
Research Article

Detection System of HTTP DDoS
Attacks in a Cloud Environment Based on Information
Theoretic Entropy and Random Forest

Mohamed Idhammad ,1 Karim Afdel,1 and Mustapha Belouch 2

1LabSIV, Department of Computer Science, Faculty of Science, Ibn Zohr University, Agadir, Morocco
2LAMAI, Department of Computer Science, FSTG, Cadi Ayyad University, Marrakesh, Morocco

Correspondence should be addressed to Mohamed Idhammad; idhammad.mohamed@edu.uiz.ac.ma

Received 29 November 2017; Revised 19 April 2018; Accepted 29 April 2018; Published 5 June 2018

Academic Editor: Huaizhi Li

Copyright © 2018 Mohamed Idhammad et al. �is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Cloud Computing services are o	en delivered through HTTP protocol. �is facilitates access to services and reduces costs for
both providers and end-users. However, this increases the vulnerabilities of the Cloud services face to HTTP DDoS attacks. HTTP
request methods are o	en used to address web servers’ vulnerabilities and create multiple scenarios of HTTP DDoS attack such as
Low and Slow or Flooding attacks. Existing HTTP DDoS detection systems are challenged by the big amounts of network tra
c
generated by these attacks, lowdetection accuracy, and high false positive rates. In this paperwe present a detection systemofHTTP
DDoS attacks in a Cloud environment based on Information �eoretic Entropy and Random Forest ensemble learning algorithm.
A time-based sliding window algorithm is used to estimate the entropy of the network header features of the incoming network
tra
c. When the estimated entropy exceeds its normal range the preprocessing and the classi�cation tasks are triggered. To assess
the proposed approach various experiments were performed on the CIDDS-001 public dataset. �e proposed approach achieves
satisfactory results with an accuracy of 99.54%, a FPR of 0.4%, and a running time of 18.5s.

1. Introduction

Cloud Computing aims to provide convenient and on-
demand network access to a shared pool of con�gurable
computing resources that can be rapidly provisioned and
released withminimal management e�ort or service provider
interactions [1]. Cloud Computing services and APIs are
o	endelivered throughHTTPprotocol.�is facilitates access
to services and reduces costs for both providers and end-
users. However, this makes Cloud services vulnerable to
attacks that exploit vulnerabilities of HTTP protocol such as
HTTP DDoS attacks.

Despite the important evolution of the information secu-
rity technologies in recent years, DDoS attacks continue
to threat Internet services and new records are breached
each year. Recently, a destructive DDoS attack has brought
down more than 70 vital services of Internet including

Github, Twitter, Amazon, Paypal, etc. Attackers have taken
advantages of Cloud Computing and Internet of �ings
technologies to generate a huge amount of attack tra
c, more
than 665 Gb/s [2, 3].

HTTPDDoS attacks are highly sophisticated DDoS types
working at the application layer. Several HTTP request meth-
ods are o	en used to address web servers’ vulnerabilities and
create multiple scenarios of HTTP DDoS attack such as Low
and Slow or Flooding attacks. �ese attacks are o	en based
onPOSTandGET requestmethodswhich arewidely used for
submitting sensitive data to the Internet. HTTPDDoS attacks
are divided into two main categories: high rate and low rate
attacks. In the high rate attack scenario the victim is �ooded
by a large number of HTTP requests. While, in the low rate
attack scenario slow and compromised requests are used to
engage the victim in high complexity computations which
consume a signi�cant amount of its resources [4]. As there

Hindawi
Security and Communication Networks
Volume 2018, Article ID 1263123, 13 pages
https://doi.org/10.1155/2018/1263123

http://orcid.org/0000-0003-3866-5625
http://orcid.org/0000-0001-5970-1336
https://doi.org/10.1155/2018/1263123

2 Security and Communication Networks

is no illegitimate TCP or UPD packets in these attacks they
avoid easily the network layer detection techniques [5, 6].
�e engines behind these attacks belong to one or several
Botnets. A Botnet is a network of compromised computers
in the Internet which run a malicious program called Bot
or Agent. �ese computers, o	en known as Zombies or
Re�ectors, are remotely controlled by the Botmaster [7–11].
�e Re�ectors are mainly used to re�ect the behavior of the
attacker and hide his identity. A new kind of Botnet based
on mobile devices, smart-phones and tablets, is starting to
emerge and gain popularity among cybercriminals [12]. �e
exploitation of this new Botnet infrastructure is very e�ective
and powerful compared to traditional Botnets due to the huge
number of mobile devices linked to Internet. For instance,
cybercriminals have used this Botnetmobile infrastructure to
accomplish one of the most powerful DDoS attacks in history
of Internet [2, 3].

Several techniques were developed to mitigate the high
rate attacks such as establishing a speed �oor of network �ow,
requests counting, bandwidth limitation, etc. In contrast, few
researches have been done for detecting and mitigating the
slow HTTP DDoS attacks. �e fact of highly mimicking
the normal behaviors and the use of completely di�erent
strategies makes these attacks hard to detect.

Since these attacks are easy to mount with a minimum
of resources they make barriers to the adoption of the Cloud
Computing [19]. In a Cloud environment a large number of
attacks may occur simultaneously and many services may be
targeted at the same time [20, 21]. �is causes generating
signi�cant amounts of network tra
c data between the
Re�ectors and the targeted services in the Cloud.�e analysis
of this network �ow data is a crucial task for detecting the
attack. It is clear that a defense system against these attacks
should preprocess and classify e
ciently and in a fastest pace
this large volume of network tra
c data.

In this paper we present a detection system of HTTP
DDoS attacks in a Cloud environment based on Information
�eoretic Entropy and Machine Learning. �e proposed
detection system consists of threemain steps: entropy estima-
tion, preprocessing, and classi�cation. A time-based sliding
window algorithm is used to estimate the entropy of the
network header features of the incoming network tra
c.
When the average of the features’ entropy exceeds its normal
range the preprocessing algorithm cleans and normalizes
the network tra
c data of the current time window. �e
preprocessed network tra
c data is then classi�ed into
normal and HTTP DDoS tra
c. A test procedure is used
to select appropriate classi�er for HTTP DDoS detection
based on accuracy, FPR, AUC, and running timemetrics.�e
obtained results fromexperiments in Section 8.2 revealed that
the Random Forest ensemble classi�ers depict high detection
performance for HTTP DDoS attacks.

�e main contribution of this paper can be summarized
as follows:

(i) Proposing a HTTP DDoS attacks detection system in
aCloud environment based on Information�eoretic
Entropy and Machine Learning.

