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Abstract

A rigorous statistical theory for characterizing the performance of medical ultrasound systems for
lesion detection tasks is developed. A design strategy for optimizing ultrasound systems should be
to adjust parameters for maximum information content, which is obtained by maximizing the ideal
observer performance. Then, given the radio-frequency data, image and signal processing
algorithms are designed to extract as much diagnostically relevant information as possible. In this
paper, closed-form and low-contrast approximations of ideal observer performance are derived for
signal known statistically detection tasks. The accuracy of the approximations are tested by
comparing with Monte Carlo techniques. A metric borrowed and modified from photon imaging,
Generalized Noise Equivalent Quanta, is shown to be a useful and measurable target-independent
figure of merit when adapted for ultrasound systems. This theory provides the potential to
optimize design tradeoffs for detection tasks. For example it may help us understand how to push
the limits of specific features, such as spatial resolution, without significantly compromising
overall detection performance.

Index Terms

Cancer; decision theory; image quality; speckle

I. INTRODUCTION AND MOTIVATION

Ultrasound systems are often characterized by parameters such as spatial resolution, contrast
resolution, and echo signal-to-noise. Because there are inherent tradeoffs among these
features, a judicious balance must be made that is application dependent. How to do this is
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frequently unclear. This paper outlines a method to optimize system design tradeoffs in a
task specific way. From this perspective, we define image quality specifically as the ability
of the system to perform a given diagnostic task. In this paper, we focus on detection tasks.
One application of this theory could be breast cancer detection. In a recent screening study
[1], ultrasound in combination with mammography was shown to significantly improve the
detection of breast masses compared to mammography alone, especially in women with
dense breasts. Because ultrasound exams are safe, quick, and relatively inexpensive, new
technology optimized for detection may enhance the role of ultrasound in screening
programs as an adjunct to mammography or as a stand-alone screening modality.

Our methodology is to model essential features of the system and the body with a statistical
framework. A linear systems model can accurately represent radio-frequency (RF) echo
signals given object variability and electronic noise. Equipped with the statistical model, we
then approach the problem from a statistical detection perspective.

Smith and Wagner [2]–[4] developed a statistical model for ultrasonic image quality that
provided new insights into the detection process even though it ignored electronic noise and
assumed object functions that generate fully developed speckle, shift-invariant focused
imaging systems, and large low-contrast lesions. They also studied B-mode images and the
squared envelope signal rather than the RF signal. We hope to relax some of these
assumptions and include noise in the analysis. Our goal is to use the theory to develop
systems that maximize the information content of the raw RF signal specifically for lesion
detection and understand the role of phase information discarded by B-mode systems.

The analysis developed here provides simple but powerful design equations that can be used
to optimize ultrasound systems for detection tasks in a fundamentally new way. It will allow
us to explore the merits of new techniques for breast cancer detection and other applications.

II. BACKGROUND

A. Task-Based Approaches to System Design and Image Quality Assessment

Our approach to studying image quality for ultrasound systems is quantitative and specific to
detection tasks. We define our detection task as follows: given an image or raw RF echo
signal data, decide between two hypotheses H1 and H0. The signal present hypothesis H1 is
that there is a lesion present. The null hypothesis H0 is that there is no lesion. This type of
task is often called a YES/NO (YN) task [5]. A related task that we will sometimes consider
is a 2-Alternative Forced Choice (2AFC) experiment. The task is to consider two image
datasets: one with the lesion present (H1) and one with the lesion absent (H0) and decide
which of the two images has the lesion. 2AFC tasks are rarely encountered clinically but
they are useful for controlled observer performance experiments.

Task assessment can take place either at the detection or display stage of image formation
[6]. Detector-level assessments evaluate designs based on the information content of the
echo signals recorded. Factors influencing information content include transducer design,
beamformation, aberration correction, coded pulse transmission, contrast agents, and
prebeamformer and postbeamformer electronics. Display-level assessments seek to evaluate
the human observer’s accessibility to information. Processing methods may enhance
display-level performance but only to the extent that the diagnostic information is originally
in the raw echo signal (hence, the importance of detector level development). Processing
methods include filtering, deconvolution, compounding, color-flow processing, elasticity
estimation, etc. This paper primarily focuses on detector-level development. To do this we
aim to optimize the performance of the ideal observer [7].
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B. Observers for Detection Tasks

Observers include trained humans and numerical algorithms that make decisions based on
an examination of the data. Mathematical observers use a scalar decision function of the data
vector g as a test statistic t(g). In this paper, we consider the data vector g to be the
beamformed RF echo signal. B-mode systems process the echo signals to form A-scan lines
that form the digital image b displayed by the system. A numerical observer makes a binary
decision by comparing the test statistic with a scalar threshold tc. If t(g) > tc, decision D1
(signal present) is made, otherwise decision D0 is made. For detection tasks, human observer
studies are conducted to measure detection performance, often at great expense.
Mathematical observers are an efficient substitute for humans if their performance can be
used to predict human performance.

Performance is quantified with a receiver operating characteristic (ROC) curve [5]. When
the test statistic is normally distributed, the ROC curve is parameterized by the detection
signal-to-noise ratio (SNR)

(1)

where the quantities in the numerator and denominator are the mean and variance of the test
statistic conditioned on the signal present and signal absent hypotheses.

