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Abstract— Existing studies on the classical distributed detec-
tion problem typically assume idealized transmissions between
local sensors and a fusion center. This is not guaranteed in
the emerging wireless sensor networks with low-cost sensors
and stringent power/delay constraints. By focusing on discrete
transmission channels, we study the performance limits, in both
asymptotic and non-asymptotic regimes, of a distributed detection
system as a function of channel characteristics. For asymptotic
analysis, we compute the error exponents of the underlying
hypothesis testing problem; while for cases with a finite number
of sensors, we determine channel conditions under which the
distributed detection systems become useless – observing the
channel outputs cannot help reduce the error probability at the
fusion center. We demonstrate that as the number of sensors or
the quantization levels at local sensors increase, the requirements
on channel quality can be relaxed.
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I. INTRODUCTION

Distributed detection has been intensively studied in the past
few decades (see [1]–[3] and references therein). Optimal local
quantizer and fusion rule design can be found in the vast
literature under either the Bayesian criterion [4]–[6] or the
Neyman-Pearson criterion [7]. When the number of sensors
is allowed to go to infinity, asymptotic performance analysis
as well as asymptotically optimum detection structures have
been addressed in [8], [9].

There is an implicit assumption in the majority of existing
results: the transmissions between local sensors and the fu-
sion center are error-free. Although by proper encoding and
decoding, any noisy channel can be made arbitrarily reliable,
provided the information rate is less than that prescribed
by the channel capacity, this is difficult to guarantee in
realistic wireless sensor networks with stringent power and
delay constraints. If we are limited to zero-memory encoding,
many new challenges and research opportunities arise in this
area of channel-aware distributed detection. There are several
recent papers that have addressed related problems [10]–[15].
In [13], [14], the impact of transmission channels on the
decentralized detection system was studied. Under both the
additive Gaussian noise and fading channel assumptions, the
authors established the optimality of identical local sensor
decision rules for the binary hypothesis testing problem using
the asymptotic error exponent (Chernoff information) as the
performance criterion. The fusion rule design in the presence
of nonideal transmission channels between the sensors and
the fusion center was studied in [11], [12]. The dual problem
of designing local decision rules was considered in [15].
The optimality of a likelihood ratio test at local sensors was
established, where the optimality is in the sense of minimizing
the error probability at the fusion center. A more general case
with soft (multi-bit) local sensor output has been treated in
[16].

In this correspondence, we aim to quantify the detection
performance limits on a distributed sensor network imposed
by the discrete channels both in the asymptotic and non-
asymptotic regimes. The discrete channels may arise as ap-
proximations of the fading channels. More importantly, with
this channel model, a connection between the error exponents
and the channel capacity can be readily established. Specifi-
cally, in the asymptotic regime, there is always performance
gain for the detection problem if the channel itself has non-
zero capacity. However, in the non-asymptotic regime, we
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Fig. 1. A canonical distributed detection system involving the channel layer.

establish conditions under which observing the channel output
does not reduce the error probability at the fusion center,
regardless of channel-aware optimal processing.

This correspondence is organized as follows. Problem is
formulated in Section 2. In Sections 3 and 4, asymptotic
and non-asymptotic cases are treated respectively. Numerical
examples are given in Section 5 followed by conclusions in
Section 6.

II. PROBLEM FORMULATION

Consider the parallel decentralized detection system given in
Fig. 1, where L sensors collect observations that are assumed
to be independent and identically distributed conditioned on a
given hypothesis (H0 or H1). Upon observing xl, the lth sensor
maps it to a finite alphabet message ul and sends it to the
fusion center through a discrete channel. This discrete channel
is characterized by a channel transition probability matrix M,
which, for simplicity, is assumed to be identical across sensors.
The local sensor output ul = γl(xl), l = 1, . . . , L, takes one
of Du possible values where γl(·) is the local quantizer to be
optimized. The signal received at the fusion center from the
lth sensor, yl, is assumed to have Dy levels. As such, M is a
Dy × Du matrix with the ijth entry defined as

Mij = P (yl = i|ul = j), i = 1, . . . , Dy, j = 1, . . . , Du

where
∑Dy

i=1 Mij = 1 for any j ∈ {1, ..., Du}. Our study
assumes zero-memory quantizer at local sensors and conse-
quently, we do not consider complex channel codes that incur
significant delays and rely on long input sequences.

Notice that for fixed local quantizers at the sensors, the
optimal maximum a posteriori probability (MAP) fusion rule
at the fusion center can be derived in a straightforward manner.
For this reason, the optimization is carried out only with
respect to γl(·) and the obtained optimal encoding scheme
will be useful in the non-asymptotic analysis.

