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Detection of viral hepatitis E in clinical liver biopsies 
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Abstract 

Aims: to determine the relative utility of in situ testing for hepatitis E virus (HEV) RNA and paraffin section 

PCR to diagnose HEV infection in paraffin-embedded clinical liver biopsies, and to correlate with clinico-

pathological characteristics. 

Methods and results: We evaluated in situ and quantitative PCR (qPCR)-based approaches to identifying HEV 

in clinical liver biopsies from infected patients from multiple centers, correlating with clinical setting 

(immunocompetent, allograft or immunosuppressed native liver) and histologic findings. 

36 biopsies from 29 patients had histologic data, of which 27 and 23 biopsies had satisfactory material for in 

situ RNA testing and tissue qPCR respectively. Both approaches specifically identified HEV infection, but tissue 

qPCR was significantly more sensitive than in situ testing (P=0.035). In immunocompetent but not 

immunosuppressed patients the tissue qPCR yield correlated with the severity of lobular hepatitis (rho=0.94, 

P<0.001). qPCR viral yield was comparably high in allografts and immunosuppressed native livers and 

significantly greater than with native liver infection. Immunosuppressed patients showed reduced severity of 

hepatitis and cholestatic changes, compared with immunocompetent patients. Indeed, HEV-infected liver 

allografts could show minimal hepatitis for many months. In individual cases each technique was useful when 

serum was not available to retrospectively identify chronic infection (in biopsies taken 4-31 months before 

diagnosis), to identify persistent/residual infection when contemporary serum PCR was negative and to 

identify cleared infection. 

Conclusions: qPCR is better than in situ RNA testing to identify HEV infection in paraffin-embedded liver 

biopsies and has diagnostic utility in selected settings.  
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Introduction 

Hepatitis E virus (HEV) is the commonest cause of acute viral hepatitis worldwide and our understanding of 

the impact of HEV infection in developed countries has changed. Previously considered a traveller’s disease 

acquired in endemic regions via contaminated water, locally acquired infection is now understood to be 

prevalent. HEV genotypes 1 and 2 are endemic in some developing regions, while genotypes 3 and 4 are 

established in zoonotic reservoirs from which sporadic or small cluster outbreaks of locally acquired infection 

originate. The predominant manifestation is self-limited subclinical or mild acute hepatitis that mimics drug-

induced liver injury in 3-13% cases1, 2.  Risk factors for severe hepatitis include pregnancy (genotype 1) or pre-
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existing chronic liver disease3, 4. At least 5% patients present instead with neurological symptoms5, 6; other 

presentations include polyarthralgia and rash7 or acute pancreatitis8. HEV infection can become chronic in 

immunosuppressed patients, including recipients of cancer chemotherapy or solid organ allografts 9.  Mixed 

HEV strain or genotype acute infections have been described10, 11. 

 

Pathologic studies in HEV-infected primates show a change from initial cytopathic liver injury (hepatocyte 

swelling, minor inflammation) to reactive hepatitis and transaminitis, which coincide with the appearance of 

anti-viral IgM and concomitant dwindling of serum viral RNA.12, 13 In humans, the pathology of severe acute 

hepatitis E in endemic regions is described for epidemic outbreaks in Delhi 195514 and Kashmir 197815, while 

Morrow recorded the microscopic features from 158 liver biopsies of endemic sporadic acute hepatitis in 

Ghana16. Two broad histologic patterns were described: firstly, a classic non-specific acute hepatitis, including 

hepatocyte ballooning, portal inflammation, hepatocyte binucleation, Kupffer cell hyperplasia, hepatocellular 

and canalicular bile with highly variable degrees of necrosis; secondly, a more cholestatic acute hepatitis with 

dominant canalicular bile, pseudoglands and variable, sometimes rare, acidophil bodies15, 16. Agrawal made 

similar observations among 11 cases of fatal acute hepatitis E infection, finding also occasional lymphocytic 

cholangitis and noting that pseudoglands were more extensive among patients with higher bilirubin.17 

Morrow observed that the pathologic pattern tended to remain consistent across serial liver biopsies.16 

 

Reports on the pathology of locally acquired hepatitis E naturally represent a severe subset, either because of 

pre-existing chronic liver disease that is reflected in the biopsy 4, 18 or intrinsically severe viral hepatitis. Again, 

cases fit a pattern of classic acute hepatitis19 or cholestatic hepatitis19-21, the latter with notable neutrophil 

cholangiolitis and portal neutrophils. Lymphocytic cholangitis is described19, 21, occasionally severe22. Some 

cases show minimal or no hepatitis, with only sinusoidal lymphocytosis18 or canalicular cholestasis in chronic 

liver disease as clues to a second injury23. 

 

Pathologic descriptions in immunosuppressed patients are less comprehensive. Most cases are genotype 3, 

although there are case reports of allograft infection with genotype 4 causing fulminant cholestatic hepatitis or 

accelerated cirrhosis24, 25. One report describes genotype 7 (camel) HEV infection of a liver allograft26. Early 

findings in liver allografts with accelerated fibrosis linked to chronic HEV infection included hepatocyte single 

cell death with no or minimal lymphocytic lobulitis, no ballooning or cholestatic features, and mild portal 

lymphocytic infiltration27-30. This evolved in some to mild-moderate lymphocytic portal, interface and lobular 

hepatitis with fibrosis, still without notable cholestatic features or ballooning28-34. Pathologic descriptions in 

other solid organ allograft recipients are similar35, 36, sometimes with portal lymphoid aggregates and bile duct 

inflammation37. There are few pathologic descriptions in other immunosuppressed patients38, 39. Taken 

together, HEV infection of immunosuppressed patients can manifest only subtle or non-specific pathologic 

changes initially, which with mild changes to transaminases makes early clinical recognition a challenge.  

 

We aimed to determine whether in situ testing for HEV RNA in routine liver biopsies was feasible and of 

comparable sensitivity to paraffin section PCR, to establish the relative utility of these approaches. 

Secondarily, we aimed to characterise examples of acute and chronic HEV, correlating the RNA findings with 

clinico-pathological characteristics. Molecular virological screens have not identified a viral virulence 

determinant for HEV, concluding that host factors are more relevant to clinical severity40-42, so it seemed 

reasonable to group the cases by clinical setting. 

