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Abstract— We present an approach for robust detection,
prediction, and avoidance of dynamic obstacles in urban en-
vironments. After detecting a dynamic obstacle, our approach
exploits structure in the environment where possible to generate
a set of likely hypotheses for the future behavior of the obstacle
and efficiently incorporates these hypotheses into the planning
process to produce safe actions. The techniques presented
are very general and can be used with a wide range of
sensors and planning algorithms. We present results from an
implementation on an autonomous passenger vehicle that has
traveled thousands of miles in populated urban environments
and won first place in the DARPA Urban Challenge.

I. INTRODUCTION

Driving in urban environments requires interacting with

other vehicles. Whether following behind a slow-moving

vehicle, coordinating to take turns with vehicles at intersec-

tions, or maneuvering around other vehicles to reach parking

spots, it is near impossible to take any voyage in a car without

being affected by another vehicle in some manner. As driver

assistance systems and autonomous vehicles become more

sophisticated, reasoning about such vehicle interactions will

become increasingly important. To do so, three capabil-

ities are required. First, other vehicles must be reliably

detected, through on-board or off-board sensors or vehicle-

to-vehicle communication. Secondly, the future behavior or

movement of these vehicles must be imparted or inferred.

And finally, this information must be used to provide safe,

intelligent courses of action for the driver assistance system

or autonomous vehicle. Although much research has been

performed in these areas, particularly for robotic systems,

current approaches fail to satisfy the requirements of general

urban driving.

For dynamic obstacle detection, the configuration of sen-

sors is dependent on the application [1]. Traditional con-

figurations for commercial driver assistance systems couple

a single sensor to a tracking model which is in turn tied

to a particular application (for instance Adaptive Cruise

Control [2]). However, driving in an urban environment with
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Fig. 1. Our autonomous vehicle “Boss” during vehicle interaction testing
in Pittsburgh, Pennsylvania.

arbitrary road shapes and open areas requires a more general

framework for modeling and tracking vehicles.

Further, no single sensor exists that fulfills the require-

ments for reliable dynamic obstacle detection in urban envi-

ronments. Strong empirical evidence of this comes from the

Urban Challenge Final Event where all of the autonomous

vehicles relied on multiple sensors in their perception sys-

tems [3]. Unfortunately, using multiple heterogenous sensors

increases the complexity of the sensor fusion task, since each

sensor has different characteristics that need to be considered

to combine their results effectively (see, for example, [4]).

For dynamic obstacle prediction, the simplest approach is

to assume that the obstacles remain in their current positions

forever and treat them as static. Existing approaches that do

treat them as moving often require perfect information about

their trajectories [5], [6] or assume they will continue along

their current heading and velocity [7], [8], [9]. However, in

practice none of these scenarios are realistic: it is unlikely we

will have accurate information from another vehicle as to its

future trajectory, nor in general will it just continue along its

current heading (or stop and sit still). Recently, researchers

have extended these approaches to incorporate a notion of

uncertainty in the future behavior of other vehicles through

probabilistic trajectory models, but these too are heavily

biased towards the vehicles continuing their exact current

behavior [10]. Sometimes, such models are the best we can

do as we have no additional information to draw upon, but

in structured environments such as roads and intersections

we can exploit this structure to generate much more realistic

predictions for the future movement of other vehicles.

Research into generating safe actions amongst moving ve-

hicles has traditionally focused on very simple environments

and simple vehicle models [11], [12], [13], or very short-

term (often instantaneous) actions [8], [9]. However, effective

driving in urban environments can require complex actions



(a) Road Structure (b) Static Obstacle Map (c) Dynamic Obstacle List

Fig. 2. Different Outputs from Perception

Fig. 3. Perception Architecture.

and non-trivial vehicle models. Further, the number of other

vehicles that must be modeled to ensure an action is safe

and reasonable can be very large and so efficient methods of

reasoning about this interaction are required.

In this paper, we describe an approach for reliable de-

tection, prediction, and avoidance of dynamic obstacles in

both on-road and unstructured areas of urban environments.

The resulting approach is robust to real-world sensor noise,

exploits structure in the environment for realistic prediction

of vehicle behavior, and ensures that selected actions are

feasible. Further, the approach is general enough to use with

a wide range of sensors, vehicle models, and path planners.

We also describe an example implementation of the approach

on “Boss”, Carnegie Mellon University’s autonomous vehicle

entry into the DARPA Urban Challenge, where it has been

employed for over 3000 kilometers of autonomous urban

driving and contributed to a first place finish in the com-

petition.

