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Detection of Zoonotic Enteropathogens in Children and Domestic
Animals in a Semirural Community in Ecuador

Karla Vasco,a Jay P. Graham,b Gabriel Truebaa

Microbiology Institute, Colegio de Ciencias Biologicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuadora; Milken Institute School of Public Health,
George Washington University, Washington, DC, USAb

ABSTRACT

Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and
middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the pres-
ence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households
in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess
zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most
prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C.
jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection
were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in
children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E.
coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though
we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and
humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be trans-
mitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of entero-
pathogen transmission between domestic animals and humans and stress the need for further studies.

IMPORTANCE

We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens
in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests
transmission of some genotypes of C. jejuni and aEPEC from domestic animals to humans in this region. We also found that the
genotypes associated with C. jejuni from chickens were present more often in children than were those from other domestic ani-
mals. The potential environmental factors associated with transmission of these pathogens to humans then are discussed.

Diarrheal diseases are a major cause of illness and death in low-
and middle-income countries (LMICs), where there are over

1.5 billion diarrhea cases that occur annually among children less
than 5 years old, resulting in nearly 700,000 deaths (1). Although
the contribution of zoonotic pathogens to human diarrheal dis-
ease is significant (2), these pathogens are often overlooked, and
their detection may be hindered by patterns of seasonality (3).
Zoonotic enteropathogens comprise a large and diverse range of
microorganisms that could be transmitted to humans by con-
sumption of meat or dairy products, by direct contact with ani-
mals (or their feces) in the environment, or by consumption of
food or water contaminated with animal feces (2, 4). In the United
States, researchers estimated that 14% of enteric infections with 7
groups of zoonotic enteropathogens were attributable to direct
contact with animals (5).

Most of the studies of zoonotic enteropathogens have taken
place in high-income countries, and their results may not be ap-
plicable to LMICs with less developed sanitary infrastructure and
different animal husbandry practices (4). LMICs report many
zoonotic pathogens that are rare in industrialized nations and vice
versa (4). For instance, Campylobacter jejuni, non-Typhi Salmo-
nella, and enterohemorrhagic Escherichia coli (EHEC) are zoo-
notic pathogens associated with high morbidity in high-income
countries (6, 7), but they are unusual causes of human disease in
LMICs (8–10).

Although some zoonotic pathogens, such as Campylobacter je-
juni, are recognized as the most frequent gastrointestinal bacterial
pathogen in humans in industrialized countries (11, 12), the con-
tribution of other zoonotic pathogens (such as enteropathogenic
E. coli or many strains of Shiga-toxigenic E. coli) to human diar-
rhea is less understood (13–15).

Most zoonotic enteropathogens were thought to be generalists
(able to infect a wide variety of animals, including humans); how-
ever, recent evidence suggests that some strains of Cryptospo-
ridium parvum, Campylobacter jejuni, and Giardia lamblia are
host adapted with low levels of transmission to humans (12, 16,
17). Furthermore, some domestic animals may harbor generalist
strains while others carry more host-adapted strains (9).
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The present study aimed to investigate the prevalence of 7 zoo-
notic enteropathogens (bacteria and protozoa) in children and
domestic animals in a semirural community of Ecuador.

MATERIALS AND METHODS
Study location. The study was conducted in Otón de Vélez-Yaruquí, a
low-income semirural community east of Quito, at an altitude of 2,527 m
above sea level. The main economic activities are agriculture and animal
husbandry, particularly intensive poultry production (four chicken in-
dustrial operations were present in the community). Of the sampled
households, 68% had chickens, 64.5% had guinea pigs (raised for food),
64.5% had dogs, 58% had pigs, 32.3% had rabbits, and 11.3% had cattle,
and cats, ducks, quails, sheep, geese, and horses were present in 10%, 8%,
5%, 3%, 1.6% and 1.6% of the households, respectively (see Fig. S1 in the
supplemental material).

Ethical considerations. The study protocol was approved by the In-
stitutional Animal Care and Use Committee at the George Washington
University (IACUC number A296), as well as the Bioethics Committee at
the Universidad San Francisco de Quito (2014-135M) and the George
Washington University Committee on Human Research Institutional Re-
view Board (IRB number 101355).