Materials and methods 

The study group comprised 36 paraffin-embedded indication liver biopsies (including one hepatectomy) from 

29 HEV-infected patients. Clinical controls included indication biopsies of native liver from 4 uninfected (anti-

HEV IgM and IgG seronegative) patients. The study biopsies were collected from 7 centers within the UK, 

Holland and France; the diagnosis was established locally on the basis of seropositivity for anti-HEV IgM 

and/or viraemia with serum PCR. We also included all pre-diagnosis allograft biopsies from one centre 

(Edinburgh). Biopsies were formalin-fixed, except one center that used Duboscq-Brasil fluid. Standard 

histological stains were reviewed by a pathologist (COCB) and scored semi-quantitatively (zero, minimal, mild, 

moderate, severe) for conventional metrics including portal, interface and lobular hepatitis, individual 

hepatocyte dropout (apoptosis/necrosis), specific infiltrating cell types (plasma cell, eosinophil, neutrophil), 

sinusoidal mononucleosis, ductular reaction, bile duct inflammation and atrophy (see supplementary methods 

for scoring details).  The presence of confluent necrosis, large droplet steatosis (%), steatohepatitis, iron 

overload, cholate stasis, canalicular and ductular cholestasis were also recorded. Fibrosis was scored 0-6 as 



described by Ishak et al43. The histologic features of two patient biopsies have been previously described by 

us23. The study has local ethics approval (REC07/S1102/21).  

 

 

In situ hybridization 

This was done on 4µm tissue sections using the RNAscope kit 2.0 HD (Advanced Cell Diagnostics, Hayward, CA, 

USA) with the recommended standard hybridization protocol on an automated stainer (Leica BondRX). Pooled 

oligonucleotide probes specific for Hepatitis E genotypes 1 to 4 were used (supplementary data 1).  

Consecutive sections were stained for HEV, positive control (the housekeeping PPIB gene product 

peptidylproyl isomerase B (cyclophilin B)) and negative control (bacterial dapB (dihydrodipicolinate 

reductase) gene product). A positive RNA signal manifested as crisp homogeneous dark-brown dots, lacking 

the golden refractile quality or irregularity of iron or lipofuscin granules when those were present, or zonal 

distribution. RNA dots in positive cases and controls were mostly cytoplasmic although could also overlie 

nucleus in cells with numerous cytoplasmic dots (probably representing cytoplasm overlying nucleus or some 

target RNA within the nucleus). Scoring was done by 2 observers independently at a double header 

microscope on the same 5 microscopic fields, viewed at x400 magnification. For PPIB control evaluations, the 

average number of cytoplasmic RNA dots per hepatocyte was categorized 0-5 (negative, sporadic single dot, 1-

4 dots, 5-9 dots, 10-14 dots, 15+). Cases averaging less than 5 cytoplasmic PPIB dots per hepatocyte were 

excluded from further analysis.44 For HEV and dapB, the number of hepatocytes per field with cytoplasmic 

RNA dots was recorded (specifying single/multiple dots per scored cell). Hepatocyte dapB cytoplasmic 

staining amounted to rare cells with single dots (average 0.25 cells per x400 field), confirming low 

background. Purely nuclear staining in a hepatocyte was also rare and similar in prevalence between test 

sections and negative controls (supplementary figure 1); this was usually a single nuclear dot, likely to reflect 

sporadic non-specific nuclear hybridization, which increases with tissue overdigestion. 

Quantitative real time tissue PCR (qPCR) for HEV RNA 

Three to five 10-micron-thick serial sections were cut from each block for PCR analysis. RNA was extracted 

using the RNeasy FFPE kit (Qiagen, Crawley, UK) then qPCR performed on 250ng RNA with the ceeram 

TOOLS® Hepatitis E virus detection kit (bioMerieux, Basingstoke, UK), whose detection limit was considered 

to be 0.2I.U./250ng RNA. Positive HEV samples were confirmed with replicates and quantified using the WHO 

nucleic acid standard for HEV (Paul Erlich Institute, Langen, Germany). The integrity of RNA samples was 

assayed using the 18srRNA control kit (Eurogentec, Southampton, UK).  

 

Statistics 

Data was analysed and charted according to data type using Minitab 17 statistical software as indicated in the 

text.  Contingency table comparisons between categorical variables were evaluated with the Fisher exact test. 

Correlations with ordered categorical data used Spearman rank-order correlation. Comparisons of means 

were made by analysis of variance (ANOVA) with simultaneous 95% confidence limits, using Dunnett’s 

method for multiple comparisons with a control, or Tukey’s method for pairwise comparisons of means 

between groups. Joint 95% confidence limits (C.L.) or P< 0.05 were used to indicate significance. 

Results 

Patients and samples 

The HEV-infected cases included 23 native liver biopsies from 22 patients (8 chronic infection) and 13 

allograft liver biopsies from 7 patients with chronic infection (table 1). Histologic metrics were scored for all 

36 biopsies. All 23 samples with tissue qPCR data had in situ RNA evaluation. HEV genotyping from serum (8 

patients) or biopsy (7 patients, supplementary data 1) showed genotype 3c or 3f in fourteen patients (5 

immunocompetent, 8 native immunosuppressed, 1 allograft) and genotype 1 in one immunocompetent patient 

(case 2, travel-acquired in India). 

 

Twelve immunocompetent patients had an indication liver biopsy related to severe acute HEV hepatitis. All 7 

patients with serum PCR testing at presentation were viraemic (1-16 and 25 days pre-biopsy). Three patients 

had significant liver fibrosis (Ishak stage >2), attributed to alcohol, metabolic syndrome and autoimmune 

hepatitis respectively.  

 



Ten heavily immunosuppressed patients had native liver biopsies (4 renal transplant, 1 heart transplant, 5 

haematologic malignancy – two with stem cell transplant). Eight were chronically viraemic at biopsy (case 4, 

15, 16, 17, 22, 23, 25, 33), two with mild fibrosis (Ishak stage 1-2). The other two patients (cases 5, 7) had 

acute hepatitis, with viraemia and IgM sero-positivity 11 days pre-biopsy. Case 5 became serum PCR-negative 

8 days before biopsy, suggesting cleared infection, in a background of alcohol-attributed steatohepatitis with 

moderate fibrosis. Case 7 became IgG-seropositive at next testing several months later.  