II. DYNAMIC OBSTACLE DETECTION

Boss’ perception system provides four principle pieces of

information: a vectorized road structure, a static obstacle

map, an instantaneous obstacle map and a dynamic obstacle

list. Because the dynamic obstacle list is influenced by,

and itself influences, the other perceptual outputs we briefly

describe all these components.

The road structure is a representation of the lanes and

intersections in the environment (in our case, in a vector

format – see Fig. 2(a)). This information can be obtained

from prior data (such as aerial imagery) and processed in

an offline manner or obtained through onboard perception.

In our system, we fused both sources to provide an accurate

description of the road in the vicinity of the vehicle.

Our static obstacle map representation is a two-

dimensional grid (see Fig. 2(b)). Once a dynamic obstacle list

is generated, care is taken to remove the dynamic obstacles

from this map so that they are not duplicated.

The instantaneous map is very similar to the static obstacle

map, but contains all obstacles, static and dynamic. No

distinction is made between the two classes and this map

is used for target validation in the sensor fusion system for

dynamic obstacle detection.

The dynamic obstacle list provides information about all

obstacles around the vehicle that are potentially moving.

Our dynamic obstacle detection approach represents each

dynamic obstacle by an estimation of its shape and its current

dynamic properties (see Fig. 5). While our architecture

can incorporate an arbitrary number of models, for this

application, the shape of each obstacle is one of two models:

a box model and a point model (see also [14]).

(a) Box Model (b) Point Model

Fig. 5. Different Dynamic Obstacle Shape Models.

The box model represents the shape of a vehicle while the

point model contains no shape information. The point model



Fig. 4. Detecting dynamic obstacles traveling on roads.

is used when sensor data does not support the box model

or when a box representation does not match the features

extracted from raw sensor data.

For the box model the velocity and acceleration vectors

are always parallel to the longer edge. The orientation is

described by an angle φ and an angular rate φ̇. The state

propagation equations couple the x and y coordinates via

the angle φ and angular rate φ̇ through a simple bicycle

model (see e.g. [15]). The point model is described by

two coordinates in the 2D plane and the corresponding

velocities and accelerations. For the point model, a constant

acceleration model with a gaussian noise component based

on the current direction of travel is used for state propagation

(see e.g. [16]).

The use of these fixed shape models significantly reduces

the complexity of the fusion algorithm (see [14]). In contrast

to algorithms using an adaptive or flexible shape model

these models do not necessarily represent the actual shape

of the tracked object. However, aligning the model with the

closest point to our vehicle in general gives a worst case

estimation of the position of the tracked vehicle relative to

Boss. Empirically, extensive testing showed this approach to

be sufficient for on road driving and driving in open parking

lots.

To reliably detect dynamic obstacles we use a multi-

sensor approach combining radar and laser data from dif-

ferent sensors and sensor technologies. For every sensor a

type dependent sensor module is used (see e.g. [17]). Each

sensor extracts a set of features and associated them to the

current set of dynamic obstacle hypotheses. For example,

laser scanner data is processed to extract “L” shaped corner

features that could correspond to vehicles.

Each feature is first validated by a sensor specific algo-

rithm. As an example, for features from a radar sensor, the

velocity measured by Doppler shift can be used. Next, the

features are checked against the instantaneous obstacle map

and the road shape to reject false positives (e.g. artifacts

caused by ground detections).

Remaining features are then fused into a set of box and

point dynamic obstacles. Each sensor module proposes an

interpretation of the extracted feature for the best tracking

model and a voting algorithm selects the best model for

object tracking. Fig. 4 provides an example of the approach

in action during an Urban Challenge qualification run. Here,

the first image shows the corner features extracted from

a planar laser sensor and the second image shows these

features being evaluated against the instantaneous obstacle

map (map shown in red) and the road. The third image shows

the resulting box and point object hypothesis that best explain

the sensor data.

Fig. 6. Different Dynamic Obstacle Velocity Models.

To differentiate between objects that have always been

static and may remain static (e.g. parked cars), vehicles that

have been moving but are currently stopped (e.g. cars at

an intersection), and vehicles that are currently moving, all

object hypothesis are further classified into a) Moving and

Not Moving and b) Observed Moving and Not Observed

Moving (see Fig. 6). The Moving flag is set if the object

currently has a velocity that is significantly different than

zero. The Observed Moving flag is set when the object has

been observed to be moving for a significant amount of time

and is cleared when the object has not been detected moving

for a prolonged period of time. These durations vary based

on the certainty with which the object has been classified as

moving.