Sample collection. Sixty-five households were recruited randomly be-
tween June and August 2014, during the dry season. Fifty-nine of the
households had domestic animals (1 to 8 animal species), 3 did not have
animals, and 3 households did not provide samples. Eleven households
reported having someone in the home who worked in the poultry indus-
try. We collected 64 stool samples from asymptomatic children (47%
female and 53% male; ages were 3 to 12 months old [n � 11], 1 to 3 years
old [n � 31], 3 to 5 years old [n � 18], and 6 years old [n � 4]) (see Table
S1 in the supplemental material) and 203 samples from 12 animal species
(Table 1; also see Fig. S1). Animal fecal samples were obtained either
directly from the rectus (dogs, cats, sheep, and quail) or from pooled fecal
matter when animals were maintained in enclosures (pigs, chickens, and
cows) or cages (guinea pigs, rabbits, and quails). The stool samples were
placed in a cooler on ice for transportation to the laboratory. All bacterial
culturing and sample preservation began less than 8 h after collection.

Identification of zoonotic enteropathogens. Fecal samples were an-
alyzed for seven zoonotic enteropathogens: Campylobacter spp., atypical
enteropathogenic E. coli (aEPEC), Shiga toxin-producing E. coli (STEC),
Salmonella spp., Yersinia spp., Cryptosporidium parvum, and Giardia lam-
blia.

Pathotypes of E. coli were obtained by culturing samples on MacConkey

lactose agar (Difco, Sparks, MD) (at 37°C for 18 h), and lactose-ferment-
ing colonies were plated in Chromocult coliform agar (Merck KGaA,
Darmstadt, Germany) to identify the ß-D-glucuronidase activity. Five lac-
tose-positive isolates were pooled as a random sample, suspended in 300
�l of sterile distilled water, and boiled for 10 min to release the DNA. The
resulting supernatant was used for PCR to identify eae (18), bfpA (19),
stx1, and stx2 as previously described (20). Isolates from positive pools for
any loci were individually analyzed by PCR and cryopreserved in brain
and hearth infusion medium (Difco, Sparks, MD) with 20% glycerol at
�80°C for further analyses. aEPEC isolates were positive for eae (LEE
gene) and negative for bfpA and stx genes (13); STEC isolates were positive
for any of the stx genes by PCR but lacked the eae gene.

To isolate Yersinia spp., the samples were preenriched in 1� phos-
phate-buffered saline (PBS) for 21 days at 4°C and cultured in cefsulodin
irgasan novobiocin agar (at 28°C for 24 and 48 h) (Oxoid Ltd., Basing-
stoke, Hampshire, England). Suspected colonies were confirmed with the
following tests: oxidase test (Bactident oxidase; Merck), RapiD-20E (bio-
Mérieux, Marcy l’Etoile, France) with identification percentages greater
than 85%, lack of lactose fermentation on MacConkey lactose agar
(Difco, Sparks, MD), and urease activity in Christenson urea agar (Difco,
Sparks, MD).

To recover Salmonella spp., samples were preenriched in selenite
broth (Merck KGaA, Darmstadt, Germany) (at 37°C for 18 h) and cul-
tured in xylose-lysine-deoxycholate agar (Difco, Sparks, MD) (at 37°C for
18 h). Suspected colonies were subjected to RapiD-20E tests (bioMérieux,
Marcy l’Etoile, France), with acceptable identification set at greater than
95%. The identification of serovars was performed by amplifying 10 pairs
of primers by multiplex PCR in two separate reactions (assays STM and
STY) as previously described (21). The STM amplification was performed
in a 10-�l reaction mix with 1.4� PCR buffer, 2 mM MgCl2, 0.2 mm
deoxynucleoside triphosphates (dNTPs), 0.3 �M each primer (STM1,
STM2, STM3, STM4, and STM5), 0.75 U GoTaq polymerase, and 1 �l of
DNA (�10 ng/�l). Furthermore, the STY amplification reaction was per-
formed in a final volume of 10 �l with 1.6� reaction buffer; 2 mM MgCl2;
0.2 mm dNTPs; 0.08 �M primers STY1, STY2, and STM6; 0.3 �M primer
STY3; 0.1 �M primer STY4; 0.75 U GoTaq polymerase; and 1 �l of DNA.
Both reactions used the same amplification program: initial denaturation
at 94°C for 5 min, followed by 40 cycles of 94°C for 30 s, 62°C for 30 s, and
72°C for 1 min, and ending with a final extension at 72°C for 5 min.
Electrophoresis conditions for displaying the results of STM and STY
included a 2.5% agarose gel run for 2 h at 80 V.