 

Nine allograft biopsies from 5 patients preceded the diagnosis of HEV infection (by median 419 days, range 

103-923). However, stored contemporary serum available for 4 biopsies from 3 patients showed for each that 

viraemia was already present. 

 

In situ RNA scoring and tissue qPCR testing for HEV 

All formalin-fixed biopsies with tissue available for in situ testing had a satisfactory RNA control signal. 

However, Duboscq-Brasil-fixed biopsies gave no control signal despite testing different conditions, so were 

excluded, leaving 27 informative biopsies from 22 patients. There was no other evidence of a center effect on 

RNA quality (PPIB grade). There was also no correlation between an incrementally higher PPIB score and 

tissue qPCR yield for HEV (Spearman rho 0.047), suggesting the PPIB grade cutoff ensured adequate RNA 

quality to detect HEV (figure 1a).  

 

In situ staining for HEV manifested in hepatocytes as discrete brown cytoplasmic dots (figure 1b, 1c). Infected 

hepatocytes tended to be randomly placed within lobules when few were apparent, with variably-sized loose 

clusters in cases with more prevalent positive-staining cells. Positive-stained hepatocytes were sometimes 

more numerous towards the periphery of the biopsy core, suggesting fixation-related effects on sensitivity. 

There was no consistent topographic relationship of positive-stained hepatocytes with lobular inflammation, 

although such areas could be identified (figure 1d). Positive-stained hepatocytes with cytoplasmic dots also 

showed some dots overlying the nucleus, but isolated nuclear staining of hepatocytes was rare, matching 

negative controls (supplementary figure 1). However, mononuclear inflammatory cells and biliary epithelium 

did show occasional non-specific isolated nuclear hybridization signals that were also apparent in negative 

controls (dapB). With this confounder, we did not identify convincing biliary epithelial cytoplasmic staining for 

HEV; the use of more aggressive digestion was unhelpful to increase sensitivity due to increased confounding 

non-specific nuclear hybridization signals within portal cells. 

 

As the two observers differed in counts of HEV-positive hepatocytes per field by an average of only 0.88 

cells/field (95% C.L. 0.096, 1.665), we represented each case by the median of the combined 10 field counts of 

the two observers, and separately by whether both observers agreed that at least one hepatocyte contained 

multiple cytoplasmic RNA dots. Alternative metrics (e.g. maximum field count) were positively correlated but 

did not add extra discriminatory information (data not shown).  

 

Correlation of in situ HEV scores with clinical status and tissue qPCR 

Figure 2a shows a boxplot of in situ HEV+ hepatocyte counts per biopsy according to the clinical group. The 

mean count per clinical group was significantly greater than uninfected controls (p=0.001, ANOVA with 

Dunnett multiple comparisons). Allografts had a higher mean than other groups (p=0.001), because individual 

biopsies more consistently scored high. Uninfected controls had consistently low counts (median 0.5, range for 

individual fields 0-6, always a single RNA dot per hepatocyte). Therefore we adopted a threshold of 6 

(reference line on figure 2a) above which a median count across all scored fields was taken to suggest HEV 

infection, to confidently ensure specificity of 100%. In this way 13 of 27 (48%) study biopsies were designated 

HEV positive.  The positive-scoring biopsies were most often allografts (8 of 9 biopsies, p=0.02), compared 

with immunosuppressed native (2 of 6) or immunocompetent patient biopsies (3 of 12). The highest scoring 

cases were distributed among all 3 groups and included the genotype 1 infection (case 2). If, alternatively, we 

selected as positive those cases where both observers agreed there was at least one hepatocyte with multiple 

cytoplasmic RNA dots, then all control cases were negative and 13 cases (48%) were again positive, including 

9 also selected using the median count threshold above (figure 2a). Therefore we combined the two 

approaches, such that cases with inadequate median count were designated positive if agreed to have at least 

one hepatocyte with multiple dots. This improved sensitivity to 17 of 27 cases (63%) positive without 

compromising specificity. 

 



Comparison of the in situ HEV scoring with the tissue qPCR was possible for 23 study biopsies from 19 patients 

(figure 2b). As expected, HEV was detected in the study groups but not uninfected controls (100% specificity). 

The high qPCR HEV yields from allografts and immunosuppressed native livers were significantly greater than 

from immunocompetent patients but not significantly different from each other (Tukey simultaneous 

95%C.L.).  

 

Tissue qPCR was more sensitive than in situ counting to detect HEV (21/23 (91%) versus 14/23 (61%) with 

combined median/multidot count (p=0.035, Fisher exact test), or 11/23 (48%) biopsies with either median or 

multidot count alone (p=0.0031)). The reduced sensitivity of in situ counting was clear for immunocompetent 

patients (2/10 versus 8/10, P=0.023, Fisher exact test) but not for allografts (7/8 versus 8/8, P=1); 

immunosuppressed native liver numbers were too small for a confident conclusion (2/5 versus 5/5, P=0.16).  

Reviewing the two qPCR-negative biopsies, one (case 21) was acute hepatitis biopsied 25 days after diagnosis 

with viraemia, and likely reflected clearance of infection. The other (case 24) was severe acute hepatitis in 

which the biopsy showed collapse and ductular reaction with only rare surviving hepatocytes, so may have 

reflected a sampling deficit for hepatocytes or immune clearance. The hepatectomy with a very low HEV yield 

(sample 6b), also had multiple hepatocyte RNA dots in some cells on in situ testing but a low median count. 

This patient had cleared viraemia on serum retesting, one month after diagnosis and biopsy (sample 6a), so 

the low yield might reflect almost cleared infection. By contrast, another patient (case 5) showed HEV with 

both in situ and qPCR analysis, despite having cleared viraemia on serum testing 6 days earlier. This patient 

had chronic leukaemia, so was significantly immunosuppressed and still harboring HEV within the  liver, 

although not viraemic on point testing of serum.  