While optimal channel-aware local decision rules and the
fusion rule are available [11], [15], the performance of the
detection system is fundamentally limited by the transmission
channel characteristics. A simple (and trivial) example when
this may happen is the situation in which the channels connect-
ing the sensors and the fusion center have zero capacity (e.g.,
a binary symmetric channel (BSC) with crossover probability
0.5). In this correspondence, we show that as long as the
channels have non-zero capacity, the error probability will
eventually decay to zero for the asymptotic case (L → ∞).
For the non-asymptotic case (finite L), we demonstrate that

even with non-zero capacity channels, the distributed detection
system may still be useless in that observing the channel output
cannot help reduce the error probability at the fusion center. By
assuming a BSC, we establish condition under which sensors
become useless.

III. ASYMPTOTIC ANALYSIS

Under the ideal channel assumption, when the number of
sensors L → ∞, for any sensible detection system, the
probability of error goes to zero eventually [8]. This was
established by using error exponents which describe how fast
the error probability goes to zero [17]. Thus, a system is
considered useful if and only if the error exponents are greater
than zero. In this section, we will show how the observation
statistics and channel parameters affect the error exponents
under both Bayesian and Neyman-Pearson criteria.

A. Bayesian criterion

Using the Bayesian criterion where one wants to minimize
the probability of error, we have the following theorem.

Theorem 1: Assume that X1, . . . , XL are independent and
identically distributed (i.i.d.) with distribution Q and the form
of Q depends on the hypothesis: Q = P0 with prior probability
π0 and Q = P1 with prior probability π1. The best achievable
exponent (Chernoff Information) 1

CIc = − min
0≤s≤1

min
γ

log2

[∑Dy

y=1

(∑Du

u=1 P (y|u)P0(u)
)s

·
(∑Du

u=1 P (y|u)P1(u)
)1−s

]
(1)

is 0 if and only if rank(M) = 1, i.e., all the columns of the
transition matrix M are identical (P (y|u) = P (y)).

The proof is provided in the Appendix. The matrix M
is rank one if and only if it has identical columns. Hence
P (y|u) = P (y), and the corresponding discrete channel has
zero capacity. On the other hand, it is also easy to show that
for the perfect channel, i.e., when M is an identity matrix,
CIc reduces to the conventional CI for the parallel distributed
detection system as obtained in [8]:

CI = − min
0≤s≤1

min
γ

log2

[
Du∑
u=1

P s
0 (u)P 1−s

1 (u)

]
(2)

1The subscript c is to indicate the fact that the transmission channels are
considered in deriving the CI, hence it can be distinguished from that of the
ideal channel case (cf. Eq. (2)).
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B. Neyman-Pearson criterion

Analogous to the CI, the best achievable error exponent
for the Neyman-Pearson test is the Kullback-Leibler Distance
(KLD). The main result is summarized in the following
theorem.

Theorem 2: The Kullback Leibler Distance

KLDc =

maxγ

∑Dy

y=1

(∑Du

u=1 P (y|u)P0(u)
)

log2

�Du
u=1 P (y|u)P0(u)
�Du

u=1 P (y|u)P1(u)

(3)
is 0 if and only if rank(M) = 1.

It is also easy to show that for the perfect channel, KLDc =
maxγ

∑Du

u=1 P0(u) log2
P0(u)
P1(u) , the expression without channel

being considered. In the other extreme, KLDc = 0 if and
only if the channel transition matrix M is rank one, thus all
the columns are identical.

The above results can be interpreted as saying that the error
exponents are zero if and only if the channel between each
sensor and the fusion center has zero capacity. In Fig. 2,
we present the error exponents under the Bayesian and the
NP criteria for a binary hypothesis testing problem. The two
hypotheses are H0 : Xk ∼ N (−1, 1) and H1 : Xk ∼ N (1, 1).
A BSC is used between each sensor and the fusion center
with crossover probability α (X-axis). Four-level quantizers
are used to process the local observations and the two bits
are assumed to be transmitted by using the same BSC twice.
Note that the error exponents are positive for α < 0.5, which
is consistent with our analysis.

IV. NON-ASYMPTOTIC ANALYSIS

In contrast to the asymptotic results, with finite L, there
exist situations in which even though the channel capacity
is greater than zero, the overall system does not lead to
any reduction in error probability compared to a detector
using only prior information. Because of the simplicity of the
BSC (single parameter characterization), we restrict the non-
asymptotic analysis to the case where each sensor is connected
to the fusion center by a BSC (multiple bits are sent through
repeated use of the same BSC). The parameter characterizing
a BSC is the crossover probability α and we only consider
0 ≤ α ≤ 0.5.2

Under this formulation, we find that there exists a threshold
αs that divides all possible BSCs into two groups. If α < αs,
the distributed detection system is useful and is able to reduce
the error probability from that obtained by utilizing only the
prior information; otherwise, the system is useless and one
should simply rely on the prior probability in making a final
decision. This threshold is a function of prior probabilities,
observation statistics, number of sensors in the system and
quantization levels at the local sensors.