To investigate thermophilic Campylobacter spp., samples were cul-

TABLE 1 Frequency of zoonotic enteropathogens identified in both children and domestic animals

Source
No. of
samples

No. (%) positive for:

C. jejuni C. coli aEPEC
Campylobacter
spp.a STEC

Salmonella
spp. Yersinia

Giardia
lamblia

Cryptosporidium
parvum

Children 64 7 (10.9) 3 (4.7) 11 (17.2) 1 (1.6) 1 (1.6) 0 0 22 (34.4) 2 (3.1)
Chickens 42 25 (59.5) 7 (16.7) 3 (7.1) 0 1 (2.4) 0 0 0 0
Guinea pigs 40 29 (72.5) 2 (5.0) 2 (5.0) 0 1 (2.5) 0 0 1 (2.5) 0
Dogs 40 10 (25.0) 1 (2.5) 4 (10.0) 0 0 5 (12.5) 0 5 (12.5) 0
Pigs 36 3 (8.3) 14 (38.9) 4 (11.1) 10 (27.8) 0 0 1 (2.8) 2 (5.6) 0
Rabbits 20 2 (10.0) 0 0 0 0 0 0 4 (20.0) 0
Cattle 7 1 (14.3) 1 (14.3) 2 0 4 (57.1) 0 0 0 0
Cats 6 2 (33.3) 1 (16.7) 0 0 0 0 0 0 0
Ducks 5 1 (20.0) 1 (20.0) 1 2 (40.0) 0 0 0 0 0
Quail 3 2 (66.7) 0 0 0 0 0 0 0 0
Sheep 2 0 1 (50.0) 1 0 0 0 0 1 (50.0) 1 (50.0)
Geese 1 0 0 0 0 0 0 0 0 0
Horses 1 0 0 0 0 0 0 0 0 0

Total 267 82 (30.7) 31 (11.6) 28 13 (4.9) 7 (2.6) 5 (1.9) 1 (0.4) 35 (13.1) 3 (1.1)
a Campylobacter non-jejuni/coli species included C. hyointestinalis (pigs and child), C. lanienae (pig), and C. canadensis (ducks).

Zoonotic Transmission of C. jejuni and aEPEC
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tured on Campylobacter agar with 5% lysed horse blood and modified
Preston Campylobacter selective supplement (Oxoid Ltd., Basingstoke,
Hampshire, England) and incubated at 42°C during 48 h under mi-
croaerobic conditions using CampyGen CO2 (Oxoid Ltd., Basingstoke,
Hampshire, England). The colonies were Gram stained and tested for
oxidase (Bactident oxidase; Merck). Campylobacter jejuni/Campylobacter
coli were confirmed by PCR of hippuricase and aspartokinase genes ac-
cording to the protocol developed by Persson and Olsen in 2005 (22).
Campylobacter species not belonging to C. jejuni/coli were identified
through 16S rRNA gene sequencing by Functional Biosciences (Madison,
WI), and sequences were uploaded to GenBank.

Giardia lamblia and Cryptosporidium parvum were detected using
an enzyme-linked immunosorbent assay (Ridascreen Giardia and Ri-
dascreen Cryptosporidium; r-Biopharm, Darmstadt, Germany).

Transmission between humans and domestic animals. Transmis-
sion of bacterial pathogens (C. jejuni and aEPEC) between domestic ani-
mals and humans and between domestic animals was assessed by charac-
terizing the clonal relationships of bacterial isolates using multilocus
sequence typing (MLST). To detect clonally related bacteria, we screened
C. jejuni isolates using nucleotide sequences of pgm genes and aEPEC
isolates using nucleotide sequences of fumC genes; all isolates showing an
identical DNA sequence were assumed to be clonally related and were
subjected to a full MLST profiling to confirm this status.