The consideration of the Moving and Observed Moving

obstacle characteristics removes the need for traditional clas-



(a) Predicting future on-road behavior (b) Predicting future on-road and parking lot behavior

Fig. 7. Predicting the future behavior of other vehicles on roads and in parking lots.

sification and recognition of vehicles (see e.g. [18]). Further,

it allows the planning system the opportunity to treat each

of these obstacle classes differently. We also use these flags

to decide which of the detected obstacles should be removed

from the static obstacle map. Specifically, if an obstacle does

not have the Observed Moving flag set, we leave it in the

static obstacle map and do not treat it as a dynamic obstacle

during planning.

III. DYNAMIC OBSTACLE PREDICTION

If an obstacle has been detected as moving, it is important

to predict its future motion so that actions can be selected

that are safe through time. In general, this prediction problem

is extremely difficult, as we do not have control over these

other objects so knowing exactly where they intend to go

and how they intend to get there is impossible. However,

when these dynamic obstacles are vehicles operating in

urban environments, it is much easier to infer their likely

behavior through exploiting the structure inherent in such

environments.

The basic idea is quite simple: vehicles traveling on roads

typically follow common rules of the road. For instance,

a vehicle driving along a road is most likely to continue

driving along the road, and a vehicle at an intersection is

likely to choose to travel down one of the roads available

at the intersection. This simple idea allows us to generate

hypotheses for where a particular vehicle will travel in the

future, based on its current behavior and the structure of the

environment.

To implement this idea, we first take the detected dynamic

obstacle and its position, heading, and velocity. The box

model provides an explicit heading estimate, while the point

model provides an implicit heading based on the object’s

velocity. We then take a model of the road structure in the

vicinity of the dynamic obstacle and determine which road

lane(s) it is currently traveling in. We use the position and

heading of the dynamic obstacle to calculate what its current

offset is from that lane (i.e. whether it is currently traveling

down the center of the lane or is biased to one side). We

then hypothesize that the dynamic obstacle will continue to

travel down the lane and will likely maintain the same offset

that it currently has. However, if the dynamic obstacle is

not heading directly down the lane we predict that it will

change its heading over time to align itself with the lane.

For instance, if a vehicle is entering onto a road it is likely

it will align itself with the road.

To provide accurate predictions leading up to intersections

and stop-lines, we reason about the future speed of the

dynamic obstacle as well as its course. A dynamic obstacle

that is approaching a stop-line is predicted to slow down and

stop at the stop-line.

If a dynamic obstacle is at or approaching an intersection,

we generate multiple hypotheses of where it could go. To

do this, we calculate all the possible lanes that it could

leave the intersection from and generate hypotheses for

each of them using the above approach. Admittedly, this

provides a conservative prediction of the future behavior of

the vehicle (obviously, it could only actually travel down

one of these lanes), but because intersections are typically

prone to confusion and accidents, we feel that exhibiting

extra caution in these areas is prudent. Fig. 7(a) shows the

predicted behavior of the vehicles detected in Fig. 4.

Generating predictions for dynamic obstacles traveling on

roads is only part of the solution, however, since urban

driving also involves navigating through parking lots and

open, unstructured areas. In such scenarios, the structure

of lanes and intersections doesn’t exist and thus cannot be

exploited. Our approach in these areas is to extrapolate the

current behavior of the dynamic obstacles, similar to existing

approaches mentioned earlier.

However, rather than just using the position and velocity

of the dynamic obstacles to perform this extrapolation,

the box model allows us to also incorporate the heading

and curvature of the obstacle to provide a more accurate



Fig. 8. Following a road lane and avoiding an oncoming vehicle. Our vehicle generates a set of local trajectories down the travel lane and evaluates
each to select the best that is collision-free. The steps in the dynamic obstacle collision checking algorithm are shown performed for one of the candidate
trajectories (with the surrounding environment removed for clarity). First the worst-case bounding boxes are created for the candidate trajectory and
the dynamic obstacle trajectory. Next, since these intersect, the simple pessimistic circles are computed along the trajectories and collision-checked in
chronological order. As soon as these intersect at any time frame, the accurate vehicle polygons are collision-checked. In this case, these polygons intersect
so the candidate trajectory can be ruled out of contention. This hierarchical approach is equivalent to performing a full check involving the vehicle polygons
(shown in the second to last image). The final image shows a different candidate trajectory that does not intersect with the dynamic obstacle and is selected
for execution.

short term prediction. For the point model, which is mainly

used for dynamic obstacles that are further away from our

vehicle, the estimated heading is incorporated but curvature

is ignored. Although this prediction model is not as accurate

as the on-road model, typically the speeds employed in these

unstructured areas are much lower than those on roads, so

reacting to updated predictions is much easier and thus the

risks of collision are reduced. Fig. 7(b) shows this prediction

for a vehicle detected in a parking lot (as well as others

detected on the adjacent roads).