(ii) Adopting a time-based sliding algorithm for estimat-
ing Entropy of the incoming network tra
c to the
Cloud infrastructure.

(iii) Adopting a procedure to select appropriate machine
learning classi�er for HTTP DDoS attack detection.

�e remainder of this paper is organized as follows.
Section 2 gives an overview of the related works. Section 3 is
devoted to the dataset used in this paper. �e HTTP DDoS
attacks are detailed in Section 4. Section 5 illustrates the
impact of HTTP DDoS attacks on a Cloud environment. A
thorough explanation of the proposed approach is presented
in Section 6. Section 7 gives the details of the conducted
experiments and the performance metrics used to evaluate
the proposed approach. �e results and discussion are given
in Section 8. Finally, this paper ends with the main conclu-
sion.

2. Related Works

In this paper information theory and machine learning
techniques are used to improve the HTTP DDoS attacks
detection accuracy, false positive rates, and running time.
Many previous works were devoted to enhance the detection
performance of HTTP DDoS attacks. In this section we
summarize some of the recent works in the detection of
HTTP DDoS attacks.

Sangjae L et al. [22] have proposed an App-DDoS
detection method based on a sequence-order-independent
network tra
c pro�ling technique. Authors extract attributes
from web page request sequences and use a PCA-based
model for the pro�ling of normal web browsing behaviors.
�e DDoS attacks are then detected according to a criterion
based on the reconstruction error of the pro�ling model.�e
method is evaluated with various types of App-DDoS attacks
and important results are achieved.

Dantas Y et al. [23] have proposed a defense mechanism
against HTTP POST Flooding attack, called SeVen, which
is based on Adaptive Selective Veri�cation (ASV). As ASV
was designed for mitigating Network Layer DDoS attacks, it
assumes that communications are simple client-server state-
less syn-ack interactions. �is, however, is not enough for
mitigating Application Layer DDoS attacks, as the protocols
used by these attacks, such as HTTP, have a notion of state.
SeVen, thus, extend ASV by incorporating the defense a
notion of state. �e main key in SeVen for defending against
HTTP POST Flooding attack is the number of pieces of
data already processed. An application using SeVen sends
an acknowledgment only when the total payload is received.
However, this keeps the resources busy while waiting for
receiving the total payload. �erefore, the mechanism will
fail against a distributed HTTP POST Flooding attack when
a large number of Re�ectors are used to send payloads.

�e authors of [24] have presented a method of DDoS
attack detection using HTTP packet pattern and rule engine
in a Cloud Computing environment. �e method integrates
between HTTP GET �ooding among DDoS attacks and
MapReduce processing, for fast attack detection in a Cloud

Security and Communication Networks 3

Computing environment. �is method can ensure the avail-
ability of the target system for accurate and reliable detection
of HTTP GET �ooding. �e method was compared with the
Snort IDS based on the processing time and the reliability
when the congestion increases in the Cloud infrastructure.

�omas V et al. have proposed in [5] a system for
defending against two types of Application Layer DDoS
attacks in the Cloud environments, in particular XML-DDoS
and SOAP-DDoS. �e proposed defense system is speci�c
for threats involved with web service deployment. It does
not replace the lower-layer DDoS defense systems that target
network and transportation attacks. �e authors propose an
intelligent, fast, and adaptive system for detecting XML and
HTTP application layer attacks. �e intelligent system works
by extracting several features and use them to construct a
model for typical requests. Finally, outliers detection can be
used to detect malicious requests. Furthermore, the intel-
ligent defense system is capable of detecting spoo�ng and
regular �ooding attacks.�e system is designed to be inserted
in aCloud environmentwhere it can transparently protect the
Cloud broker and even Cloud providers.

Also, Aiello et al. [25] have proposed a detection method
that analyzes speci�c spectral features of tra
c over small
time horizons without packet inspection. Real tra
c traces
mixed with several low rate HTTPDDoS attacks are collected
locally from their institute, LAN, and are used to evaluate the
method. Satisfactory results are obtained by the method.

Recently, the authors of [26] have proposed a Protocol-
Free Detection (PFD) against Cloud oriented Re�ection
DoS (RDoS) attacks. �ey focus on analyzing the network
�ow of the Cloud services, by studying the basic tra
c
correlation near the victim Cloud under RDoS attack. PFD
is protocol-free and its computation cost will not be a�ected
by network throughput. In PFD, packet rate is sampled in
upstream router and correlation of �ows is tested using �ow
correlation coe
cient (FCC), and the detection result is given
by considering current FCC value and historical information.
In theCloud environment, PFD is designed to be inserted in a
protected virtual LAN. However, a protected VLAN requires
deployment of other security techniques which consume the
Cloud resources and e�ect against it. Also, deploying the PFD
inside the Cloud instances makes it vulnerable to the HTTP
DDoS attacks.

Qin et al. [17] have proposed an Application Layer DDoS
attack detection system based on two machine learning
techniques. First, authors consider users’ requests frequency
sequence as sparse vector and then use a classi�cation algo-
rithm called sparse vector decomposition and rhythmmatch-
ing (SVD-RM). �en the clustering algorithm L-Kmeans is
used as embedded classi�er in SVD-M.�e systemwas tested
against four Application Layer DDoS attacks and the system
achieved good detection results.

Sree et al. [18] have proposed to detect HTTP GET
�ooding attack by reading the web server logs, extracting
the relevant features and using analytical hierarchical process
to predict whether the attack has occurred or not, and
detecting the suspicious sources by using Dempster-Shafer
theory of evidence.�e authors useMapReduce techniques to
analyze large volumes of log data which allows improving the

processing time of their method. �e method was evaluated
using the public Cyber Research Centre (CDX) dataset [18]
and a dataset generated locally by authors.

Zecheng He et al. [14] have proposed a DDoS detection
system based on machine learning techniques. �e system
is designed to be implemented on the Cloud provider’s
side in order to early detect DDoS attacks sourced from
virtualmachines of the Cloud.�e system leverages statistical
information from both the Cloud server’s hypervisor and the
virtual machines, in order to prevent network packages from
being sent out to the outside network. Ninemachine learning
algorithms are evaluated and the most appropriate is selected
based on the detection performances.

Similarly, Sreeram et al. [15] have proposed a Bio-Inspired
Anomaly based Application Layer DDoS attack (App-DDoS
attack) detection in order to achieve fast and early detection.
�e proposed system is a bioinspired bat algorithm which
is used to detect the HTTP DDoS attacks. �e authors have
evaluated their system using the CAIDA dataset. �e system
achieved satisfactory results for the detection of HTTP
�ooding attacks.