MLST. DNA extraction of C. jejuni and aEPEC isolates was performed
using DNAzol reagent (Invitrogen, Carlsbad, CA, USA) by following the
manufacturer’s protocol. We screened 72 C. jejuni isolates by amplifying
and sequencing the pgm allele (23); 55 isolates with identical pgm DNA
sequences were subjected to additional analysis of genes glyA and tkt, and
only the isolates with identical DNA sequences for pgm, glyA, and tkt
alleles (48 out of 72 isolates) were subjected to full MLST analysis (23).
Similarly, aEPEC isolates with identical fumC DNA sequences (14 out
of 28 isolates) were subjected to full MLST analysis (24). The PCR
products were sequenced by Functional Biosciences (Madison, WI),
and sequences were uploaded to the PubMLST website for Campylo-
bacter spp. (http://pubmlst.org/campylobacter/) and E. coli (http://mlst
.warwick.ac.uk/mlst/dbs/Ecoli/) to assign the allelic profiles.

Data analyses. Evolutionary relationships of sequence types were in-
ferred using eBURST V3 (http://eburst.mlst.net/). To visualize the micro-
evolutionary processes of the STs, minimum-spanning trees were con-
structed with Prim’s algorithm in the BioNumerics software according to
species source (version 7.5; Applied-Maths, Sint Martens-Latem, Bel-
gium). Statistical analyses were performed using Microsoft Office Excel
2013. Geographic distribution maps were developed using BaseCamp
software version 4.4.7. and GPSvisualizer (http://www.gpsvisualizer
.com/).

Nucleotide sequence accession numbers. Sequences determined
during the course of this work were deposited in GenBank under acces-
sion numbers KU362553 to KU362565.

RESULTS
Prevalence and geographic distribution of zoonotic entero-
pathogens. Campylobacter jejuni was the most prevalent pathogen
in all samples (30.7%; n � 82), followed by Giardia lamblia
(13.1%; n � 35), C. coli (11.6%; n � 31), aEPEC (10.5%; n � 28),
Campylobacter non-jejuni/coli (5.2%; n � 13), STEC (2.6%; n �
7), Salmonella spp. (1.9%; n � 5), Cryptosporidium parvum (1.1%;
n � 3), and Yersinia enterocolitica (0.4%; n � 1) (Table 1). The
geographic distribution of isolates is shown in Fig. S2 in the sup-
plemental material.

Campylobacter spp. were found in 17.2% of children (7 sam-
ples were C. jejuni, 3 were C. coli, and 1 was C. hyointestinalis), and
57.1% of samples (n � 112) were positive in domestic animals.
High percentages of guinea pigs (77.5%) and chickens (76%) were
positive for Campylobacter spp. (mostly C. jejuni) (chickens,

59.5%; guinea pigs, 72.5%). Also, 75% of pigs were positive for
Campylobacter spp., including C. coli (38.9%) and C. hyointestina-
lis (27.8%). Dogs carried Campylobacter spp. (30%; n � 12),
mainly C. jejuni (25%). In addition, Campylobacter also was pres-
ent in rabbits, cows, cats, ducks, and quails but at a lower preva-
lence (Table 1). Other Campylobacter species identified were C.
canadensis in ducks (2 out of 5 samples) and C. lanienae in a pig (1
out of 36 samples).

Atypical EPEC was present in a wide range of hosts, including
children (17.2%; n � 11), dogs (10.0%; n � 4), pigs (11.1%; n �
4), chickens (7.1%; n � 3), guinea pigs (5.0%; n � 2), cattle
(28.6%; n � 2), ducks (20.0%; n � 1), and sheep (50.0%; n � 1)
(Table 1).

Seven STECs were isolated from a child (n � 1), cattle (n � 4),
a guinea pig (n � 1), and a chicken (n � 1). Giardia lamblia was
present mainly in children (n � 22) and was detected in 13 animal
fecal samples from guinea pigs, dogs, pigs, rabbits, and a sheep
(Table 1). Salmonella spp. were detected in 5 samples from dogs
(S. enterica serovar Infantis), 2 children and 1 sheep were positive
for Cryptosporidium parvum, and 1 pig was positive for Yersinia
enterocolitica (Table 1).