C. Ideal Bayesian Observer and Its Role in System Design

In this paper, we are concerned with the ideal observer, which acts not on the envelope
detected B-mode image b, but rather on the raw RF echo signals g. The ideal observer is the
optimum decision-function t = λ(g) given the data. It is ideal in the Bayesian sense that λ
yields the largest true-positive probability for any false-positive level. The test statistic of
the ideal observer is the log-likelihood ratio [5], [8]

(2)

We would like to be able to model (and measure) the performance of the ideal observer
decision function because maximizing the ideal observer performance means maximizing
the diagnostic information content in the raw data [8] (detector-level development). It is the
role of signal and image processing algorithms to make the information in the raw data
maximally apparent to human observers (display- level processing).

III. THEORY

A. Linear Systems Model and Assumptions

Medical ultrasound systems operate by transmitting pulsed beams of acoustic energy into
the body and collecting the backscattered signal. Spatial variations in density and
compressibility within the microstructure of the body act as scatterers. The RF or IQ (in-
phase and quadrature) echo signal g can be modeled as a linear system of the object function
[9]. IQ data (gI, gQ) is formed by mixing RF echo signals with cosine and sine functions at
the carrier frequency then low-pass filtering. B-mode signals discard phase information and

merely detect the signal envelope, formed as , where the squares and the square
root act on the individual elements of the respective vectors. Alternatively, the B-mode data
may be formed by rectifying and low-pass filtering: b = LPF(|g|). In computing the log-
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likelihood ratio, Smith and Wagner considered independent speckle spots of the B-mode or
intensity signal rather than correlated pixels of the RF data. In this paper, the log-likelihood
calculation is based on the pre-envelope (RF or IQ) signal to avoid losing information
during B-mode processing.

A solution to the small-amplitude acoustic wave equation in scattering media has led to a
linear systems model of ultrasonic imaging [9], represented as g = ℋf + n, where g is a
vector of digitized echo signals, f(x) is the object function defined over spatial locations x,
ℋ is a continuous-to-discrete integral operator that maps object functions into data space
and n represents electronic and quantization noise. The linear model is capable of describing
speckle texture throughout the beam profile—not just in the focal region. The model
explains, for example, why nearfield speckle is finer than at the focus—even though point-
spread functions are broader [9]. For a N × M matrix of recorded echo signals, g is a N M ×
1 RF column vector formed by vertically concatenating the RF image columns. For
simplicity we consider two-dimensional (2-D) object and system models, although three-
dimensional (3-D) models could be considered. For 3-D beams, the echo signal g can be
considered a coherent sum of echo signals from a vertical ensemble of 2-D object functions
fi such that g = ∑i ℋi fi + n, where ℋi is the 2-D slice through the spatial sensitivity function
(ssf) at elevation i.

The sum can again be written as a linear system g = ℋf + n by redefining ℋ and f. The 2-D
model assumes that one elevational slice of the ssf is adequate. A 2-D model is presently
justifiable—especially when considering targets with elevational depths greater than the
elevational beamwidth.

Over small regions, often called isoplanatic patches, the system may be considered shift-
invariant. We choose to analyze detectability over isoplanatic patches—an assumption that
is not essential for the analysis, but greatly simplifies computation.

Another reasonable approximation is that the object function can be considered discrete, so
that the linear system can be written in matrix form

(3)

The isoplanatic assumption leads to N M × N′ M′ block-Toeplitz H matrices which may be
approximated as block-circulant. The error in this approximation is expected to be small if
the psf is compact [10]. This matrix notation will allow us accessibility to a wide range of
statistical tools, matrix identities, and fast Fourier computational techniques. This simple
approach helps us focus on optimization of the axial and lateral properties of the beam.
Similar to Abbey [11], we estimated system and noise parameters for the statistical model
from a 7.2-MHz transducer using a Siemens Elegra Ultrasound system by scanning a
graphite-agar phantom. The 2-D RF power spectrum was estimated from 10 spatially
independent recorded echo fields near the transmit focal region. Dynamic receive and
aperture growth1 were used so that the speckle is very uniform over the image (large
isoplanatic patches). The pulse parameters were fit to a 2-D Gaussian function. The
measured echo SNR of these images was 47 dB (defined as the peak value of the signal
power spectral density divided by the noise power spectral density level),2 and the estimated
axial and lateral pulse widths were specified by the Gaussian parameters σx = 0.08 and σy =
0.15 mm, respectively. The axial and lateral dimensions of a pixel are 0.054 mm by 0.12

1Dynamic receive processing allows one to focus at each receive location—even when only one transmit focus is possible. Aperture
growth is a way of dynamically changing the receive aperture size to maintain an approximately constant receive F-number.
2Under the definition of signal power divided by noise power, the echo SNR is 43.2 dB.
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mm, respectively. Fig. 1 shows a representative schematic of the linear system model of
image formation. Fig. 2 compares images formed from simulated and measured echo data
from a uniform Rayleigh scattering phantom.

B. Signal Known Statistically

By modeling essential features of the system and the tissue, a statistical detection theory can
be formulated for ultrasonic tumor imaging. Although shape, echogenicity, spatial
heterogeneity, margin characteristics, and posterior acoustic shadowing are important
diagnostic features in applications such as breast cancer sonography [12] we focus on
echogenicity as shown in Fig. 1. Furthermore, although the role of breast sonography so far
has been as an adjunct to mammography and as a means of discriminating lesions as benign
or malignant, we choose to focus on ultrasound as a detection modality. This paper may be
considered as a stepping stone to more general discrimination tasks since the theoretical
descriptions are similar. We presently consider a signal-known-statistically (SKS) detection
task. Known features of the SKS task are noise power, lesion size, object contrast
(echogenicity), shape, and location, as well as the system spatial sensitivity function h.
Unknown are the precise random realizations of the object function and noise processes.