Irfan et al. [16] have proposed a detection system of
HTTP DDoS �ooding attacks based on machine learning
techniques. Four machine learning classi�ers, namely, Nave
Bayes, MLP, SVM, and Decision trees, are evaluated using a
local dataset. �e system achieved satisfactory classi�cation
results of the collected network tra
c data.

Most of the HTTP DDoS detection approaches proposed
in the literature use statistical and thresholding techniques
to discriminate attack and normal tra
c. �is however
results in low detection accuracy when attacks’ behaviors are
changed and large false positive rates for the thresholding
techniques. A major solution to the above issues is to adopt
appropriate machine learning techniques and models in
order to increase the accuracy and reduce false positive rates.
Furthermore, Information �eoretic entropy allows focusing
only on abnormal network tra
c.�is reduces drastically the
amount of data to preprocess and to classify which improve
performance and running time of theHTTPDDoS detection.

3. The Adopted CIDDS-001 Dataset

CIDDS-001 (Coburg Intrusion Detection Dataset) is an up-
to-date labeled �ow-based dataset created by M. Ring et al.
[27] in a Cloud environment based on OpenStack platform.
�is environment includes several clients, emulated using
a set of Python scripts, and typical servers including E-
Mail server, Web server, etc. �e dataset contains realistic
normal and attack tra
c allowing important benchmarking
of network intrusion detection systems in a Cloud environ-
ment. �e dataset is divided into four parts each is created
during a week.�eCIDDS-001 is a �ow-based format dataset
containing unidirectional NetFlow [27] data. �e dataset
contains 14 attributes, the �rst 10 attributes are the default
NetFlow attributes, and the last four attributes are additional
attributes. Names and descriptions of features are tabulated
in Table 1. A total of 32 million of normal and attack �ows
are captured in the dataset within four weeks. Authors have
exploited 92 types of attacks to create the dataset including

4 Security and Communication Networks

Table 1: Features of the CIDDS-001 dataset [13].

Feature Description

1. Src IP Source IP Address

2. Src Port Source Port

3. Dest IP Destination IP Address

4. Dest Port Destination Port

5. Proto Transport Protocol (e.g., ICMP, TCP, or UDP)

6. Date �rst seen Start time �ow �rst seen

7. Duration Duration of the �ow

8. Bytes Number of transmitted bytes

9. Packets Number of transmitted packets

10. Flags OR concatenation of all TCP Flags

11. Class Class label (normal, attacker, victim, suspicious or unknown)

12. AttackType Type of Attack (portScan, dos, bruteForce,—)

13. AttackID Unique attack id. All �ows which belong to the same attack carry the same attack id.

14. Attack Description Provides additional information about the set attack parameters (e.g., the number
of attempted password guesses for SSH-Brute-Force attacks)

DDoS attack over HTTP.�ismakes the dataset an important
benchmark for HTTP DDoS detection systems. �e reasons
above motivated us to use this dataset in this paper. In our
experiments we used only the �rst day of the �rst week,
Monday 15 March 2017.�is part contains 1,501,856 instances
of network tra
c data with 11.12% corresponding to DDoS
attack tra
c.

4. HTTP DDoS Attacks

HTTP DDoS attacks are divided into two main categories:
high rate and low rate attacks. In the high rate HTTP DDoS
attacks, o	en known as HTTP �ooding attacks, the target is
�ooded by a large number of HTTP requests. �ese attacks
are simple �ooding attacks that generates as many as possible
of HTTP request packets by using all available resources of
the Re�ectors. �ey behave very similar to the traditional
DoS attacks which results in a total consumption of the
victim’s resources and/or exhausting the communication
channel. Many tools are available on the Internet to generate
HTTP �ooding attacks such as HTTPFlooder [28]. �is type
of attacks can be easily detected by packets counting or by
bandwidth thresholding techniques [24].

Unlike �ooding, low and slowHTTPDDoS attacks donot
require a large amount of network tra
c or high resources
of attackers to deny services at the victim server. �ey target
speci�c design �aws or vulnerabilities on the target server
with a relatively small amount of compromised packets. �is
engages the target in high complexity computations or in
massive allocation of resources.�ese attacks are very hard to
detect and to mitigate, because they involve connections and
data transfer appearing to be at normal rate [29]. �ere exist
several types of slow HTTP DDoS attacks. Attackers o	en
target vulnerabilities in di�erent HTTP request methods to
accomplish the attack. In this work we cover three categories
of slow HTTP DDoS attacks, namely, Slow Read, Slow Mes-
sage Body, and Slow Header attacks. �ese three categories

are generated using speci�c vulnerabilities in POST and GET
request methods. Although these attacks were created �rst to
target vulnerabilities of HTTP/1.1, they are still e�ective on
the updated HTTP/2 [30]. A detailed categorization of slow
HTTP DDoS attacks can be found in [31].

4.1. Slow Message Body Attack (Slow POST). When a legit-
imate client aims to send data to a web server using the
POST method, a	er establishing a TCP connection, it sends
�rst an HTTP message header in which it mentions the
amount of data to send. �e �eld used to communicate this
information to the web server is the Content-Length. When
the server receives the message header it reads the Content-
Length value. �en, it maintains the connection alive and
resources running until receiving the total volume of data
mentioned in the Content-Length �eld. In its turn, the client
divides the message body to chunks according to his network
resources.�en, it sends the chunks successively to the server
[23, 29]. Most web servers obey theContent-Length value and
maintain resources running while waiting until the end of the
message body [29, 32]. �is behavior makes the majority of
web servers vulnerable to the Slow Message Body attack.

A malicious client follows several steps to accomplish the
Slow Message Body attack. First, the malicious client builds
a legitimate HTTP POST header with a fake Content-Length
value, 5000 kilobytes, for example, and sends it to the server
[33]. Usually, this Content-Length value is larger than the
actual size of the message body. Most web servers accept up
to 2 GB in the Content-Length value. �e server receives the
header portion and waits for receiving the total bytes of the
message body [32, 34]. Next, the malicious client divides the
message body into small chunks and sends them very slowly
to the server, for example, 1 byte per chunk every 25s.

Figure 1 shows the sequential diagram of the Slow
Message Body attack. As fast as possible, the malicious client
repeats the operation with all his Re�ectors and expands
his Slow Message Body script over his Botnet. �is action

Security and Communication Networks 5

Reflector �e target Webserver

TCP/UDP connection request

Open connection

25s

25s

HTTP POST message header

Content-Length = 5000 Ko

HTTP POST message body

Frame.number (chunk): 1
frame.length = 1 Ko

frame.length = 1 Ko
Frame.number (chunk): 2

Resources allocation and
waiting for receiving 5000 Ko

Receiving the first chunk
and waiting for the next

No more resources and
the server breaks down

Figure 1: Sequential diagram of the Slow Message Body attack.

multiplies the magnitude and the e
ciency of the attack
[32]. �e web server tries to manage this large number of
connections. Consequently, within minutes the web server
consumes all his resources and breaks down resulting in a
denial of services.