 

All 7 allograft biopsies (4 patients) taken before diagnosis of HEV infection were HEV-positive with at least one 

tissue test, including all 6 tested with qPCR (figure 2a and 2b). The biopsy without material for qPCR (27a), 

had a positive in situ score similar to the subsequent qPCR-positive biopsy (27b). The biopsy scoring negative 

with in situ testing (8a) had similarly high qPCR yields to the other cases, including a follow-up biopsy (8b) 

with a positive in situ count. Thus tissue RNA analysis showed that all 4 of these patients carried chronic HEV 

infection many months (4, 14, 14, 31 months) before diagnosis. These findings were corroborated with 

retrospective serum testing in the 2 patients with stored serum. 

 

Correlation with histologic analysis 

While not a cohort, the different clinical settings merit description of the range of histologic appearances (see 

also supplementary figures 2-4). Immunocompetent patients biopsied during acute HEV infection typically 

showed moderate/severe interface and lobular lymphocytic hepatitis with some admixed portal and lobular 

plasma cells (supplementary figure 2), often with mild biliary features, including ductular reaction and duct 

epithelial reactivity, but no more than minimal duct inflammation or portal oedema, and without periduct 

oedema. Canalicular cholestasis was common (9 of 13 biopsies; moderate/severe in 6), including all 4 patients 

with significant chronic liver disease (Ishak fibrosis >2). Indeed, cholestasis was the only prominent 

manifestation in one patient with pre-existing chronic steatohepatitis. The biopsies after recently cleared 

infection (21) and almost cleared infection (6b) also showed canalicular cholestasis (not present in an earlier 

biopsy (6a)), with hepatocyte dropout and portal, but not lobular, hepatitis. The immunocompetent patient 

biopsies had a strong positive correlation between lobular hepatitis severity and the tissue qPCR yield for HEV 

(Spearman rho 0.936, P<0.001). This correlation was absent for immunosuppressed patients, whose biopsies 

almost all had high HEV qPCR yields (figure 2b). Contemporary serum alanine aminotransaminase (ALT) 

values in immunocompetent (but not transplanted) patients also correlated significantly with lobular hepatitis 

severity (Spearman rho 0.771, P=0.015) and had a marginally significant correlation with the in situ HEV count 

(Spearman rho 0.643, P=0.08); however, correlation with tissue qPCR yield was not significant (Pearson 

correlation coefficient 0.51, P=0.29). 

Lobular hepatitis was usually more severe in immunocompetent patients compared with others (moderate-

severe in 8/13 (62%) versus 4/23 (17%), P=0.011, Fisher exact test). Canalicular cholestasis was also 

common in HEV-infected immunocompetent patients but was not a feature of allograft HEV infection (9/13 vs 

0/13; P=0.013, Fisher exact test) (table 2/figure 3). While allografts at diagnosis of HEV infection usually 

showed prominent portal hepatitis (moderate or severe in 3 of 4), allografts biopsied before HEV was 

diagnosed usually showed minimal or mild portal hepatitis, no or minimal interface and lobular hepatitis, only 

minimal hepatocyte dropout, no prominence of plasma cells or cholestatic features and usually minimal or 

mild sinusoidal mononuclear cell infiltration (figure 3, table 2, supplementary figure 4).  
 



Lobular plasma cells were associated with moderate-severe lobular hepatitis in acute HEV infection (8 of 10 

biopsies), and perhaps as a result were apparent in native more often than allograft biopsies (9/23 versus 

1/13, P=0.059 Fisher’s exact test). Portal bile duct changes (epithelial reactivity, inflammation) and other 

infiltrating cell types (eosinophils, neutrophils) showed no particular correlation.  

 

Discussion 

The present results show that in situ RNA staining is less sensitive than qPCR to detect HEV in routine clinical 

liver biopsies. Nevertheless, in situ staining specifically identified HEV, as determined by comparisons against 

the tissue qPCR, contemporary serum PCR and uninfected control biopsies. In situ testing can identify virus 

when retrospective serum testing is not possible (as for 2 liver transplant patients here), or if there is 

insufficient tissue for PCR (as with one pre-diagnosis allograft biopsy). This has particular value in allografts to 

establish the timelines of chronic infection for research or clinical purposes.  

 

The occurrence of HEV RNA-staining in hepatocyte cytoplasm, either in scattered single cells or sometimes in 

loose clusters but otherwise without a particular pattern agrees with observations in experimentally infected 

primates45, 46 and clinical biopsies47-49 using immunolabelling or older in situ RNA detection methods. While 

those and the present study did not identify convincing non-hepatocellular HEV staining, the virus is excreted 

in bile and some animal studies have suggested viral replication in biliary epithelium45, while virus-like 

particles have been described in ductular-lining cells in one patient50.  

 

It is not clear why the in situ counts did not correlate better with the tissue qPCR yield for virus, even allowing 

that the PCR sample was several-fold larger than a 5 micron tissue section. Stronger digestion protocols did 

not increase in situ scores. The RNAscope probe-set was designed to detect HEV genotypes 1-4, and did 

identify both genotype 1 and 3 here; moreover, successive allograft biopsies from one patient (8a, 8b) had 

similar high qPCR yields, yet only one scored positive with in situ median counting, suggesting the issue is not 

wholly with genotype or subtype detection. We cannot exclude that some variable aspect of fixation (delay, 

duration) is prejudicing viral RNA detection by the in situ probe, even though the positive control PPIB probe 

counts and the qPCR method did not seem affected. Nevertheless, routine formalin-fixed paraffin-embedded 

clinical samples from different centers provided positive staining, suggesting that such samples are usually 

adequate for in situ detection, although importantly, other fixatives such as Duboscq-Brasil fluid here, can be 

unsuitable for both PCR and in situ evaluation.  