We assume that the object function can be modeled as a zero-mean multivariate normal
(MVN) random process so that the echo signal is also a zero-mean Gaussian random process
with distributions for signal present and signal absent hypotheses given as

(4)

In a manner similar to previous work [11], [13]–[15], the signal present and signal absent

covariance matrices have the form , where Kf represents the covariance of
the object and represents the additive noise. We represent a lesion as an object region where
the variance differs from the surrounding region (see Fig. 1). In general, the signal present
covariance matrix K1 ≡ Kg|H1 = 〈ggt|H1〉 can be thought of as the sum of the background
covariance and a differential signal covariance K1 = K0 + ΔK, where ΔK = K1 − K0 and
where K0 ≡ Kg|H0.

C. Ideal Observer Test Statistic: The Log-Likelihood Ratio

The log-likelihood ratio is the decision function of the ideal observer. From (2) and (4) it
may be written in terms of the RF data as [11], [14], [15]

(5)

Ignoring constants and data-independent terms, a sufficient test statistic of the ideal observer
can be written more concisely as

(6)

This sufficient test statistic has identical performance to the full log-likelihood. While we
use (6) in our paper, the full log-likelihood can be used to take advantage of special
properties of log-likelihoods as discussed in [8], [15], and [18]. Note that the test statistic is
quadratic in the data. This is to be contrasted with a signal known exactly (SKE) test statistic
considered by Zemp et al. [13] that is linear in the data. While the linear observer
corresponds to a prewhitening matched filter, the quadratic observer (6) corresponds to a
prewhitening intensity integrator. Specifically, the strategy of (6) is to decorrelate the data
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with respective signal present and signal absent inverse covariance operations  and

, then integrate the intensity of the resulting images, and subtract. Note that the ideal
observer test statistic cannot generally be obtained from the envelope signal, since the
decorrelations cannot be performed after the phase information contained within g is
discarded.

D. Monte Carlo Method and Power Series

Abbey [11] introduced a 2AFC Monte Carlo method for assessing the performance of the
ideal observer. In this method, pairs of signal present and signal absent stochastic object
functions were simulated using random number generators. Signal present and signal absent
echo signals were then modeled using the linear systems approach (3). The echo simulation
data pairs were then used to compute values for the signal present and signal absent test
statistic. The computed test statistic values were then compared to make a decision on which
simulated image possessed the lesion. A key contribution was a way of computing the

inverse covariance matrices. The covariance matrices are given by  and are
assumed to be known analytically rather than estimated from the Monte Carlo echo data. A
key contribution was a way of computing the inverse covariance matrices. The signal absent
covariance is stationary, and may be approximated as a convolution operator in the
isoplanatic region—thus may be inverted quickly using Fourier techniques. The signal-
present covariance is however nonstationary, greatly complicating the inversion. Standard
matrix inversion techniques are impractical given the size of the data covariance matrices
considered (16 384 × 16 384 for the 128 × 128 images considered below). To accomplish
the inversion, a power series was used. For a square matrix A

(7)

The series is convergent when the magnitude of the eigenvalues of A are less than unity. The
inverse signal-present covariance may be written as

(8)

The inverse operation may be implemented using (7) with . One does
not actually need to deal with these very large covariance matrices to implement the

calculation of the test statistic. Instead  and H can be implemented through Fourier
techniques to be discussed shortly. The power series generally converges quickly for low
and moderate contrasts.

The disadvantage of Monte Carlo methods is that one must generate a large number of
simulated images, which may be computationally burdensome. If one is doing this already
for a parallel observer study, then this technique is a natural method. If this is not the case,
quicker analytical predictors of performance may be used, as will be described below.
Importantly, the analytical expressions offer significant intuitive insights that are not
obvious from the Monte Carlo approach.

E. Statistical Distributions of the Log-Likelihood

We are interested in calculating the SNR of the ideal observer analytically, rather than by
using Monte Carlo techniques. To do so, we need to know the moments of the log-likelihood
ratio. These can be obtained from the characteristic function [16] of the test statistic, viewed
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as the Fourier transform of the probabilities pr(λs|H1) or pr(λs|H0). Consider the
characteristic function for the hypothesis Hj (see [17, eqs (17.22)–(17.24a)])

(9)

where . The characteristic function can be used to calculate the moments of the
log-likelihood ratio.3 We may also use the identity in [17, eq. (17.13)] to write the
denominator of (9) as

(10)

The advantage of this form is that the series converges quickly for small contrasts ΔK. The
traces are computationally straightforward to compute by means of the 2-D fast Fourier
transform (2DFFT), and they represent the cumulants of the log-likelihood ratio. From a
second order truncation of (10), the characteristic function is normal and the signal present
distribution density is approximated in the low-contrast limit by a normal distribution (see
[17, eqs. (17.26) and (17.27)])

(11)

The normal approximation may alternatively be derived from the central limit theorem
without the low-contrast approximation for target areas that contain a large number of
postwhitened speckle spots. From this point of view, the ideal observer test statistic is a sum
of whitened pixel intensities—and each pixel may be regarded as a random process. The test
statistic represents a sum of many independent random processes when the target region
contains a substantial (e.g., >30) number of whitened speckle spots. The main point now is
that the moments from (11) may be used now to calculate ideal observer detection
performance.