Several methods have been used to detect this attack
using statistics, information theory, and machine learning
techniques. However, attackers mimic the normal behavior
and success to hijack the existing detection systems. Hence,
the detection of Slow Message Body attack requires further
sophisticated techniques that combine information theory
techniques to monitor the network tra
c and machine
learning models to learn the new behaviors of the attack.

4.2. Slow Header Attack. In normal scenario when a user
requests data from the web server via the web browser
using the GET request method, it sends a GET request
completed by an empty line, two sequences of Carriage
Return Line Feed (CRLF) [34]. Usually, the user’ request
takes a short time duration to be sent totally to the server.
�is time duration, called Δ �������, depends on hardware and
networking capabilities of the user.Δ ������� is computed using
the formula: Δ ������� = ������ ������� − ��	
 �������. �en, the
server provides the content as a web page. When the content
is received, the user reads the content of the web page. A	er
a time interval the user requests another web page based on
links in the �rst page [35]. �is time interval, called Δ 	���, is
the time gap between the end of receiving the server’ response
and the start of the next request in the same stream. Δ 	���
is computed using the formula: Δ 	��� = ������ ����������� −��	
 ����	�� [36].

�e Slow Header attack also known as Slowloris attack is
a sophisticated attack based on the GET request method [31].
�e idea behind this attack is to keep alive a large number
of connections to the target web server as long as possible
in order to consume all its available resources. To achieve

R
equ

est

R
es

p
on

se

R
equ

est

next

request

Opening TCP
Connection

Reflector

Target

Figure 2: Sequential diagram of the Slow Header attack.

this the attacker sends incomplete HTTP GET requests to
the victim by not transmitting the two CRLF sequences
that denote the end of the HTTP header. �en a group of
Re�ectors is used to open normal connections with the target
server and periodically send to it incomplete HTTP GET
requests. A�ected servers will keep these connections open,
�lling their maximum concurrent connection pool. �is
enables the attacker to deny connection requests of legitimate
users. �erefore, this attack type is able to cause a DoS by
a small quantity of packets and in a short period of time
[5, 35, 37].�is attack is hard to detect andmitigate because it
implies that the bandwidth consumption and the Δ ������� lie
in normal ranges but generates the attack continuously and
repeatedly. �e obvious behavior of the SlowHeader attack is
shown in Figure 2.

4.3. SlowRead Attack. �epurpose of the Slow Read attack is
to maintain as many as possible number of connections alive
with the target server by slowly reading the replies received
by the server.

To achieve this, �rst the attacker establishes a normal
connection with the target server. �en the attacker keeps
sending legitimate HTTP POST or GET requests to the target
at a normal rate with a receiver window size of 0 byte telling
the server that is not yet ready to receive more data. �is
forces the target web server to hold the connection and waits
to receive a nonzero update window size from the client.
Usually, attackers use Botnets to lunch the attack and tend
to request large �les in order to speed the DoS timing.

5. Impact of HTTP DDoS
Attacks on a Cloud Environment

CloudComputing services are o	en delivered throughHTTP
protocol. �is means that the HTTP protocol’ attacks, vul-
nerabilities, miscon�guration, and bugs have direct impact
on the users services deployed on the Cloud. HTTP DDoS
attacks are classi�ed among the major threats of web services
availability. Hence, they are a major threat of the Cloud
services’ availability.

In the Cloud Computing context, we distinguish two
ways to achieve a DoS: direct implying which consists of
predetermination of the target service’s host and indirect
implying which consists of denying other services being
hosted on the same host or network of the target. �e
resources autoscaling characteristic of the Cloud enables,
on one hand, the providers to supply the clients with a

6 Security and Communication Networks

Classification of preprocessed network

data using Random Forest

Normalizing suspected network

traffic data

Network traffic data capturing

Estimating Entropy of incoming

network traffic

Cleaning suspected network traffic data

Figure 3: Layered architecture of the proposed detection system.

large pool of resources. �e clients are, then, charged based
on a pay-per-use model. On the other hand, this enables
attackers to deny many Cloud services with a single attack.
�e detection of HTTP DDoS attacks in the Cloud requires a
deep monitoring of the network tra
c and strong modeling
of the Cloud users’ behaviors.

6. The Proposed Detection System

In this section the process followed to detect HTTP DDoS
attacks as well as the components of the proposed detection
system are given. �e proposed detection system consists of
three major steps: entropy estimation, data preprocessing,
and network tra
c classi�cation. A time-based sliding win-
dow algorithm is used to estimate the entropy of the network
header features of the incoming network tra
c. When the
average of the features’ entropy exceeds its normal range the
preprocessing module cleans and normalizes the network
data tra
c of the current time window. �e preprocessed
network tra
c data is then classi�ed into normal and HTTP
DDoS tra
c. A layered architecture of the entire proposed
system is given in Figure 3.�e layered architecture illustrates
the �ve steps followed to detect the HTTP DDoS attacks and
the main components of the proposed system.

A test procedure is used to select and to optimize appro-
priate classi�er for HTTPDDoS detection based on accuracy,
FPR, AUC, and running time metrics. �e Random Forest
ensemble classi�ers depict high detection performance for
HTTP DDoS attacks. �e detailed process followed to detect
HTTP DDoS attacks in the proposed system is illustrated in
Figure 4.

6.1. Incoming Network Tra�c Entropy Estimation. A time-
based sliding window algorithm is used to estimate the
entropy of a set of network �ow-header features. By de�nition

the entropy is a measure of the diversity or the randomness
of a distribution, e.g., network �ow data [38]. �e analysis of
the network �ow entropy over time windows allows reducing
high dimensionality of the network tra
c distribution to
a single metric describing its dispersion [39–41]. �e con-
nection de�nition (CD) features, the source/destination IPs
and the source/destination Ports, are used to estimate the
entropy. �e reason for using the CD features is that during a
HTTP DDoS attack the zombie hosts open a large number of
connectionswith the victim.Hence, estimating entropy of the
CD features allows detecting sensitively the abrupt changes in
the network �ow caused byHTTPDDoS attack.�eShannon
formula is used to estimate the entropy of the CD features
which is de�ned as

�(�) = −
	
∑
�=1
� (�) ⋅ log (� (�)) (1)

where � represents a CD feature, 	�(� = 1, . . . ,) are
the frequencies of items of � received during the current
time window, and is the total number of items of �. To
better interpret the estimated entropy values, the CD features’
entropy values are normalized using the formula: �0(�) =
�(�)/ log .�epseudocode of the Entropy estimation time-
based sliding window algorithm is given in Algorithm 1.