 

In addition to the present data, PCR of archival liver biopsies has recently been shown to identify unrecognized 

HEV infection of small numbers of patients previously categorized as hepatitis of unknown origin19, drug-

induced liver injury51 and among archival liver transplant biopsies30. Taking all factors into account, tissue 

PCR testing is robust, more sensitive, easier and cheaper than in situ RNA testing when sufficient tissue is 

available. The present correlation of tissue viral load (qPCR) with the degree of lobular hepatitis in 

immunocompetent patients, and in turn the correlation of lobular hepatitis with serum ALT, was perhaps 

intuitive, but affirms that histologic activity directly reflects the underlying disease biology and immune 

response12. The data also highlight how this correlation is unlocked with immunosuppression, where tissue 

viral loads were extreme and hepatitis subdued. Clearance of viraemia did not here necessarily imply 

clearance of infection: the present identification of viral RNA in the liver by both tests in one 

immunosuppressed patient when contemporary point testing of serum was negative, re-emphasizes the need 

for follow-up testing where the clinical setting suggests a potential for prolonged infection, particularly as 

serologic testing is insensitive in such patients. Protzer also noted 2 aviraemic liver allograft patients with 

contemporary HEV-RNA positive liver biopsies, although both appeared biochemically to eventually clear the 

infection30. In typical self-limited infection of immunocompetent patients, HEV is detectable in stool for 2-4 

weeks after viraemia subsides52, presumably reflecting dwindling hepatic viral release into bile, in which the 

temporary discrepancy with serum testing does not usually have a longer term significance. However, HEV 

recurrence after apparent clearance and seroconversion is also documented months after leukaemia 

chemotherapy (genotype 4)53 or stem cell transplantation (genotype 3)54 and we have encountered a similar 

case. Such examples indicate that aviraemic low level hepatic persistence of HEV is possible in certain clinical 

settings linked to immunosuppression; while extrahepatic reservoirs are possible, liver is the intuitive harbor, 

as observed here.  

 

The present histological findings differed between clinical groups of HEV infection, although all but one patient 

genotyped had type 3 infection. Firstly, a cholestatic pattern of hepatitis was relatively common in severe 



acute hepatitis E subject to biopsy, as previously reported15-17, 19-21. In 3 different patients here, cholestasis was 

also, respectively, the dominant manifestation (in prior chronic liver disease) or developed during HEV 

clearance, or persisted shortly after viral clearance. Pre-existing chronic liver disease was also common, in 

agreement with indication biopsy-based series of locally-acquired acute infection4, 18. Cholestatic features 

were less common in immunosuppressed patients, agreeing with the lack of mention of this feature in 

previous descriptions, and presumably reflecting the muted inflammatory disruption of liver cyto-architecture 

and function, together with an acquisition bias compared with immunocompetent patients, in whom such 

biochemically mild disease would not trigger a biopsy. Indeed, the histologic findings attributable to HEV in 

liver allografts with persistent infection could be minimal for many months here, as also recently found by 

Protzer and colleagues among their 4 cases30. In such a setting, where the histology is not specific and 

potentially falsely reassuring for ‘significant’ hepatitis, it may be for the pathologist to articulate the need to 

exclude HEV infection with specific serum PCR testing. The present allograft cases were biased towards early 

infection by the inclusion of pre-diagnosis biopsies. However, progressive fibrosis is well documented with 

chronic HEV infection of liver allografts and in other severely immunosuppressed patients24, 28, 32-34, 37, 39.  

 

In conclusion, testing of clinical biopsy material can directly identify HEV infection. This is useful for archival 

material when stored serum is unavailable, including for research purposes, retrospective diagnosis, 

determining chronic infection timelines and potentially to more sensitively identify persistent low-level 

infection under immunosuppression. Tissue qPCR can rapidly provide in-house diagnosis of HEV infection in 

difficult cases on current or past biopsies where pathologic or clinical suspicion is aroused. 
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Table 1. Numbers of study biopsies in different clinical groups of hepatitis E infection 

 

Group Hepatitis 

histology 

In situ RNA Tissue qPCR 

Allograft liver, pre-HEV diagnosis 9 (5) 7 (4) 6 (4) 

Allograft liver, index biopsy 4 (4) 2 (2) 2 (2) 

Native liver, immunocompetent 13 (12) 12 (11) 10 (9) 

Native liver, immunosuppressed 10 (10) 6 (6) 5 (5) 

Total study group biopsies*: 36 (29*) 27 (22*) 23 (19*) 

 

The number of biopsies with available tissue evaluated by each modality is shown, with the number of patients 

indicated in parentheses. In all, five patients (4 with liver allografts) had multiple (2 or 3) biopsies. 

*  Some patients are represented in both pre- and index biopsy groups, so the column totals differ from the 

summed column cells. 

 

  



Table 2. Prevalence of selected histologic features in the HEV-infected study groups 

  

Histologic feature  

(>minimal degree unless 

specified) 

Native liver, 

immunocompetent 

n=13; (%) 

Native liver, 

immunosuppressed 

n=10; (%) 

Allograft liver; 

n=4; (%) 

Allograft liver 

pre-diagnosis 

n=9; (%) 

Lobular hepatitis  10 (77) 7 (70) 3(75) 1 (11) 

Portal hepatitis 10 (77) 7 (70) 4(100) 5 (55) 

Confluent necrosis (any) 5 (38) 1(10) 1 (25) 0 

Hepatocyte dropout  11 (85) 9(90) 3 (75) 1 (11) 

Lobular plasma cells  4 (31) 0  0 0 

Portal plasma cells 4 (31) 2 (20) 0 0 

Canalicular cholestasis 9 (69) 1 (10)  0 0 

Ductular reaction 7 (54) 3 (30)  1 (25) 1 (11) 

Bile duct inflammation 2 (15) 2 (33) 1 (25) 0 

Fibrosis (>mild) 4 (31) 1 (17) 0 0 

 

The table shows the occurrence of different histologic features according to the clinical group. Each cell shows the 

number of biopsies with the feature, with the corresponding % in that clinical group in parenthesis. 
 

  



 

Figure Legends 

 
Figure 1. In situ hybridisation 

a. Positive control probe (PPIB) for RNA, showing abundant cytoplasmic granular positive staining; occasional 

dots also overlie the nucleus.  

b&c. HEV RNA probe, in a native liver biopsy from an  immunosuppressed patient (relapsed lymphoma) with 

acute travel-acquired genotype 3 HEV who tested viraemic and IgM+ 11 days before the biopsy.  

b: positive HEV RNA staining (brown dots) in most hepatocytes, with no associated inflammatory infiltrate. 

HEV RNA staining is predominantly cytoplasmic, although where hepatocytes have multiple dots some can 

overlie nucleus. 

c: positive HEV RNA staining in some cells, topographically associated with a focus of lobulitis.  

d: HEV RNA probe staining in many hepatocytes, without associated inflammation, in a native liver biopsy 

from a HEV-infected patient tested viraemic and seropositive (IgM, IgG) 16 days before this biopsy. 