F. Detection Signal-to-Noise for SKS Tasks

From the above analysis, the SNR of the sufficient test statistic λs may be calculated from
(1) and (11) as

(12)

When pixels are nearly independent, covariance matrices are approximately diagonal and
(12) reduces to [4, eq. (33)]. Our approach allows for a more general correlation structure.
The power series (7) and (8) can be used to evaluate the traces. A second-order
approximation to the ideal observer SNR is

(13)

3For a perfect system, the matrices K are diagonal, and given enough pixels in the lesion area, the test statistic is a χ2 random
variable. In this case, the characteristic function reduces to a product of χ2 characteristic functions.
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When the test statistic is not normally distributed (e.g., the case of small lesions with few
speckle spots), the expression (13) still holds under a low-contrast approximation. In this
case, however, although it is a representative performance metric, it may not rigorously
parameterize the ROC curve. For higher contrasts, more terms may be retained in the series
expansion. Clarkson and Barrett introduced another SNR (5.61 of [15]) related to the
Bhattacharyya distance, a metric quantifying the “distance” between two general probability
density functions. Reassuringly, a second order approximation to the Clarkson-Barrett SNR
discussed in [18] converges to (13). Also note that if we consider the full log-likelihood ratio
rather than the sufficient test statistic (6), special properties apply [8]. In particular, normal
log-likelihood ratios have only one independent moment, say the mean under the signal-
present hypothesis [8], and the squared SNR in (12) and (13) is exactly twice this mean (see
Barrett and Myers [18, Section 13.2.7] and note that G(β) = constant for the Gaussian case.
In the next sections, we focus on ways of analytically and numerically evaluating this
important expression, and we explain how it can be used for system optimization.

G. White Gaussian Noise (WGN) Object Model

If a WGN object model is assumed for the signal and the background, the signal-present

object covariance may be written as , where S is a diagonal matrix with
elements rastorized from the N × M signal variance template

(14)

The nonzero elements Si of S, thus, represent a patch of differing variance in the object (see
Fig. 1), and are negative for hypo-echoic lesions. They are related to the object contrast
factor (OCF) for ultrasound defined by Insana and Hall [24] as the relative change of

standard deviation: . The signal covariance matrix may be written as ΔK =
HSHt and the covariance of the signal present matrix can, thus, be written as

(15)

H. Pre-Envelope Deconvolution

The ideal observer processes raw data in an optimal way to make a decision—its
performance is only limited by the diagnostic information content in the echo signal.
Although a human observer model is needed to optimize display-level processing,
algorithms that mimic the ideal observer can be used to design systems for maximum task-
relevant information content. Truncating the power series expansion, a first-order

approximation to the ideal observer test statistic  (2.9 of [11]) reveals

that the ideal observer strategy is to deconvolve the data with  which has the
form of a spatial Wiener filter.

The filtered echo signal may be envelope detected as is done for B-mode systems. Envelope
detection accomplishes two purposes. First, it removes carrier modulation frequencies from
the signal. Second, it transforms the zero-mean echo signal into a form where the intensity
of the envelope signal is approximately proportional to the object function variance.
Deconvolution followed by envelope detection transforms the raw data into a form that may
be easily interpreted by a human observer, and has shown to improve human observer
performance over standard B-mode detection [11]. Recent coded excitation systems have
successfully used deconvolution processing to gain significant advantages in the penetration
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of ultrasound systems [19], [20]. Our detector-level framework adds the potential to
optimize penetration-resolution tradeoffs.

I. Fourier Techniques

The test statistic (6) and analytic expressions for the ideal observer SNR may be evaluated
with Fourier techniques. We represent the 2-D Fourier transform in matrix form as F, and

write  and ΔK = F−1ΦΔKF. Because  is the covariance matrix of a
stationary random process it is block-Toeplitz and can be approximated as block circulant
[10]. The discrete Karhunen-Loeve transformation is simply the 2-D discrete Fourier

transform F, hence, the diagonal matrix  has elements equal to the power spectrum of
the background and noise processes |H(u)|2 Sb(u) + Sn (u) rastorized into a vector, where Sb
(u) is the power-spectral density of the background object texture and Sn (u) is the noise-

power spectrum. We can also write , where ΦS = FSF−1 is block-circulant
and Hermitian, and DH = FHF−1 is the diagonal matrix of the eigenvalues of H. The
eigenvalues are rastorized elements of H (u), the 2-D Fourier transform of the system psf,
h(x).

As an example of the Fourier technique, consider calculating a scalar term 
in the expansion of the test statistic (6) for a Monte Carlo study. Its Fourier transform is

. To implement this, we would take the 2DFFT of the RF echo
field g (arranged in the form of an N × M matrix), multiply by the N × M transfer function
H* (u)/(|H(u)|2 Sb (u) + Sn (u)) (which is like a Wiener filter), take an inverse Fourier
transform, multiply the variance template s(x) element-by-element, take another 2DFFT,
multiply by the transfer function H*(u)/(|H (u)|2 Sb (u) + Sn (u)), then multiply by the
Fourier transform of g and sum the elements of the resulting matrix. A recursive algorithm
can be used to implement the full expansion of the test statistic. Fourier techniques will be
used to obtain closed-form expressions for ideal observer detection performance.