The copresence of pathogens was found in 9 children, 7 pigs, 4
guinea pigs, 5 dogs, 2 cattle, 3 chickens, 1 sheep, 1 cat, and 1 duck
(see Table S4 in the supplemental material). The most common
one was Campylobacter-aEPEC, found in 11 (4.1%) samples, fol-
lowed by Campylobacter-Giardia in 8 (3%) samples and aEPEC-
Giardia in 7 (2.6%) samples.

Zoonotic enteropathogens were present in all age groups of
children; however, most of the pathogens were detected in chil-
dren aged 1 to 3 years old (56.4% of 47 positive samples; 27 of 31
children of this age group), followed by children aged 3 to 5 years
old (31.9% of 47 positive samples; 15 of 18 children of this cate-
gory) (see Table S1 in the supplemental material). The youngest
children infected were one 3-month-old baby with aEPEC, a
3-month-old baby with G. lamblia, a 10-month-old infant with C.
coli, a 13-month-old infant with coinfection of C. parvum and C.
jejuni, a 4-year-old child with C. hyointestinalis, and a 5-year-old
child with STEC (see Table S1 and Fig. S3). Interestingly, none of
the subjects showed evidence of acute diarrhea.

Campylobacter jejuni MLST. We identified 21 C. jejuni STs in
the 48 analyzed isolates, of which 14 were novel: ST-7643, ST-
7759, ST-7760, ST-7662, ST-7669, ST-7671, ST-7672, ST-7775,
ST-7777, ST-7778, ST-7779, ST-7780, ST-7781, and ST-7789 (Ta-
ble 2). Four of the STs were detected in both children and domes-
tic animals: ST-137, ST-1233, ST-3515, and ST-7671 (Table 2 and
Fig. 1). Ten STs belonged to 5 clonal complexes (CC). The most
common was CC-353, comprised of 8 isolates (2 from children
and 6 from domestic animals), followed by CC-607, comprised of
7 isolates from different domestic animal species but no humans,
and CC-354, with 4 isolates from avian species (3 chickens and 1
quail). In three households we found animals that shared isolates
with the same ST (1 guinea pig and 1 chicken, 1 rabbit and 1
chicken, and 1 dog and 1 quail). The rest of the STs and CCs were
randomly distributed in the community (Table 2; also see Table S2 in
the supplemental material). Further, guinea pigs were the major res-
ervoir of C. jejuni; 21 isolates of this animal species were analyzed by
MLST, and nine novel STs were identified solely in guinea pigs (25).

Atypical EPEC MLST. Fourteen aEPEC isolates belonged to 9
STs; 4 STs (ST-20, ST-137, ST-517, and ST-4550) were present in
both children and domestic animals. Isolates from a sheep and a

Vasco et al.
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duck belonged to ST-317 (Fig. 2). There were no predominant
clonal complexes: 5 STs belonged to 5 different CCs, while 4 STs
were not assigned to any CC. None of the STs shared by isolates
from humans and domestic animals belonged to the same house-
hold; indeed, identical STs were found in households distantly
located (Table 3; also see Table S3 in the supplemental material).
ST-4550 was present in a child and a chicken living in close prox-
imity and was genetically related to ST-29 identified in a child
(identical at 6 of 7 loci).

DISCUSSION

Consistent with previous studies (26–29), our MLST analysis in-
dicated that chickens were an important source of C. jejuni for
both humans and domestic animals; this animal species com-
monly shared the same STs with other species (2 STs in 2 isolates
from humans and 5 STs from 7 isolates of domestic animals) (Ta-
ble 2 and Fig. 1). On the other hand, STs of C. jejuni from guinea
pigs (the animal with the highest prevalence of C. jejuni) seemed
to infect only this animal species (Table 2) (25). Previous MLST
analyses have found that some C. jejuni strains may be more
adapted to one animal species and less likely to infect humans or
other hosts (25, 29, 30). The association of C. jejuni’s STs and CCs
with specific animal species seemed to concur with findings pre-
viously reported (28, 30, 31).

Similarly, MLST analysis of aEPEC revealed that pigs, chickens,
and dogs shared genotypes of aEPEC found in children; hence,
these animals could be involved in the transmission of aEPEC to
humans (Table 3 and Fig. 2). Additionally, several animal species,
like guinea pigs, cattle, ducks, and sheep, carried aEPEC (Table 3)
as reported in previous studies (32, 33). Most STs were not found

in animal species previously reported except for ST-4550 and ST-
327, which were described previously in chickens and ruminants,
respectively (http://mlst.warwick.ac.uk/mlst/).