 
Figure 2: in situ HEV detection and correlation with qPCR in liver biopsy tissue 

a. Boxplot of in situ HEV+ hepatocyte counts per biopsy, by clinical group. Boxes indicate interquartile range 

and are coloured by clinical grouping as specified. The dotted reference line bounds the negative control cases 

(HEV-naïve cases a-d) at the highest single field score. Other cases with a median score greater than this 

threshold were considered to show an RNA signal of HEV infection. Cases with multiple-dotted hepatocytes 

are indicated with an asterisk in the box on the x-axis, an alternative criterion for HEV-positivity (see text) 

Clinical group abbreviations: “control”, HEV-naïve patient (patients labelled a-d); “native”, acute HEV infection 

in immunocompetent patients; “native-immunosuppressed”, HEV-infected native liver in immunosuppressed 

patients; “allograft”, HEV-infected liver allograft; “allograft, pre-diagnosis”, liver allograft biopsies preceding 

formal diagnosis of chronic HEV. The “biopsy” x-axis labels indicate the study patient number; any 

alphabetized suffix indicates one of multiple biopsies, in chronologic order. 



b. Scatterplot of median HEV+ hepatocyte count and paraffin section qPCR yield for HEV, per biopsy. 

Triangular symbols indicate the cases with multiple-dotted hepatocytes. Symbol colours indicate the clinical 

grouping (as part a, above); datapoint labels indicate study patient number, an alphabetized suffix indicates 

one of multiple biopsies, in chronologic order. The 2 dotted reference lines bound the HEV-negative cases by 

PCR (y-axis) and median in situ hepatocyte count (x-axis).  

 

 

 

 

 

 

 

 
 
Figure 3. Severity of histologic features in the HEV-infected study groups 

The boxplot shows the median and interquartile severity scores for selected histologic variables, according to 

the clinical grouping of the case (as described for figure 2). 
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Supplementary Figure 1. in situ RNA staining 

The figure compares non-specific nuclear hybridisation in different settings (a,b,c) with strong positive 

staining (d).  

a. Shows extensive non-specific hepatocyte nuclear hybridisation (a dot in multiple nuclei, some indicated 

with arrowheads) due to severe overdigestion (dapB negative control probe). No cytoplasmic dot. 

b. Rare non-specific nuclear hybridisation signal (arrowhead) in a properly digested section (dapB, negative 

control probe). No cytoplasmic dot. 

c. Two non-specific nuclear hybridisation dots in Kidney tubular cells (HEV RNA probe on a kidney needle 

biopsy, negative tissue control). No cytoplasmic dot. 

d. Positive staining in hepatocytes: numerous cytoplasmic dot signals, with occasional dots overlying nucleus 

in strongly positive cells (PPIB positive RNA control probe). 

e. HEV probe. Single hepatocyte cytoplasmic dot in a negative control case 

 



 
Supplementary Figure 2. Histological features of acute HEV infection in native liver without 

immunosuppression. 

a. Mild expansion of portal tracts with a predominantly mononuclear cell infiltrate, with increased 

mononuclear inflammatory cells in sinusoids and scattered hepatocyte cell death (H&E) 

b. Same case as (a) showing more detail of inflamed portal tract, including oedema, interface inflammation but 

only mild ductular reaction (H&E). 

c. Different case, showing more pronounced ductular reaction with numerous neutrophils (H&E). 

d. Marked lobular inflammation with hepatocyte cell death, singly and in a small cluster (H&E). 

e. Pronounced canalicular and cytoplasmic cholestasis (H&E). 

 

 

 



 
Supplementary Figure 3 . Histological features of HEV-infected native liver under immunosuppression. 

a-c. Acute HEV infection. (a) shows portal expansion with mononuclear cell infiltrate, (b) higher power of (a), 

illustrating the lymphoplasmacytic infiltrate flooding periportal inlet venules and sinusoids. (c) illustrates 

increased sinusoidal mononuclear cells, Kupffer cell hypertrophy, occasional hepatocyte single cell death. 

d-e. Chronic HEV infection, after stem cell transplantation. (d) shows H&E and picrosirius red stains of the 

same area of the biopsy core, illustrating periportal fibrous expansion with fibrous spurring and 

macrosteatosis. (e) same case as (d), showing a sparse portal mononuclear cell infiltrate toward one end of the 

tract spilling into adjacent parenchyma (H&E).  



 
Supplementary Figure 4. Histological features of HEV-infected allograft liver. 

a-b. Pre-diagnosis biopsy (qPCR and in situ positive), (a) low magnification view, showing no apparent 

inflammation or obvious architectural change (H&E). (b) higher magnification to show occasional hepatocyte 

apoptosis without parenchymal inflammation (H&E). 

c-d. (same patient, 1 year later) (c) shows focal portal hepatitis and sparse macrosteatosis without appreciable 

lobular inflammation. (d) illustrates a focus of lymphocytic lobulitis. 

e-g. (different patient), (e) illustrates widespread inflammatory portal expansion, seen at higher magnification 

in (f), within a tract having fibrous expansion, and in (g), associated with focal lymphocytic cholangitis but no 

venulitis. 

 
 



 

Supplementary table 1. Case details  

clinical 
group 

case age sex biopsy indication comorbidities 
liver transplant 

indication 

months 
after liver 
transplant 

biopsy type 

biopsy 
length mm 
(section for 
in situ RNA) 

portal tracts 
(section for in 

situ RNA) 

native 1 68 f 
acute hepatitis, alcohol, diabetes, 

foreign travel 
Diabetes, alcohol * * bx 14 11 

native 2 26 m acute hepatitis after foreign travel 
 

* * TJ 24 20 

native 3 56 f acute hepatitis/jaundice 
 

* * bx 15 13 

native 11 43 f acute hepatitis 
 

* * bx 12 10 

native 12 48 f acute hepatitis/jaundice, alcohol Alcohol * * bx 15 10 

native 13 63 m acute hepatitis/jaundice 
 

* * bx 10 5 

native 14 81 m 
acute hepatitis/jaundice, fatty liver on 

US, possible biliary dilation  
* * bx 8 3 

native 21 43 f acute hepatitis after foreign travel 
 

* * bx 24 21 

native 24 53 f 
acute hepatitis, autoimmune 

hepatitis 
Autoimmune hepatitis * * bx 31 33 

native 30 32 f acute hepatitis, Graves disease Graves disease * * bx 14 16 

native 31 64 m 
acute hepatitis, high ferritin, alcohol, 

possible biliary dilation 
Alcohol * * bx 25 28 

native 6a 67 f 
rising LFT not responding to 

steroids, autoimmune hepatitis, 
cirrhosis 

Autoimmune hepatitis 
cirrhosis 

* * TJ 7 6 

native 6b 67 f hepatectomy 
Autoimmune hepatitis 

cirrhosis 
HEV/AIH 
cirrhosis 

* hepatectomy * * 

native - is 4 61 m 
screening abnormal LFT pre-bone 

marrow transplant 
Non-Hodgkin lymphoma * * bx 29 27 

native - is 5 72 m 
acute hepatitis/jaundice, chronic 
lymphocytic leukaemia, alcohol 