Algorithm 1 starts with setting the time window size.
To e
ciently maintaining the trade-o� between resources
consumption and accurately detecting abrupt changes in
the network �ow distribution, we picked a 2 minutes time
window. On one hand, using a large time window is costly in
terms of memory and the victim services may fall within it.
Also, in the use of a large time window causes a smoothing
of the estimated entropy which prevents seeing the abrupt
changes in the network. On the other hand, using a small time
window is costly in terms of computation which may late the
detection of attack. More discussions about the time window
size selection are given in Section 8.1.

Algorithm 1 gives as output the average of the computed
entropy of the CD features set �. �is allows us to use only
two thresholds, lower (��) and upper (��), for each � in order
to detect anomaly within the incoming network tra
c. �e
lower (��) and upper (��) thresholds are predetermined form
the �rst six hours of the CIDDS-001 dataset that contain
only normal tra
c. �� and �� correspond, respectively, to
minimum and maximum estimated entropy of the normal
tra
c.

6.2. Network Tra�c Preprocessing. Here, two main prepro-
cessing tasks are performed on the network tra
c data
of the time window that have average entropy out of the
normal range [��, ��]. First the network tra
c subset of
each abnormal time window is cleaned by dropping rows
that contains empty values and maintains unique format
and columns number for rows in the dataset and unifying
columns data types. Next the cleaned subsets are normalized
using theMinMaxmethod. InMinMax the values of features
are scaled to the range [0, 1] as follows:

		��� = 	� −min (�)
max (�) −min (�) (2)

Security and Communication Networks 7

End

Estimating the entropy

of network tra�c

data of TW

Network tra�c data

collection over 2 min

time window

Incoming network

tra�c
Begin

Computing average of
estimated entropy

values of TW

True

False

Preprocessing of suspected

network tra�c data

Network tra�c
data Classification

Testing whether the estimated entropy of the
current time window lies in its normal range

TW: Current time window

l<agH
TW<u

；ＰＡ（４７ : Average entropy of TW

l/u : Entropy lower/upper predefined thresholds

Figure 4: Flowchart of the proposed detection system.

1 avgEntropy (����, �)
Input: Network tra
c data ����, Features set �
Output: �V�����������

2 �� ← 2��
3 �� ← { }
4 while ��������� ��!���""�� � �� do
5 foreach� in � do

6 �(�) ← (∑�� 	�)/� //Estimate the probability mass function

7 �(�) ← −∑	� �(�) ⋅ log�(�) //Compute the Shannon entropy
8 �0(�) ← �(�)/ log //Normalize the entropy
9 �� ← �� ∪ �0(�)
10 end
11 �V����������� ← %&�(��)/4 //Return average entropy of the CD features
12 end

Algorithm 1: Estimate entropy of the connection de�nition features.

where � is a feature of the abnormal tra
c subset, 	� is the
current value of � to normalize, and 		��� is the normalized
value.

6.3. HTTP DDoS Attacks Detection. Here, we aim to classify
each network tra
c subset obtained from Algorithm 2
with the appropriate machine learning (ML) classi�er. For
this purpose �ve ML classi�ers are �tted with 60% of the
CIDDS-001 dataset and tested with the reminder 40%. �e
ML classi�ers used here are Random Forest, Decision Tree

1 Preprocess (�'����* �� ��! ���""�� %&'%��)
Input: Abnormal network tra
c %&'%��
Output: Cleaned and normalized network tra
c subsets

2 foreach Abnormal subset in Dataset do
3 Cleaning each column the suspected tra
c data
4 Maintain unique data format for each column
5 Normalize values of each column
6 end

Algorithm 2: Preprocessing module algorithm.

8 Security and Communication Networks

(DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), and
Multilayer Perceptron (MLP). �e appropriate classi�er is
selected based on accuracy, false positive rate, training time,
and testing time metrics. �e selected classi�er is used to
classify the incoming network tra
c data of the time win-
dows having abnormal entropy values. �is allows �ltering
malicious HTTP tra
c of each time window and speeding
up the mitigation process of HTTP DDoS attacks.

7. Experiments

�is section describes the experiments conducted and the
performancemetrics used to evaluate the proposed approach.
�e experiments aim to illustrate the impact of the time
sliding window entropy estimation algorithm on the perfor-
mance of the proposed approach for HTTP DDoS attacks
detection. Also, other experiments are performed to select
and optimize appropriate classi�er for HTTP DDoS detec-
tion.

To validate the contributions of our approach the CIDDS-
001 dataset [27] is used. A con�guration of 60% for training
and 40% for testing of the dataset is used in all experiments.
�e performances of the entire proposed approach are
assessed and compared with the performances of di�erent
classi�ers tested directly on the dataset without the time
sliding window entropy estimation algorithm. Furthermore,
the obtained results of the proposed system are compared
with the state-of-the-art HTTP DDoS detection methods
given in [14–18].

�e proposed approach is developed using the Python
programming languages and the ML algorithms are tested
using their default parameters. �e hardware used in the
experiments is a core i3 2.4 GHz with 6 GB of memory
running under Debian 8 x64.

7.1. Performance Metrics. �e main purpose of the proposed
approach is to classify the network tra
c data as either
positive or negative which correspond, respectively, to HTTP
DDoS tra
c and normal tra
c. �e obtained results are
evaluated using the following performance metrics:

Accuracy: percentage of the tra
c records that are
correctly classi�ed is as follows:

��c&���� = 100 × �������*� �*�%%�"��� ������%����* ������%
(3)

False Positive Rate (FPR): percentage of the normal
records which are classi�ed as attack records is as follows:

+-3 = 100 × +-
+- + �� (4)

where +- is the number of normal records incorrectly
classi�ed as attack records. �� is the number of correctly
classi�ed normal records.

Processing time: HTTP DDoS detection time depends
on two time metrics, namely, training time and testing time.

ROC and AUC curves: Receiver Operator Characteristic
(ROC) and Area under ROC (AUC) curves are commonly
used to present results for binary decision problems in

machine learning. �e ROC curve shows how the number of
correctly classi�ed positive examples varies with the number
of incorrectly classi�ed negative examples. AUC is a criterion
used to measure the quality of the classi�cation model.