J. Ideal Observer SNR for Low-Contrast Lesions

Using Fourier techniques and assuming a WGN object model, the ideal observer SNR in the
low-contrast limit, (13) becomes

(16)

where . The elements of this diagonal matrix are the elements of the 2-D
GNEQ, or Generalized Noise Equivalent Quanta [21]

(17)

rastorized into a vector. The Noise Equivalent Quanta used in photon modalities is a
function of spatial frequency u and given as NEQ(u) = G2 × MTF(u)/NPS(u), where G is
the large area contrast transfer, MTF is the modulation transfer function and NPS is the
noise power spectrum. NEQ used for photon imaging modalities has historical origins with
Shaw [22] and others [23]. In photon imaging, NEQ represents the spatial frequency-
specific density of quanta at the input of an ideal detection system that would yield the same
output noise as the real system under evaluation. The concept can be generalized for any
imaging technique by considering energy or information density in place of photon density.
Generalized NEQ as described by Barrett and colleagues [21] provides provision for a
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stochastic background texture of the object. For ultrasound systems the GNEQ quantity is a
measure of the spatial frequency sensitivity of detecting a signal in a background texture and
in the presence of electronic noise. In other words, it is the fraction of speckle energy (rather
than photon energy) that contributes to detection.

Because ΦS is Hermitian, the trace may be written as .
Noting that ΦS is a block-circulant convolution operator, we write this as a continuous
integral over spatial frequencies

(18)

where * represents 2-D convolution over spatial frequencies u. The integral is evaluated out
to the Nyquist limit. It represents the ideal observer detectability in closed form in terms of
the GNEQ and the “task.” The task is defined by the Fourier transform of the object signal
variance template

(19)

where s(x) is given by (15). For large lesions, the task T(u) approaches a delta function with
amplitude proportional to the lesion area A, and the convolution with GNEQ in (18) results
in only a slight blurring of the GNEQ shape which we ignore. For lesions larger than several
correlation lengths, the low-contrast ideal observer SNR becomes

(20)

where the modulation transfer function is defined as

(21)

with |H|o defined as the maximum of |H(u)|. C is the lesion contrast given by

. The range of validity for the large area approximation will be
tested in the numerical results section. The integral in (20) is evaluated over the spatial
frequency domain out to the Nyquist limit. Importantly, the integral in (20) is a target-
independent figure of merit for characterizing detection performance of ultrasound systems.

When noise and object power spectra are flat across the system bandwidth 
represents the reciprocal of the spatial frequency peak of echo SNR (eSNR), defined as peak
signal power spectral density over mean noise power spectral density.

Equation (20) has a form similar to the Smith-Wagner ideal observer SNR which can be
written as [4], [24]

(22)

where Sc is the correlation area,  for Rayleigh statistics of the envelope signal [2],
and C is the small-amplitude signal contrast. This convenient equation tells us that the
greater the number of speckle-spots per lesion area, the better the detection performance. For
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the SKS ideal observer acting on the RF signal, the integral in (20) essentially replaces

 in the Smith-Wagner theory. The new factor includes electronic noise and includes
substantial information about the system as encoded in the MTF. Phase information such as
phase modulation of the point-spread functions may contribute significantly to the detection
performance. The integrand of (20) represents the power spectral density of an ideal
noiseless echo signal that is prewhitened in a way that assumes noise is present. The integral
is very much like an inverse correlation length of the prewhitened data—or in other words
the speckle spot density after prewhitening—thus it reflects the prewhitening potential.

In a previous paper [13], we introduced an SNR metric for ultrasound detection tasks which
differs from the description here. In that paper, we considered first a SKE detection task—
where the signal was an additive contribution to a background random process. The
detection SNR2 was then averaged over object signal realizations. In that framework the
GNEQ also played an important role. An important difference between the SKS theory
developed here and SKE theories in previous literature [13], [23] is that there is a quadratic
dependence of the GNEQ rather than a linear one. Thus, unlike our previous model [13], the
SKS theory predicts that the detection SNR2 is proportional to the square of the contrast,
which is more consistent with the Smith-Wagner description.

So far in this paper we have outlined three main approaches for computing the SKS ideal
observer performance: 1) the Monte Carlo approach, (12), using the iterative power series as
discussed in [11]; 2) the low-contrast approximation, (18); and 3) the large area, low-
contrast approximation, (20). All three have assumed fully developed speckle, local shift-
invariance, and used the WGN object function model, however, more general object models
could be considered. The Monte Carlo technique is more accurate for large contrasts
because the power series is not prematurely truncated, however, it requires extensive
computation time compared to (18) and (20), and has less analytic intuition. In Section IV,
we wish to show that even for fairly small lesion sizes and moderate lesion contrasts, (20) is
a good approximation to the ideal observer. Equations (18) and (20) are the primary
theoretical results of this paper.

IV. NUMERICAL RESULTS

A. Accuracy of the Low-Contrast and Large Area Approximations

We investigated the accuracy of the low-contrast approximations discussed above. To do so,
we compare the predicted detectability of (18) and (20) with the performance of the Monte
Carlo approach using the power series (7) and (8). The Monte Carlo approach is the standard
against which our approximations should be measured because the power series is iterated
until convergence is achieved. For Monte Carlo simulations, 2000 pairs of signal present and
signal absent IQ data were simulated using model parameters derived from measured
ultrasound data in a manner similar to Abbey [11]. For each image pair in the 2AFC
experiment, the ideal observer test statistic was computed using the power series (10). The
power series used up to 16 terms. Contributions of the last term were seen to be below
0.001% of the test statistic sum. For hypo-echoic lesions, the RF image with the smaller test
statistic value was scored as the lesion present image (larger test statistic used for hyper-
echoic lesions). The percent of correct choices was plotted over a range of contrasts and for
three different lesion sizes. The 2AFC SNR is related to percent correct (PC) as SNR2AFC =
2Φ−1(PC2AFC) where Φ is the integral of the standard normal distribution. The YN ideal