Chronic lymphocytic 
leukaemia, alcohol 

* * TJ 19 12 

native - is 7 61 m abnormal LFT, Hodgkin disease Hodgkin disease * * bx 17 14 

native - is 15 62 f Acute hepatitis, renal allograft Renal allograft * * bx 14 13 



native - is 16 60 m Acute hepatitis, renal allograft Renal allograft * * bx 27 22 

native - is 17 54 f Acute hepatitis, renal allograft Renal allograft * * bx 12 11 

native - is 22 56 f 
persistent abnormal LFT, stem cell 

transplant 
Stem cell transplant * * bx 16 19 

native - is 23 60 m abnormal LFT, stem cell transplant Stem cell transplant * * bx 19 14 

native - is 25 50 m 
abnormal LFT, right heart failure, 

cardiac allograft 
Cardiac allograft * * bx 20 13 

native - is 33 39 m 
persistent abnormal LFT, renal 

allograft 
Renal allograft * * bx 25 39 

allograft 18 67 m Acute hepatitis, liver allograft Liver allograft PSC 95 bx 26 18 

allograft 26 53 f abnormal LFT, liver allograft Liver allograft PSC, Crohn 45 bx 25 31 

allograft 20c 56 m abnormal LFT, liver allograft Liver allograft ALD 18 bx 18 25 

allograft 32c 64 m 
persistent abnormal LFT, liver 

allograft 
Liver allograft, diabetes ALD/NAFLD 27 bx 23 23 

allograft-pre 28 54 f rising ALT, liver allograft Liver allograft HCV 10 bx 17 13 

allograft-pre 20a 55 m abnormal LFT, itch, liver allograft Liver allograft ALD 5 bx 14 19 

allograft-pre 20b 56 m worsening LFT, liver allograft Liver allograft ALD 9 bx 15 11 

allograft-pre 27a 32 m rising ALT, liver allograft Liver allograft ALD/NAFLD 6 bx 29 21 

allograft-pre 27b 33 m abnormal LFT, alcohol, liver allograft Liver allograft ALD/NAFLD 15 bx 21 24 

allograft-pre 32a 62 m rising ALT, diabetes, liver allograft Liver allograft, diabetes ALD/NAFLD 4.5 bx 28 23 

allograft-pre 32b 62 m 
persistent abnormal LFT after steroid 

trial, liver allograft 
Liver allograft, diabetes ALD/NAFLD 8 bx 41 41 

allograft-pre 8a 66 f 
abnormal LFT and creatinine, liver & 

renal allograft 
Liver/Kidney allografts ADPKD 8 bx 28 16 

allograft-pre 8b 68 f rising ALT, liver & renal allograft Liver/Kidney allografts ADPKD 28 bx 18 17 

 

 

 



 

 

Supplementary table 2. Histological feature scores 

  
hepatitis metrics 

fibrosis 
(1-6) 

fat 
% 

steato-
hepatitis 

(y/n) 

portal changes cholestatic reaction lobular inflammatory cells 

Clinical 
group 

case portal interface lobular 
 confluent 
necrosis 

dropout 
plasma 

cells 
eos. neutro oedema 

biliary 
atrophy 

duct inflam-
mation 

ductular 
reaction 

cholestasis sinusoidal 
mononu-

cleosis (0-4) 

plasma 
cells 

eos neutro 
ductular  canalicular  

chronic 
y/n 

cytoplasmic 
y/n 

native 1 1 1 0 0 2 5 20 1 0 0 2 2 0 0 2 1 4 0 1 0 0 0 3 

native 2 3 1 4 2 4 2 0 0 1 2 3 1 0 1 3 0 3 0 1 2 1 0 1 

native 3 2 1 4 0 4 0 0 0 2 1 2 1 1 1 2 0 1 0 1 2 2 0 0 

native 11 2 1 4 2 4 0 1 0 2 0 0 0 0 0 2 0 4 0 1 3 2 0 1 

native 12 2 1 4 0 3 0 0 0 2 0 2 2 2 2 2 0 4 0 1 2 2 0 1 

native 13 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 

native 14 2 2 3 0 2 0 2 0 1 0 0 0 1 0 1 0 0 0 1 3 1 0 0 

native 21 0 0 0 0 2 0 0 0 0 0 1 1 0 1 0 0 2 0 1 0 0 0 0 

native 24 2 1 4 6 4 0 0 0 1 3 0 0 0 2 4 0 0 0 1 4 1 3 2 

native 30 2 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 2 0 1 2 0 0 0 

native 31 3 1 4 2 3 3 0 0 2 1 2 1 1 1 2 1 3 0 1 2 2 0 1 

native 6a 2 0 3 0 3 6 0 0 1 0 0 0 0 0 2 0 0 0 0 2 0 0 0 

native 6b 3 1 0 3 2 6 0 0 0 0 0 0 2 0 2 3 4 1 1 0 0 0 0 

native - is 4 2 1 3 0 3 0 60 0 1 0 1 2 2 2 2 0 0 0 0 2 1 1 1 

native - is 5 0 0 0 0 2 4 10 1 0 0 2 1 1 0 3 0 4 0 1 0 0 0 3 

native - is 7 2 2 4 0 3 0 10 0 2 2 1 1 2 1 1 0 1 0 0 3 1 0 0 

native - is 15 2 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

native - is 16 2 0 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

native - is 17 2 2 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

native - is 22 3 3 2 0 3 2 0 0 2 1 0 0 1 2 2 0 0 0 0 2 0 0 0 

native - is 23 2 2 2 0 2 0 20 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 