IV. DYNAMIC OBSTACLE AVOIDANCE

To safely avoid dynamic obstacles we rely on a motion

planner that generates a set of candidate actions for the

vehicle and selects from this set one that is collision-free

with respect to these obstacles. In our implementation each

of these actions is a dynamically-feasible trajectory that can

be directly executed by the vehicle. The length of these

trajectories varies based on the current speed of our vehicle

and is designed to ensure the vehicle could, if necessary,

come to a stop over the course of the trajectory. These trajec-

tories are generated using a model-based trajectory generator

developed by Howard and Kelly [19] that incorporates a

high-fidelity vehicle model to produce an accurate prediction

of the vehicle’s movement as it executes the trajectory. We

can then use this prediction along with our dynamic obstacle

predictions to determine whether a candidate trajectory for

our vehicle will cause a future collision with any of the

dynamic obstacles.

We perform this collision-checking efficiently using a

hierarchical approach. Given a candidate trajectory for our

vehicle and a predicted trajectory for a dynamic obsta-

cle (extended out in time to match the time duration of

the candidate trajectory), we first construct a conservative

bounding box for each trajectory. These bounding boxes

represent a pessimistic approximation of the area of the

environment the trajectories encounter. We then check to see

if these bounding boxes overlap: if they don’t, then the two

trajectories cannot intersect each other; if they do, then there

is a chance the trajectories intersect and we must continue

to investigate. We then take the two trajectories and step

along them in chronological, synchronized time. At each

time instant ti we construct a pessimistic bounding circle



of the extent of our vehicle and the dynamic obstacle and

check if these circles intersect. If we reach the end of our

trajectory without any such intersections, the two trajectories

cannot intersect each other1. If the circles intersect at some

time tk, then we construct accurate polygonal representations

of our vehicle and the dynamic obstacle at this time tk
and check if these polygons intersect. If so, the trajectories

will collide with each other and this candidate trajectory

is removed from contention. If not, we continue to step

forwards in time performing our pessimistic bounding circle

checks. We continue in this fashion until we reach the end

of the candidate trajectory.

This approach is significantly more efficient than perform-

ing the full polygonal collision-checking for every candidate

trajectory and dynamic obstacle pair, as the bounding rectan-

gle and circle checks are much less computationally expen-

sive than the polygon intersections. However, the accuracy

of the approach is identical to the accuracy of performing

full polygonal collision-checking.

Fig. 8 provides an example of the approach in action

during the Urban Challenge. In this example, the future path

of the dynamic obstacle (in green) is predicted to follow its

lane, and the centerline of our vehicle’s lane (shown in red,

second image in top row) is used to generate a set of can-

didate trajectories that follow the lane while providing local

maneuverability (candidate trajectories are shown in multiple

colors in the top-right image). Each of these trajectories is

then checked against the static and dynamic obstacles in the

environment. The steps in our hierarchical dynamic collision-

checking approach are shown in sequence.

As well as being used to rule out candidate trajectories, the

existence and predicted behavior of dynamic obstacles can

be used to modify the high-level planning of our vehicle. For

instance, in unstructured environments such as parking lots,

although there are not always lanes to provide guidance, it

is common to keep to the right (or left, in commonwealth

countries) of other vehicles. If another vehicle is detected and

predicted to interfere with some of our candidate trajectories,

we can modify the behavior of our vehicle to generate

different candidate trajectories that are offset to the right of

the other vehicle. This approach was used by our autonomous

vehicle in the Urban Challenge to produce safe, considerate

driving amongst other vehicles (both robotic and human-

driven).

V. CONCLUSION

We have described an approach for reliable detection,

prediction, and avoidance of dynamic obstacles in both on-

road and unstructured areas of urban environments. Our

approach is robust to real-world sensor noise, exploits struc-

ture in the environment for realistic prediction of vehicle

behavior, and ensures that selected actions are feasible. We

have implemented it on an autonomous passenger vehicle

and have found it to be very effective over the course of

1We assume the time-step used for stepping along the trajectories is
sufficiently small (in our case we set it to correspond to a distance of 0.2m
along the candidate trajectory)

several thousand kilometers of testing. Future research will

investigate how this approach can be adapted to commercial

driver assistance systems with a human-driven vehicle. In

particular, the approach seems well suited to intersection

assistance systems, where the road structure and features in

the environment can be used to provide prior information

for intelligent prediction. Our testing thus far has shown that

the presented collision avoidance approach can be effectively

used in these and other scenarios as an additional safety layer

below higher-level reasoning algorithms.
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