observer SNR is related to 2AFC SNR by the equation  [5], [24], thus

(23)
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The results are shown in Fig. 3, (hyper-echoic lesions) and Fig. 4 (hypo-echoic lesions).
Note that for hypo-echoic lesions, the large area approximation, (20), over-approximates
(18) advantageously for large lesions. Fig. 5 illustrates the representative lesion sizes. Error
bars in the ideal observer SNR represent one standard error and correspond to detectabilities
evaluated at PC + δPC and PC − δPC, where δPC is the standard binomial sample error

 and NMC is the number of Monte Carlo trials [24]. As expected for
low contrast, agreement is very good. Divergence is larger at higher contrasts, but for large
lesions the SNR is so high that the probability of correct identification is essentially 100%—
thus the disagreement may not be terribly important. The results show the predicted linearity
with contrast. We investigated the linearity of the ideal observer SNR2 with lesion area as
predicted by (20). Illustrating this, Fig. 6 shows the remarkable linearity of SNR with lesion
diameter even for lesion sizes equivalent to only a few correlation lengths (a 0.5-mm-
diameter lesion contains 3.3 σy and 6.25 σx). Fig. 7 shows the predicted SNR of the ideal
observer with decreasing electronic noise.

B. System Optimization

In high-noise environments, longer pulse lengths are sometimes desirable to improve signal
energy and, hence, tissue penetration. Longer pulses, however, degrade spatial resolution.4
We predicted ideal observer performance for a range of pulse lengths (with constant
amplitude) for a 4.92-mm-diameter lesion with contrast of −9.75%. In Fig. 8 and Fig. 9, we
plot detectability curves for a range of echo SNRs. Fig. 9 compares the Monte Carlo
response and (18) and (20). The approximations under-estimate the Monte Carlo results (due
to truncation of the power series) although the predicted peak value remains the same.
Higher noise levels could correspond to deeper penetration depths, higher frequency
excitations, or poor electronic shielding. In high echo SNR situations, short pulses are seen
to be superior, however, in high noise environments, longer pulses are advantageous.

V. DISCUSSION

The results of Fig. 3–Fig. 7 suggests that the low-contrast and large area SNR
approximations of the ideal observer are reasonable to use—even for relatively small lesions
and moderate contrasts. For small lesions or large contrasts, the approximations do not
necessarily agree within the error bars of the Monte Carlo results but are still remarkably
close. The SNR expressions can be computed very quickly, thus avoiding time consuming
Monte Carlo methods. Equations (18) and (20) could be used as a quick first step in an
optimization procedure. The Monte Carlo approach could then be used to fine-tune the
optimization. The ability to quickly compute the ideal observer performance represents an
important step in understanding how to optimize ultrasound systems for detection tasks.

Fig. 7 illustrates the impact of noise on the ideal observer. Electronic noise hinders the
ability of the ideal observer to prewhiten the data. In an ideal noiseless system, the ideal
observer performance is only limited by sampling. Although human observer performance
(not investigated here) is likely to saturate and plateau with decreasing electronic noise
(since human observers have internal noise and, therefore, cannot prewhiten well), the ideal
observer’s performance continues to improve. Any differences between the ideal observer
and human observer suggest a role for image processing techniques such as pre-envelope
deconvolution. This also means that anything one can do to reduce electronic noise or
enhance signal energy may significantly enhance detection performance.

4This discussion refers to pulses with a time-bandwidth product (TBP) of 1. It does not apply to coded excitation where TBP > 1.
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For signals sampled using the Nyquist sampling criterion, any increase in sampling rate will
have negligible effect on the ideal observer5. Although more noise could potentially be
introduced with greater sampling frequencies, the ideal observer optimally filters the noise
power to maximize diagnostic detection performance.

A good system design would bandpass filter—thus not integrate all the noise out to the
Nyquist limit. Aside from antialiasing filters, we view such bandpass filters as part of
processing-level development. Since we wish to focus on detector-level development we
neglect such filters. The echo SNR metric we adopt (eSNR) reflects peak power spectral
density (PSD) over mean noise PSD. We could have also used total signal power divided by
noise power (SNRpwr). Without filtering, the SNRpwr at the optimum point is in Fig. 9 is
−5.1 dB, which means that there is nearly twice as much noise power as signal power!
However, there is a frequency band where signal PSD is greater than noise PSD (a
maximum of 7 dB) and the ideal observer chooses to use these channels to make its
decision, and filter to suppress noise. Thus, the image formed by filtering the noise in the
optimal way will have SNRpwr significantly above −5.1 dB. Consequently even with this
high noise environment, the ideal observer scores more than 80% of its decisions correctly
in a 2AFC experiment. We, thus, judged echo SNR based on PSD more appropriate and
representative summary measure of detection than SNRpwr. Moreover, when noise and
object power-spectral densities are approximately constant over the system bandwidth, 1/
eSNR occurs naturally in the denominator of (20). The complete frequency-dependent signal
and noise power spectral densities are needed to give a more complete description of the
detection task when this is not the case.