native - is 25 0 0 0 0 2 0 20 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 

native - is 33 1 0 0 0 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

allograft 18 2 0 0 0 1 0 0 0 1 0 0 0 2 1 2 0 0 0 0 2 0 0 0 

allograft 26 3 0 3 1 3 0 0 0 0 2 2 1 1 2 1 0 0 0 0 3 0 1 0 

allograft 20c 4 4 4 0 3 1 20 0 1 2 1 1 1 0 0 0 0 0 0 1 0 1 0 

allograft 32c 3 1 2 0 3 1 0 0 1 1 2 1 0 1 1 0 0 0 0 3 1 0 0 

allograft-pre 28 1 0 0 0 1 0 30 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 

allograft-pre 20a 1 0 0 0 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 

allograft-pre 20b 2 2 1 0 1 0 20 0 0 1 2 1 0 1 2 0 0 0 0 3 0 0 0 

allograft-pre 27a 2 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 

allograft-pre 27b 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

allograft-pre 32a 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 

allograft-pre 32b 2 0 1 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 1 

allograft-pre 8a 0 0 0 0 1 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

allograft-pre 8b 2 1 1 0 1 1 5 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

 

 



 

Supplementary table 3: methods for histological scoring.  

Hepatitis feature scoring was adapted from Ishak et al43, specifying ‘minimal’ to take account 

of anticipated slight changes in immunosuppressed patients. Confluent necrosis was scored 

exactly as per Ishak et al43. These and other features scored are enumerated below. 

 

 Portal hepatitis 

Minimal  marginally increased mononuclear cell infiltrate in a few portal areas 

Mild easily appreciable mononuclear cell infiltrate, either expansile in a few portal areas or 

non-expansile in most portal areas 

Moderate  expansile/dense portal mononuclear cell infiltrate in most portal areas 

Severe dense, expansile portal mononuclear cell infiltrate in all portal areas 

 

 Interface hepatitis 

Minimal scanty interface hepatitis in only 1-2 portal areas 

Mild focal in < 50% portal areas 

Moderate at least focal in most portal areas (or affecting most of the circumference in some) 

Severe affecting most of the circumference of most portal areas 

 

 Lobular hepatitis; also for Hepatocyte dropout (apoptosis, single cell necrosis) 

Minimal ~1 focus per lobule 

Mild 2-4 foci per lobule 

Moderate 5-10 foci per lobule 

Severe >10 foci per lobule 

 

 Specific inflammatory cell types (in lobule or portal area), Canalicular cholestasis 

Minimal sparse in some (lobules/portal tracts) 

Mild Sparse-occasional in most (lobules/portal tracts) 

Moderate prominent in some (lobules/portal tracts), otherwise occasional 

Severe prominent in most (lobules/portal tracts) 

 

 Bile duct inflammation 

Minimal 1-2 ducts infiltrated by occasional inflammatory cells 

Mild inflammatory cells infiltrating upto 50% ducts, with signs of duct epithelial reactivity 

Moderate most ducts infiltrated by inflammatory cells and showing epithelial reactivity 

Severe as moderate, with severe epithelial injury, duct damage (basement membrane breaks)  

 

 Ductular reaction 

Minimal some ductules around a few tracts 

Mild at least occasional ductules around most portal areas or prominent around some 

Moderate prominent ductular aggregation around most portal areas 

Severe expansile prominent ductular reaction around/between portal areas 

 

 

 

 

 

 



Supplementary Data 1: RNAscope probe design and genotyping 

RNAscope probe design : Oligonucleotide probes specific for Hepatitis E genotypes 1 to 4 

were prepared using the comprehensive sequence library of published and unpublished 

hepatitis E sequences of all genotypes, maintained and kindly made available by Prof Peter 

Simmonds, Edinburgh virus evolution group .  

A consensus sequence for each genotype was generated and a pool of 4 probes (V-HEV-pool 

420621) targeting genotypes 1 to 4 was created by ACDBio, each probe containing 40 Z oligo 

probe pairs. The name of subtype consensus method and accession number of the public 

sequence with highest similarity is listed as follows.    

V-HEV-GT1-C1:  Hepatitis E virus genotype 1 consensus sequence, 98% identical 

to gb|M73218.1|HPESVP.  Gene length 7207; LE pairs 40. Start position 2678; end position 

5090.  

V-HEV-GT2-C1: gi|330017|gb|M74506.1|HPENSSP Hepatitis E virus (Mexican strain) 

structural proteins and a nonstructural polyprotein genes complete, genotype 2. Gene length 

7180; LE pairs 40; start position 1828; end position 3756. 

V-HEV-GT3-C1: Hepatitis E virus genotype 3 consensus sequence, 94% identical 

to dbj|AB089824.1|.  Gene length 7269; LE pairs40; start position 3105; end position 5097. 

 V-HEV-GT4-C1: Hepatitis E virus 4 consensus sequence, 94% identical to dbj|AB097812.1|.  

Gene length7259; LE pairs 40; start position 628; end position 2787. 

 

Genotyping : Phylogentic analysis of partial ORF2 sequences from 7 patient HEV isolates and 

genotype reference sequences from GenBank. Amplicons were generated using the Erker et al 

ORF2 PCR, TA cloned and sequenced by GATC Biotech. Sequences were aligned using Clustal 

Omega, branch distances are indicated.    

 

 
 

Erker JC, Desai SM and Mushahwar IK, 1999. Rapid detection of Hepatitis E virus RNA by 

reverse transcriptase-polymerase chain reaction using universal oligonucleotide primers. 

Journal of Virological Methods, 81, pp109-113 

http://www.ncbi.nlm.nih.gov/nucleotide/330023?report=genbank&log$=nuclalign&blast_rank=1&RID=NHDFYWE8014
http://www.ncbi.nlm.nih.gov/nucleotide/26665375?report=genbank&log$=nuclalign&blast_rank=1&RID=NHE5KXPG014
http://www.ncbi.nlm.nih.gov/nucleotide/29893093?report=genbank&log$=nuclalign&blast_rank=1&RID=NHE54DHP014
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