Although our findings suggest zoonotic transmission of C. je-
juni and aEPEC, they do not provide conclusive evidence for
transmission from domestic animals to humans. This is especially
critical for aEPEC, a pathogen of uncertain zoonotic potential,
and it is possible that domestic animals became colonized by
aEPEC from humans (14, 15, 34). It is important to note, however,
that most households in this community have improved water
and sanitation (i.e., piped drinking water and flush toilets inside
the home), which prompt us to suggest that the main route of
infection of these zoonotic pathogens for humans was contact
with animals or a contaminated environment. In fact, we detected
by PCR C. jejuni and C. coli in water from an irrigation channel in
the community (data not shown).

The dissemination of zoonotic enteric pathogens could be in-
fluenced by the use of animal fecal matter to fertilize soils and the
presence of four large poultry facilities (total capacity of �200,000
chickens) within the community, which corresponds to the sec-
ond largest conglomerate of poultry farms in Ecuador (http:
//www.conave.org/informacionlistall.php?pagina�2). Transmis-
sion could occur by workers in the poultry industry who
subsequently expose their households to enteropathogens.

Additionally, E. coli (and probably pathogenic members of En-
terobacteriaceae) grows massively in fresh fecal matter when ex-
posed to oxygen in the environment (35, 36). A high prevalence of
enteric pathogens in the environment may increase the possibility
of crop contamination or the high presence of these pathogens in

TABLE 2 Number of isolates of C. jejuni, by sequence type, recovered from children 0 to 3 years of age and from each animal source

CCa STb

No. of isolates from:

Children Chickens Guinea pigs Dogs Pigs Rabbits Cattle Cats Quails

CC-607 607 0 2 0 2 0 0 0 0 0
1212 0 1 0 0 1 0 1 0 0

CC-353 1233 1 2 1 0 0 0 0 0 0
3515 1 1 0 0 0 0 0 0 0
7643 0 0 0 1 0 0 0 0 1

CC-354 354 0 1 0 0 0 0 0 0 0
7662 0 1 0 0 0 0 0 0 1
7669 0 1 0 0 0 0 0 0 0

CC-464 464 0 1 0 0 0 1 0 0 0
CC-45 137 1 0 0 0 0 1 0 0 0

Unassigned CC 7671 1 0 0 1 0 0 0 0 0
7672 0 0 0 1 0 0 0 1 0
7759 0 0 6 0 0 0 0 0 0
7760 0 0 1 0 0 0 0 0 0
7775 0 0 4 0 0 0 0 0 0
7777 0 0 1 0 0 0 0 0 0
7778 0 0 1 0 0 0 0 0 0
7779 0 0 2 0 0 0 0 0 0
7780 0 0 2 0 0 0 0 0 0
7781 0 0 3 0 0 0 0 0 0
7789 0 0 1 0 0 0 0 0 0

a CC, clonal complex.
b The STs marked in boldface correspond to new STs.
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animal products. This area possibly represents a hot spot for zoo-
notic pathogens, especially for Campylobacter species, and their
food products can represent a health risk to urban areas and may
be associated with traveler’s diarrhea when susceptible individuals
visit this region, which is in close proximity to the Quito Interna-
tional airport.

Giardia lamblia was the most prevalent enteric pathogen
among children (34.4%), and its level was higher than that in
previous studies in Ecuador (ranging from 11 to 24%) (8, 37).
Dogs, rabbits, pigs, guinea pigs, and sheep also carried G. lamblia
in this location, which is an indication of transmission among
animal species. However, we were not able to analyze genetic
markers of these protozoa. Of the seven genotypes of Giardia (A to
G), humans are susceptible to genotypes A and B, and its zoonotic
transmission is mainly related to companion animals, such as dogs
and cats, while livestock and contaminated water appear to be
uncommon sources (16).