In the Smith-Wagner theory shorter pulses (larger band-widths) are always better, since in
their derivations, electronic noise was regarded as being less important than speckle and,
thus, ignored. Fig. 8 and Fig. 9 illustrate that the optimization point for pulse length is noise
dependent. Fig. 9 shows that the Monte Carlo response and (18) and (20) follow the same
trend, even though the approximations under-estimate the Monte Carlo results (due to
truncation of the power series). Note that from (20) neither lesion contrast nor area will
influence the optimum point as long as the assumptions of the theory are met.

In high noise conditions (e.g., high center frequency or deep tissues), there is a tradeoff
between penetration and spatial resolution. Longer pulses yield higher echo SNR than short
pulses but provide inferior spatial resolution. Fig. 8 shows the optimal tradeoff for detection
tasks. It shows that for high echo SNR situations shorter pulse lengths are always better,
however as echo SNR decreases, the optimization point shifts toward longer pulses. We see
that the system performs moderately well even in high noise conditions. One may
sometimes wish to sacrifice large ideal observer SNRs to optimize a parameter such as
spatial resolution that is important for other tasks such as discrimination, and still perform
very well on a wide range of detection tasks. Also, in some cases it may not be cost effective
to designing systems with very large ideal observer SNR values: for SNRs above 4 or 5 the
gains in percent correct or area under the ROC curve are small (within the measurement
uncertainties). The gains in true positive identifications depend on where a radiologist
chooses to operate on the ROC curve. Lesion size and contrast will affect the performance
levels but will not change the optimization point.

One way of improving spatial resolution could be to use higher transmit frequencies. Large
time-bandwidth codes [19], [20], [25] could be used to boost echo SNR to compensate for
increased attenuation—thus decreased penetration. This theory tells us how far we can push

5This discussion pertains to systems with negligible quantization noise. When there are inadequate quantization levels, oversampling
may help to reduce quantization noise, thus contribute to improved detection performance.
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these limits without significantly sacrificing detection performance. It could also lead to the
detection of much smaller lesions, thus reducing the number of false negatives. Fig. 9 shows
that even for a 2.95-mm lesion (only 9 pulse lengths) the approximations to the ideal
observer detection performance are still reasonable. This means the theory is very applicable
to identification of masses below 0.5 cm in diameter, which is the approximate size for
which mammography systems are ineffective.

A. Limitations and Extensions

It is important to discuss the limitations of our model. For example, we have neglected
aberration which can degrade detection and prewhitening performance. A criterion for a
good system design could be the relative robustness to aberration artefacts. Alternatively,
de-aberration strategies may be useful.

Our linear systems model is so far only 2-D. Although it is possible to extend the model to
include the elevation properties of the beam, the analysis is not included here for sake of
simplicity. Three-dimensional beam properties are a limiting factor when partial volume
effects due to elevational clutter are important.

The model has yet to include non-Gaussian statistics or background texture. Inhomogeneous
background variability degrades detection and, thus, influences system optimization [26],
[27]. Alternative observers could be studied that integrate measured power spectra, similar
to techniques discussed by Burgess [27] for mammography. To computationally evaluate the
ideal observer test statistic, unknown likelihoods must be estimated. Markov-Chain Monte
Carlo techniques [28] have been used for photon imaging modalities to evaluate the test
statistic when the background inhomogeneity, signal shape, and location uncertainty can be
modeled statistically, and may be applicable to ultrasound.

The detection theory developed here may stand without the need for including background
heterogeneity if we assume that clinical images include patches where the detection task
approximately reduces to the one that we have modeled, namely, detecting a region of
differing echogenicity. Thus, one design strategy could be to optimize the system for low-
contrast detectability assuming the worst expected background echo SNR.

A system and processing algorithms should ultimately be designed so that human observer
performance is as high as possible. This paper says nothing about modeling human observer
performance—a subject of future work. Models of human performance may greatly
accelerate processing-level development, since human observer studies can be minimized. It
is always a good strategy to optimize ideal observer performance, however it may not be
cost effective if human observers cannot access the additional information. Human observer
models would allow one to check whether a system design strategy (to optimize the ideal
observer performance) and a processing or reconstruction algorithm actually give the desired
improvement in human performance. Both human and ideal observer models together
should give engineers the tools for task-based system and algorithm design. Finally, any
design should be experimentally evaluated in vitro on phantoms, and ultimately in vivo.

An important practical extension of this work is system optimization for breast cancer
imaging; specifically, discrimination between fluid filled cysts and solid masses. For a cyst,

the data covariance can be modeled as , where Scyst is a
diagonal matrix consisting of ones for locii inside the cyst, and zeros otherwise. Similarly
Kmass = K1 defined above for a lesion. The ideal observer test statistic can be computed as

. The inversion Kcyst of and perhaps Kmass may require a significant
number of terms in the power series expansion (7) because of high contrast and will
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converge faster in high clutter or high noise environments. Although low-contrast
approximations may be inappropriate the performance of this task can be assessed using
Monte Carlo techniques. Future work should aim to investigate differences between
optimization strategies for detection and discrimination tasks.

B. Application to System Design

Instead of guessing how to trade-off system parameters optimally for detection tasks, we
now have a rigorous yet straightforward theory to guide the design. System design
specifications can and should be task-based. For example, one could specify a minimum
lesion size and contrast for which some percent of successful detection is desired.