8. Results and Discussion

8.1. Estimated Network Entropy for CIDDS-001 Dataset. In
this section we give the obtained results of the time sliding
window entropy estimation algorithm on the CIDDS-001
dataset.�e variations of estimating CD features entropy over
2-minute time window are presented in Figure 5. As shown
in Figure 5 the estimated entropy during the �rst 180 time
windows is in its normal range. �e entropy estimation algo-
rithm considers that this part does not contain HTTP DDoS
attacks; hence no preprocessing or classi�cation is triggered.
It is worth noting that these results are in consistency with the
CIDDS-001 dataset documentation, asmentioned in [27] that
the �rst six hours of the dataset contains only normal tra
c.
Entropy estimation allows focusing only on suspected time
windows that may contain HTTP DDoS attacks. As a result
the amount of the network tra
c data to preprocess and to
classify in CIDDS-001 is drastically reduced; more than 58%
of the test subset is reduced.

�e performances of the network entropy estimation
algorithm rely mainly on the time window size. To maintain
the trade-o� between resources consumption and accurately
detecting abrupt changes in the network �ow distribution,
we picked a 2-minute time window. On one hand, using a
large time window is costly in terms of memory. Also, large
time windows are not suitable when dealing with HTTP
DDoS attacks because the victim services may fall within the
time window. Moreover, a major issue facing the use of large
time windows is that they cause smoothing of the estimated
entropy curves which prevent seeing the abrupt changes in
the network tra
c. �is e�ect is illustrated in Figure 6, as
the time window size increases the pikes of the entropy
curves are smoothed and reduced causing low e
ciency of
the algorithm. On the other hand, using a small time window
is costly in terms of computation.

8.2. Classi�er Selection for HTTP DDoS Detection. Here, we
give the results of the classi�er selection procedure for HTTP
DDoS attacks detection. To obtain these results the �ve clas-
si�ers mentioned in Section 6.3 are �tted and tested with the
CIDDS-001 dataset. �e classi�cation results are illustrated
in Figure 7. As shown in Figure 7 Random Forest achieves
the highest AUC of 0.969 followed by NB classi�er with an
AUC of 0.845. �e remaining classi�ers KNN, MLP, and
DT achieve low AUC of respectively 0.708, 0.577, and 0.436.
More results of the comparison of di�erent classi�ers for
HTTP DDoS attacks detection are tabulated in Table 2. It is
obvious that theRandomForest classi�er achieves the highest
accuracy of 97% with a false positive rate of 0.33%. �e
accuracy of Random Forest exceeds NB accuracy by 3% and
deceeds its FPR by 0.01%.�e accuracy of NB, KNN, DT, and
MLP classi�ers for HTTP DDoS detection is, respectively,
94%, 86%, 73%, and 28%. �e obtained results depict that
Random Forest outperforms other tested classi�ers in terms

Security and Communication Networks 9

1

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

29 57 85 113 141 169 197 225 253 281 309

Time Windows (2 min)

H (IPdst)

H (PORTdst)

H (IPsrc)

H (PORTsrc)

N
o

rm
al

iz
ed

 E
n

tr
o

p
y

337 365 393 421 449 477 505 533 561 589 617 645 673 701

Figure 5: Estimated entropy time series variations of the CIDDS-001 dataset.

Table 2: Comparison of di�erent classi�ers for HTTP DDoS detection.

Classi�er Accuracy(%) FPR(%) Train Time (s) Test Time (s)

Random-Forest 97 0.33 1.23 0.18

NB 94 0.34 0.31 0.16

KNN 86 0.36 1270.56 108.16

DT 73 0.38 1.35 0.11

MLP 28 0.6 321.26 2.2

of accuracy and false positive rates. However, in terms of
running timeNB classi�er achieved the best timingwith 0.16s
for training and 0.31s for testing.�eRandomForest classi�er
depicts also high running time with 1.23s for training and
0.18s for testing.

8.3. Entire Proposed Approach. In this section the results of
the entire proposed approach are given. �e results represent
the variations of three performancemetrics collected over the
timewindows classi�ed by network tra
c entropy estimation
algorithm as abnormal. �e collected results are accuracy,
FPR, and running time. To obtain these results the network
tra
c data captured during each abnormal time window
is preprocessed and classi�ed using the Random Forest
ensemble classi�ers.

Figure 8 gives the accuracy variations of the entire
proposed approach over the abnormal time windows. It is

obvious that the proposed approach achieves high accuracy
for the majority of the time windows. �is is due to the
entropy estimation algorithm that reduced large amount of
normal network tra
c data for classi�cation. For HTTP
DDoS detection this normal tra
c data is considered as noisy
and irrelevant. �e average accuracy obtained for all the
time windows is 99.54%. An important improvement of the
accuracy of 2.54% is noticed here compared to the accuracy
of Random Forest tested directly on the CIDDS-001 which is
97%.

Figure 9 shows the FPR variations of the proposed
approach over the abnormal time windows. We notice low

FPR for the most abnormal time windows except for the 20�ℎ
to the 28�ℎ time windows that have nearly a FPR of 0.7%.�is
increase in the FPR during these abnormal time windows is
accompanied by an important decline in the accuracy as it
is obvious in Figure 8. �is may be caused by the increase

10 Security and Communication Networks

1 29 57 85 113 141 169 197 225 253 281 309 337 365 393 421 449 477 505 533 561 589 617 645 673 701

0.0

0.2

0.4

0.6

0.8

1.0

TW: 2min

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141

0.0

0.2

0.4

0.6

0.8

1.0

TW: 10min

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0.0

0.2

0.4

0.6

0.8

1.0

TW: 30min

5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

TW: 60min

Figure 6: Estimated entropy variation of di�erent time window sizes.

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

o
si

ti
ve

 R
at

e

RandomForest ROC - (AUC = 0.969)

DT ROC - (AUC = 0.436)

KNN ROC - (AUC = 0.708)

NB ROC - (AUC = 0.845)

MLP ROC - (AUC = 0.577)

Figure 7: Obtained results of di�erent classi�ers trained and tested
on the CIDDS-001 dataset.

0 20 40 60 80 100 120 140

Time Windows

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Accuracy

Figure 8: Accuracy variations of the proposed approach over time
windows.

of the normal and noisy tra
c data during this period.
However, the FPR continues to �uctuate for the remaining
time windows. �e average FPR for all the abnormal time
windows is 0.4% which is acceptable when compared to the
FPR of the di�erent tested classi�ers as shown in Table 2.

Security and Communication Networks 11

Table 3: Comparison of the proposed approach with the state-of-the-art HTTP DDoS detection approaches.