Without loss of generality, we assume π0 ≤ π1. One should
achieve a performance no worse than Pe = min(π0, π1) = π0,
which is obtained when the decision maker declares U0 = 1
by totally ignoring any observations. We assume that the L
sensors employ identical decision rules. It is asymptotically

2Any BSC with α > 0.5 is equivalent to a BSC with crossover probability
1 − α
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Fig. 2. Error exponents as a function of α. Each sensor uses 2-bit
quantization. (a)Chernoff Information (b)Kullback-Leibler Distance.

optimal to apply identical decision rules to identical local
sensor observations when the number of sensors is large [8],
[13], [14]. Even in the non-asymptotic case, identical local
decision rules are optimal in most situations, with an exception
only for discrete local observations with carefully selected
probability mass functions [18].

The optimal MAP rule for final decision making at the
fusion center is

log
P (y1, . . . , yL|H1)
P (y1, . . . , yL|H0)

<
>

H0

H1

log
π0

π1
(4)

If the log likelihood ratio (LLR) of Y = [y1, . . . , yL] is always
greater than the threshold log π0

π1
, then the distributed detection

system is useless in that it cannot improve the performance3.
Transmission of m-bit messages from local sensors to the

3The situation that LLR of Y is always less than log π0
π1

is not possible
under the assumption π0 ≤ π1. If π0 ≥ π1 is assumed, we will consider
LLR to be always less than instead of greater than the threshold.
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fusion center is carried out by m uses of a BSC. Then the LLR
is a function of γ (local m bit quantizer) and α (BSC crossover
probability), hence the notation LLR(γ, α). The threshold α s

is the minimum value of α which satisfies the inequality

min
γ

min
Y

LLR(γ, α) ≥ log
π0

π1
(5)

That is, for any α > αs, H1 is declared regardless of Y,
hence the observations become useless. It can be shown that
if minγ minY LLR(γ, α) < log π0

π1
, then Pe is always less

than π0. For L sensors using identical m-bit local quantiz-

ers, there are a total of N =
(

L + 2m − 1
2m − 1

)
potentially

distinct LLR values. Sort these LLRs in an ascending order
LLR(1) ≤ · · ·LLR(n) ≤ LLR(n+1) ≤ . . . ≤ LLR(N). Let
P1(n), P0(n) denote the likelihood functions under H1 and
H0 respectively, with each pair corresponding to LLR (n).
If LLR(n) < log π0

π1
≤ LLR(n+1), then we have Pe =

π1(P1(1) + . . . + P1(n)) + π0(P0(n+1) + . . . + P0(N)) < π0.
When m = 1, it reduces to the binary quantizer case. Since,

by the virture of the BSC channel, y can take only two possible
values, 0 or 1, we can rewrite (4) as

L∑
l=1

yl
<
>

H0

H1

log π0
π1

− L log 1−pd

1−pf

log pd(1−pf )
pf (1−pd)

Δ= t (6)

The condition in (5) becomes the inequality t ≤ 0. For the
binary quantizer case, we can find the closed form solution
for the threshold αs and we summarize it in the following
theorem.

Theorem 3: For an L sensor system, the threshold αs is
given by

αs =
maxs f(s) − 1

2 maxs f(s) − 1
(7)

where f(s) =
p′

d(s)−(
π0
π1

)
1
L p′

f (s)

1−(
π0
π1

)
1
L

, p′d(s) = P (U = 1|H1) and

p′f (s) = P (U = 1|H0). s is the likelihood ratio quantization
threshold at the local sensor.

Proof:

t ≤ 0 =⇒
(

π0
π1

) 1
L ≤ 1−pd

1−pf

=⇒ pd ≤
(

π0
π1

) 1
L

pf +
(

1 −
(

π0
π1

) 1
L

) (8)

Since pd = p′d(1−α)+ (1− p′d)α and pf = p′f(1−α)+ (1−
p′f )α, Inequality (8) is equivalent to

p′d ≤
(

π0

π1

) 1
L

p′f +

(
1 −

(
π0

π1

) 1
L

)
1 − α

1 − 2α
(9)

It is obvious that if α ≥ π0(α ≤ 0.5), (9) is satisfied.
Inequality (9) can also be written as

1 − α

1 − 2α
≥

p′d −
(

π0
π1

) 1
L

p′f

1 −
(

π0
π1

) 1
L

= f(s) (10)

Threshold αs should satisfy αs = maxs f(s)−1
2maxs f(s)−1 , where αs <

π0. Q.E.D.