The theory in this paper could be used to explore several open avenues leading to improved
system design. 1) O’Donnell [25] argued that ultrasound systems use only a fraction of the
time-averaged energy that is possible from a regulatory point of view, and that coded
excitation techniques could improve penetration while maintaining spatial resolution. With
the recent lift of these regulatory limits [29], the combination of codes and higher transmit
amplitudes may offer significant gains. One may be able to use higher transmit frequencies
or harmonic imaging [30], [31] to improve spatial resolution while maintaining echo SNR
with codes. Our theory gives a framework for pushing the limits of spatial resolution with
the aid of codes. 2) Recent 1.75 or 2-D array technology may greatly enhance the diagnostic
performance of ultrasound systems for cyst-mass discrimination tasks [32]. 3) Novel
transmit and receive beamforming schemes and lateral codes [13] may also be an open area
for additional improvement. 4) Compounding with pre-envelope deconvolved B-mode
images is another way of reducing speckle variance while maintaining spatial resolution
[33]. This will have the effect of reducing speckle and averaging other artefacts. A
combination of coded pulses, higher transmit frequencies, pre-envelope deconvolution, and
spatial compounding may offer significant image quality improvements and may be possible
in realtime.

VI. CONCLUSION

This paper provides a means for evaluating the ideal observer performance for ultrasonic
detection tasks. The approach allows a system to be designed for detection and
discrimination tasks based on maximization of diagnostic information in the RF data.
Insightful analytical expressions are developed that relate the system RF point-spread
function, echo signal-to-noise, lesion contrast, and lesion area to detection performance of
the ideal observer. The analytical model describes lesion detection performance of
diagnostic systems for hypo- and hyper-echoic lesions as small as only a few speckle spot
lengths in diameter. For example, for the 7.2-MHz clinical system in our study, the theory
applies to lesions as small as 3 mm and contrasts as large as ∼30%. Monte Carlo
computational methods are capable of investigating even higher contrasts, and methods may
be extended to optimize for cyst-mass discrimination tasks and other related tasks relevant to
breast cancer detection, diagnosis, and staging.

Connections are made to Noise Equivalent Quanta (NEQ), a detection figure of merit widely
used in photon imaging modalities, as well as other classic models of image quality in the
literature. The generalized NEQ for ultrasound can be thought of as the fraction of speckle
energy that contributes to the detection task. The task is defined by the variance profile of
the lesion, or its associated Fourier magnitude.

Optimization of engineering tradeoffs such as resolution-penetration can be predicted using
the theory. It is seen that detection tasks are robust to a significant amount of noise. It may,
thus, be possible to use higher transmit frequencies to improve spatial resolution while
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maintaining contrast resolution. This may further be facilitated by codes and higher transmit
amplitudes. In this way, smaller lesions may be identified earlier in development, thus
reducing the number of missed diagnoses. The relative merits of coded excitation techniques
and novel beamforming strategies may be evaluated and optimized for detection tasks. The
framework should be able to accommodate nonlinear propagation, frequency dependent
attenuation, and possibly background texture. Future work aims to experimentally test
system optimization predictions. Finally, conventional B-mode processing suffers an
inherent loss of information and this analysis motivates RF deconvolution as a processing
strategy that mimics the ideal observer and, hence, may make information in the data more
accessible to human observers.
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Fig. 1.
Model of the object function magnitude of a circular hypo-echoic lesion, the pulse, RF and
IQ data, and the B-mode image.
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Fig. 2.
(a) B-mode data from a Siemens Elegra system scanning a homogeneous tissue-mimicking
phantom (b) Simulated B-mode image.
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Fig. 3.
A test of the accuracy of the low-contrast approximation over a range of contrasts and for
different lesion sizes for hyper-echoic lesions. Dot-dashed line: Monte Carlo approach with
iterative power series (gold standard), dashed line: (18), solid line: (20). Parameters were
otherwise the same as outlined in Section III.
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Fig. 4.
A test of the accuracy of the low-contrast approximation over a range of contrasts and for
different lesion sizes for hypo-echoic lesions. Dot-dashed line: Monte Carlo approach with
iterative power series (gold standard), dashed line: (18), solid line: (20). Parameters were
otherwise the same as outlined in Section III.
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Fig. 5.
Representative lesions sizes used in Fig. 3 and Fig. 4: 1.97-, 4.92-, and 6.64-mm diameters,
respectively. Contrast levels were purposely exagerated for visualization.
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Fig. 6.
A test of the linearity of the ideal observer SNR with lesion diameter for a −19% contrast
(hypo-echoic) lesion. Dotted line: Monte Carlo (gold standard), dashed line: (18), Solid line:
(20).
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Fig. 7.
Ideal observer SNRs (dotted line: Monte Carlo, dashed line: (18) and solid line: (20)) as a
function of varying amounts of electronic noise for a 4.92-mm-diameter lesion of contrast
−9.75%. Parameters were otherwise the same as outline in Section III.
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Fig. 8.
An example optimization study: ideal observer SNR as a function of pulse length for a range
of echo signal-to-noise levels for a 2.95-mm lesion of contrast of −9.75%. Pulse length is
defined as the 20-dB width of the pulse envelope and was measured as 0.316 mm for the
Siemens Elegra system at 7.2 MHz. Electronic noise standard deviations of 1, 25, 50, 75,
and 100 times that of the Elegra at maximum transmit power were simulated. The echo
SNRs will change as a function of pulse length. Echo SNRs of 47, 19, 13, 9.5, and 7 dB
existed at these noise levels with a 0.316-mm pulse length (vertical dotted line).
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Fig. 9.
Comparison of the Monte Carlo and analytic approximations to Ideal Observer SNR for the
7-dB pulse length optimization in Fig. 8. Dotted Curve: Monte Carlo, solid curve: (20),
dashed cuve: (18).
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