Approach Dataset % Training % Testing Accuracy (%)

Our approach CIDDS-001 60 40 99.54

Approach of [14] Local/Intern 80 20 99.73

Approach of [15] CAIDA 60 60 94.8

Approach of [16] Local 66 34 98.89

Approach of [17] Local NA NA 90.11

Approach of [18] CDX/Local NA NA 92.63

0 20 40 60 80 100 120 140

Time Windows

0.0

0.2

0.4

0.6

0.8

1.0

F
P

R
 (

%
)

FPR

Figure 9: False positive rates variations of the proposed approach
over time windows.

0 20 40 60 80 100 120 140

Time Windows

0.10

0.11

0.12

0.13

0.14

0.15

R
u

n
n

in
g

T
im

e
(s

)

Running Time

Figure 10: Running time variations of the proposed approach over
time windows.

Running time is an important performance metrics when
dealing with DDoS attacks in general. Figure 10 shows the
variations over time windows of the running time of the
entire proposed approach including the entropy estimation,
the preprocessing and the classi�cation steps. As Figure 10
shows the running time continues to �uctuate for all the
abnormal time windows. When a HTTP DDoS attack occurs
the amount of network tra
c data increases causing an
increase in the entropy estimation, preprocessing, and clas-
si�cation time. �e total running time for all the abnormal
time windows is 18.57s. However, an average running time
per time window is, time to process network data collected
during each time window, of 0.12s is noticed for proposed
approach. �e obtained average running time is important
when compared with running time of other tested classi�ers
as shown in Table 2. Also, this average running time of the
proposed approach is very important because the HTTP

DDoS mitigation and �ltering actions can be taken early for
each time window.

8.4. Validation of the Obtained Results. To validate the
obtained results, the proposed approach is compared with the
state-of-the-artHTTPDDoSdetectionmethods given in [14–
18]. For this purpose we used 60% of the dataset for training
and 40% for testing as it is the commonly datasets splitting
con�guration used in the literature. �e approaches are
compared based the dataset splitting con�guration used and
the overall accuracy. �e comparison results are summarized
in Table 3.

It is clearly shown in Table 3 that the proposed approach
achieves the highest accuracy of 99.54% when compared
with other approaches evaluated using 60% of the dataset for
training and 40% for testing. However, the highest accuracy
is achieved by the approach proposed in [14]. �is high
accuracy may be due to the con�guration used to split the
dataset adopted by the authors. Compared to the state of
the art the results obtained by the proposed approach are
satisfactory.

9. Conclusion

In this paper a detection system of the HTTP DDoS attacks
in a Cloud environment is proposed. HTTP DDoS are
sophisticated attacks that highly mimic the normal behaviors
with completely di�erent strategies. During such attacks large
amounts of network tra
c are generated. �e detection of
these attacks have becomes very hard and new techniques
are required. For these reasons we have proposed a detection
system based on three techniques, namely, network tra
c
entropy estimation, preprocessing, and classi�cation using
Random Forest ensemble classi�ers.

Various experiments were conducted in order to evaluate
our approach and satisfactory results are obtained. Five
machine learning classi�ers are used to conduct the experi-
ments on the CIDDS-001 public dataset. �e entire proposed
system achieved high detection performances compared to
single classi�ers tested directly on the dataset and to the state-
of-the-art HTTP DDoS detection methods.

Despite the fact that the proposed approach depicts
high HTTP DDoS attacks detection performances with the
CIDDS-001 public dataset, it is important to evaluate its
performances in real world scenarios. For future work, we are
planning to perform real world deployment of our approach
and evaluate it against several HTTP DDoS tools.

12 Security and Communication Networks

Conflicts of Interest

�e authors declare that they have no competing �nancial
interests.

Authors’ Contributions

Mohamed Idhammad proposed the main approach to detect
the HTTP DDoS attacks. Also, Mohamed Idhammad has
designed the preprocessing algorithm and implemented the
entire detection method in Python. Karim Afdel attributed
to the design and the optimization of the proposed method
and also has contributed to the assessment methodology.
Mustapha Belouch has contributed to the design and the
implementation of the proposed approach.

References

[1] P. Mell and T. Grance, “�e NIST de�nition of cloud comput-
ing,” Cloud Computing and Government: Background, Bene�ts,
Risks, pp. 171–173, 2011.

[2] Wikipedia, “2016 dyn cyberattack,” 2016, https://en.wikipedia
.org/wiki/2016 Dyn cyberattack.

[3] theguardian, “Ddos attack that disrupted internet was largest of
its kind in history, experts say,” 2016, https://www.theguardian
.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet.

[4] E. Cambiaso, G. Papaleo, and M. Aiello, “Taxonomy of Slow
DoSAttacks toWebApplications,” inRecent Trends in Computer
Networks and Distributed Systems Security, vol. 335 of Commu-
nications in Computer and Information Science, pp. 195–204,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[5] T. Vissers, T. S. Somasundaram, L. Pieters, K.Govindarajan, and
P. Hellinckx, “DDoS defense system for web services in a cloud
environment,” Future Generation Computer Systems, vol. 37, pp.
37–45, 2014.

[6] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense
mechanisms: classi�cation and state-of-the-art,”Computer Net-
works, vol. 44, no. 5, pp. 643–666, 2004.

[7] S. Yu, Distributed Denial of Service Attack and Defense, Spring-
erBriefs in Computer Science, Springer, New York, NY, USA,
2014.

[8] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and
DDoS defense mechanisms,” ACM SIGCOMMComputer Com-
munication Review, vol. 34, no. 2, pp. 39–53, 2004.

[9] R. K. C. Chang, “Defending against �ooding-based distributed
denial-of-service attacks: a tutorial,” IEEE Communications
Magazine, vol. 40, no. 10, pp. 42–51, 2002.

[10] J. Kristo� and R. Jo�ee, “Botnets and Packet Flooding DDoS
Attacks on theDomainName System,”�e International Journal
of Forensic Computer Science, pp. 9–18, 2007.

[11] M. Anagnostopoulos, G. Kambourakis, and S. Gritzalis, “New
facets of mobile botnet: architecture and evaluation,” Interna-
tional Journal of Information Security, vol. 15, no. 5, pp. 455–473,
2015.

[12] P. Farina, E. Cambiaso, G. Papaleo, and M. Aiello, “Are mobile
botnets a possible threat? the case of SlowBot Net,” Computers
& Security, vol. 58, pp. 268–283, 2016.

[13] A. Verma and V. Ranga, “Statistical analysis of CIDDS-
001 dataset for Network Intrusion Detection Systems using
Distance-basedMachine Learning,” Procedia Computer Science,
vol. 125, pp. 709–716, 2018.

[14] Z. He, T. Zhang, and R. B. Lee, “Machine Learning BasedDDoS
Attack Detection from Source Side in Cloud,” in Proceedings of
the 2017 IEEE 4th International Conference on Cyber Security
and Cloud Computing (CSCloud), pp. 114–120, New York, NY,
USA, June 2017.