V. NUMERICAL EXAMPLES

In this section, we present some numerical examples to
show the impact of channels on the detection performance
limits. In particular, we strive to understand how various
system parameters, including prior probabilities of the hy-
potheses, observation statistics, the number of sensors used,
and quantization levels at the local sensors, determine when
the system becomes useless. Consider the case where the local
observations are identically distributed according to H0 : X ∼
N (−μ, σ2) and H1 : X ∼ N (μ, σ2).

Figs. 3 and 4 show the threshold αs as a function of the
number of sensors used by varying the prior probability and
observation noise variance respectively. Binary quantizers are
used at the local sensors. The threshold αs curve divides
the distributed detection systems into ‘useful’ and ‘useless’
categories, which represents the tradeoff between prior and
likelihood functions – a system becomes useless when the
prior dominates the likelihood functions and renders the chan-
nel outputs irrelevant to the detection problem. For example,
extreme values of the prior probability (π0 is very large or
small) yields a very small αs, indicating that only high quality
channels can potentially improve the detection performance
with an informative prior.
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Fig. 3. Theoretical results for threshold αs as a function of the number of
sensors L. The prior probability of H0 varies from π0 = 0.1 to 0.5 for the
set of curves.

Fig. 5 shows αs as a function of the number of sensors L
with different prior probabilities and m = 2. The threshold
αs increases compared with that of m = 1. By using multibit
quantization, the range of useful α values increases, thus
making previously useless system useful again.

For the non-asymptotic analysis, the same BSC is used for
all the local sensors. However, if the environment is non-
homogeneous, the channel parameters may be different for
different sensors. Fig. 6 is an example that two types of
BSC exist with crossover probabilities α1 and α2 respectively.
Instead of separate thresholds for each paramter, there is a
curve dividing the whole α1 − α2 plane into two parts, with
the lower left region indicating the usefulness of the system.
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Compared with the results for the identical BSC case, this
example again shows that individual sensors and channels
might be useless, however, diversity can help make the system
useful again.

VI. CONCLUSIONS

In this correspondence, distributed detection systems with
imperfect channels from the local sensors to a fusion center
are considered. It is found that, in the asymptotic regime, there
is always performance gain from the output of the system
if the channel itself has non-zero capacity. However, it was
shown that with a finite number of sensors, observing the
channel output cannot help in reducing the error probability
performance at the fusion center under certain conditions,
regardless of channel-aware optimal system design. Increasing
the number of sensors or the quantization levels at local
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probability of H0 varies from 0.05 to 0.45. The lower left region against
thresholds is the useful parameter region.

sensors can help relax the requirements on channel quality
thus providing a meaningful way for enhanced channel usage.

APPENDIX

PROOF OF Theorem 1

The CI is given by CIc =
−min0≤s≤1 minγ log2

[∑Dy

y=1 P s
0 (y)P 1−s

1 (y)
]

[17]. Since

Pk(y) =
∑Du

u=1 P (y|u)Pk(u), k = 0, 1, Eq. (1) is easy to be
derived.

To show rank(M) = 1 =⇒ CIc = 0, notice that
rank(M) = 1 implies that all columns of M are the same,
i.e., P (y|u) = P (y), which, when plugged into Eq. (1), can

readily show CIc = −min0≤s≤1 minγ log2

(∑Dy

y=1 P (y)
)

=
0. To show the only if part, i.e., CIc = 0 =⇒ P (y|u) = P (y)
for any (y, u) pair, we note

CIc = 0 =⇒
Du∑
u=1

P (y|u)P0(u) =
Du∑
u=1

P (y|u)P1(u)

=⇒
Du∑
u=1

P (y|u)(P0(u) − P1(u)) = 0 (11)

for y = 1, . . . , Dy . The above equation is true for any vector

p0−1 = [P0(1) − P1(1), . . . , P0(Du) − P1(Du)]T (12)

which satisfies
∑Du

u=1(P0(u)−P1(u)) = 0. Thus, there exists
a rank Du − 1 matrix P0−1 that spans the whole space of
these vectors, i.e., for any p0−1 in (12), there exists a vector
a such that p0−1 = P0−1a. Therefore, from Eq. (11), we
have MP0−1 = 0. Since for any two matrices A and B,
rank(A)+rank(B)−n ≤ rank(AB), where n is the number
of rows in B, we have rank(M) + rank(P0−1) − Du ≤
rank(0) = 0. Therefore rank(M) = 1. Q.E.D.
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