and 7.2 kmIhj1 can be defined as
moderate-intensity activity, and walking above 7.2 kmIhj1

could be defined as vigorous-intensity activity (1). Further-
more, a linear association was observed between walking,
running, and cycling speed and energy expenditure. The
slope of the linear regression describing these relationships
was estimated to be 0.8, 0.77, and 0.66 METIhIkmj1 for
walking between 3 and 5 kmIhj1, for running, and for
cycling, respectively, (1,9). In this study, acceleration
features and body characteristics were used to develop
models to estimate walking, running, and cycling speed.
The use of these models in intervals of the acceleration
identified as walking, running, or cycling allows the
evaluation of activity intensity specific for the type of PA.
This approach seems to be in line with the method proposed
by Crouter et al. (7) to improve the prediction accuracy of
energy expenditure using accelerometer output. Compared
with GPS estimates, the proposed models had lower
accuracy. However, the SEE of the walking speed model
was still similar to the one achieved in models based on
GPS measurements (26).

The applicability in a natural condition of the cycling
speed estimation might present limitations. The reason is that
during the experimental protocol, only one bicycle and one
specific gear was used by the subjects. Therefore, the
performance of the model should be tested on different
bicycles to confirm the validity of the estimation properties.
Furthermore, the limitation of this method for the assessment
of activity intensity was that the effect of walking, running,
or cycling on slopes was not considered. Hence, the intensity
of moving uphill or downhill might be incorrectly evaluated.

CONCLUSIONS

This study demonstrated the ability of a triaxial acceler-
ometer in detecting type, duration, and intensity of PA by
using models based on acceleration features. Future studies
are needed to validate the presented models in free-living
conditions and in specific populations like children, elderly,
and obese subjects.

This study was funded by Philips Research. The results of the
present study do not constitute endorsement by the American
College of Sports Medicine.
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