[15] I. Sreeram and V. P. Vuppala, “HTTP �ood attack detection
in application layer using machine learning metrics and bio
inspired bat algorithm,” Applied Computing and Informatics,
2017.

[16] I. So�, A. Mahajan, and V. Mansotra, “Machine learning
techniques used for the detection and analysis of modern types
of ddos attacks,” learning, vol. 4, no. 06, 2017.

[17] Q. Liao, H. Li, S. Kang, and C. Liu, “Application layer DDoS
attack detection using cluster with label based on sparse vector
decomposition and rhythm matching,” Security and Communi-
cation Networks, vol. 8, no. 17, pp. 3111–3120, 2015.

[18] T. R. Sree and S. M. S. Bhanu, “HADM: detection of HTTP
GET �ooding attacks by using Analytical hierarchical process
and Dempster–Shafer theory with MapReduce,” Security and
Communication Networks, vol. 9, no. 17, pp. 4341–4357, 2016.

[19] N. Gonzalez, C. Miers, F. Redigolo et al., “A Quantitative
Analysis of Current Security Concerns and Solutions for Cloud
Computing,” Journal of Cloud Computing: Advances, Systems
and Applications, vol. 1, no. 1, pp. 231–238, 2012.

[20] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and
S. Savage, “Inferring internet denial-of-service activity,” ACM
Transactions on Computer Systems, vol. 24, no. 2, pp. 115–139,
2006.

[21] J. McHugh, “Intrusion and intrusion detection,” International
Journal of Information Security, vol. 1, no. 1, pp. 14–35, 2001.

[22] S. Lee, G. Kim, and S. Kim, “Sequence-order-independent
network pro�ling for detecting application layer DDoS attacks,”
EURASIP Journal onWireless Communications andNetworking,
vol. 2011, no. 1, article no. 50, 2011.

[23] Y. G. Dantas, V. Nigam, and I. E. Fonseca, “A Selective Defense
for Application Layer DDoS Attacks,” in Proceedings of the
2014 IEEE Joint Intelligence and Security Informatics Conference
(JISIC), pp. 75–82, �e Hague, Netherlands, September 2014.

[24] J. Choi, C. Choi, B. Ko, and P. Kim, “A method of DDoS attack
detection using HTTP packet pattern and rule engine in cloud
computing environment,” So Computing, vol. 18, no. 9, pp.
1697–1703, 2014.

[25] M. Aiello, E. Cambiaso, M. Mongelli, and G. Papaleo, “An
on-line intrusion detection approach to identify low-rate DoS
attacks,” in Proceedings of the 2014 International Carnahan
Conference on Security Technology (ICCST), pp. 1–6, Rome, Italy,
October 2014.

[26] L. Xiao, W. Wei, W. Yang, Y. Shen, and X. Wu, “A protocol-free
detection against cloud oriented re�ection DoS attacks,” So
Computing, vol. 21, no. 13, pp. 3713–3721, 2017.

[27] M. Ring, S. Wunderlich, D. Gr, D. Landes, and A. Hotho,
“Flow-based benchmark data sets for intrusion detection,” in
Proceedings of the in Proceedings of the 16th EuropeanConference
on CyberWarfare and Security (ECCWS). 1em plus 0.5emminus
0, pp. 361–369, 2017.

[28] NA. Http �ooder, 2010, https://code.google.com/archive/p/
http�ooder/wikis/Usage.wiki.

[29] R. Security, DDoS Survival Handbook �e ultimate guide to
everything you need to know about DDoS attacks, 2015.

[30] N. Tripathi and N. Hubballi, “Slow rate denial of service attacks
against http/2 and detection,” Computers Security, vol. 72, pp.
255–272, 2018.

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://en.wikipedia.org/wiki/2016_Dyn_cyberattack
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://code.google.com/archive/p/httpflooder/wikis/Usage.wiki
https://code.google.com/archive/p/httpflooder/wikis/Usage.wiki

Security and Communication Networks 13

[31] E. Cambiaso, G. Papaleo, G. Chiola, and M. Aiello, “Slow DoS
attacks: de�nition and categorisation,” International Journal of
Trust Management in Computing and Communications, vol. 1,
no. 3-4, pp. 300–319, 2013.

[32] Owasp, “(2010) Owasp http post tool,” 2010, http://www.owasp
.org/images/4/43/Layer7DDOS.pdf.

[33] E. Damon, J. Dale, E. Laron, J. Mache, N. Land, and R. Weiss,
“Hands-on denial of service lab exercises using SlowLoris and
RUDY,” in Proceedings of the the 2012 Information Security
Curriculum Development Conference, pp. 21–29, Kennesaw,
Georgia, October 2012.

[34] R. Fielding and J. Reschke, “Hypertext Transfer Proto-
col (HTTP/1.1): Message Syntax and Routing,” RFC Editor
RFC7230, 2014.

[35] Y. Choi, I. Kim, J. Oh, and J. Jang, “AIGG �reshold Based
HTTPGETFloodingAttackDetection,” in Information Security
Applications, vol. 7690 of Lecture Notes in Computer Science, pp.
270–284, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[36] M. Aiello, E. Cambiaso, S. Scaglione, and G. Papaleo, “A sim-
ilarity based approach for application DoS attacks detection,”
in Proceedings of the 2013 IEEE Symposium on Computers and
Communications (ISCC), pp. 000430–000435, Split, Croatia,
July 2013.

[37] H. Kim, B. Kim, D. Kim, I. Kim, and T. Chung, “Implemen-
tation of GESNIC for Web Server Protection against HTTP
GET Flooding Attacks,” in Information Security Applications,
vol. 7690 of Lecture Notes in Computer Science, pp. 285–295,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[38] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using
tra
c feature distributions,” Computer Communication Review,
vol. 35, no. 4, pp. 217–228, 2005.

[39] A. Wagner, A. Wagner, B. Plattner, and B. Plattner, “Entropy
Based Worm and Anomaly Detection in Fast IP Networks,”
in Proceedings of the 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enter-
prise (WETICE’05), pp. 172–177, Linkoping, Sweden.

[40] T. Liu, Z.Wang,H.Wang, andK. Lu, “An entropy-basedmethod
for attack detection in large scale network,” vol. 7, pp. 509–517,
2014.

[41] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised
machine learning approach for DDoS detection,” Applied Intel-
ligence.

http://www.owasp.org/images/4/43/Layer7DDOS.pdf.
http://www.owasp.org/images/4/43/Layer7DDOS.pdf.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi

www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi

www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