We also detected Cryptosporidium parvum in 2 samples from
children (3.1%) and STEC in 1 sample from a child (1.6%). Both
pathogens were detected in ruminants, and STEC was also de-
tected in chickens and guinea pigs, which concurs with previous

studies (38). Cryptosporidium spp. are associated with morbidity
and mortality in young children in developing countries (39) and
may be an important cause of diarrhea in Ecuadorian rural villages
(8). Although Cryptosporidium spp. are highly prevalent in live-
stock (40), several studies in developing countries suggest that
zoonotic transmission of Cryptosporidium spp. is uncommon
(17). Meanwhile, STEC is considered a food-borne disease with
ruminants as the main reservoir (7); however, symptomatic dis-
ease in humans seems to be uncommon in Ecuador (8, 10).

FIG 1 Minimum spanning tree analysis of 48 C. jejuni isolates based on MLST
profile and according to source (the color of the circle indicates the species).
Each circle represents the ST, and the size of the circle and circle divisions
indicate the number of isolates within any given ST. Lines indicate strength
length (distance) symbolized with numbers (number of nonshared alleles) and
thickness. Clonal complexes and genetic clusters are labeled and represented
by the surrounding shading.

FIG 2 Minimum spanning tree analysis of 14 aEPEC isolates based on MLST
profile and according to source (color of the circle indicates the species). Each
circle represents the ST, and the size of the circle and circle divisions indicate
the number of isolates within any given ST. Lines indicate strength length
(distance) symbolized with numbers (number of nonshared alleles) and thick-
ness. The genetic cluster is labeled and represented by the surrounding
shading.

TABLE 3 Number of isolates of aEPEC, by sequence type, recovered
from children 0 to 5 years of age and from each animal source

CC ST

No. of isolates from:

Children Chickens Dogs Pigs Ducks Sheep

CC-20 20 1 0 0 1 0 0
CC-29 29 1 0 0 0 0 0
CC-32 137 1 0 0 1 0 0
CC-278 328 0 1 0 0 0 0
CC-590 590 1 0 0 0 0 0

Unassigned 327 0 0 0 0 1 1
517 1 0 1 0 0 0
3075 0 0 1 0 0 0
4550 1 1 0 0 0 0
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Despite the proximity of study households to poultry indus-
trial operations, Salmonella was not detected in children, although
it was isolated from five dogs (S. enterica serovar Infantis). Yersinia
enterocolitica was present only in one pig fecal sample (pigs are
known as the main reservoir for Y. enterocolitica) (7, 41).

The high prevalence of pathogens analyzed in this study of
domestic animals (77% of the birds and 59% of the mammals)
may contribute to environmental contamination and subsequent
human infection. In fact, the distribution of certain species of
animals in the community appeared to be related to the geo-
graphic presence of particular pathogens (see Fig. S1 and S2 in the
supplemental material); for instance, the geographic location of
guinea pigs and chickens corresponded to C. jejuni, pigs to C. coli,
and ruminants to STEC (see Fig. S1 and S2).

Most children under 5 years of age (59.4%) carried intestinal
pathogens but were asymptomatic (nondiarrheic stool), a phe-
nomenon also observed with nonzoonotic human enteric patho-
gens in LMICs (42–46), and this may be due to herd immunity
resulting from regular exposure to these pathogens (47); immune
mothers may transfer immunoglobulins to their offspring
through the placenta and breast milk. Another factor protecting
people from symptomatic infection may be the microbiota com-
position (48). Despite the absence of diarrhea, asymptomatic in-
fections, such as campylobacteriosis and cryptosporidiosis, may
reduce growth in children (43, 44). The present work had some
limitations; the first one was the small number of samples ana-
lyzed. The second limitation was the scheme used to assess clon-
ality, as the initial selection of bacteria with one identical allele
may have prevented us from detecting additional related clones
(members of the same clonal complex). Finally, we were unable to
carry out genotyping of Giardia lamblia, which was one of the
most abundant enteric pathogens in the study.

The control of the dissemination of these pathogens calls for
a comprehensive and multidisciplinary approach (49). It is
necessary to have a complete analysis of the spatial, ecological,
evolutionary, social, economic, and epidemiological aspects in
order to reduce pathogen transmission. This report suggests
that the area we investigated is heavily contaminated with zoo-
notic enteropathogens, which calls for additional research to
detect pathogens in the environment (water, soil, and possibly
crops).
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